RU2547893C1 - Способ детектирования ацетона в газовой фазе - Google Patents

Способ детектирования ацетона в газовой фазе Download PDF

Info

Publication number
RU2547893C1
RU2547893C1 RU2013153190/28A RU2013153190A RU2547893C1 RU 2547893 C1 RU2547893 C1 RU 2547893C1 RU 2013153190/28 A RU2013153190/28 A RU 2013153190/28A RU 2013153190 A RU2013153190 A RU 2013153190A RU 2547893 C1 RU2547893 C1 RU 2547893C1
Authority
RU
Russia
Prior art keywords
acetone
sensor layer
fluorescence intensity
fluorescence
wavelength
Prior art date
Application number
RU2013153190/28A
Other languages
English (en)
Inventor
Михаил Владимирович Алфимов
Александр Викторович Кошкин
Вячеслав Александрович Сажников
Марина Сергеевна Пилипенко
Original Assignee
Федеральное государственное бюджетное учреждение науки Центр фотохимии Российской академии наук (ЦФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Центр фотохимии Российской академии наук (ЦФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Центр фотохимии Российской академии наук (ЦФ РАН)
Priority to RU2013153190/28A priority Critical patent/RU2547893C1/ru
Application granted granted Critical
Publication of RU2547893C1 publication Critical patent/RU2547893C1/ru

Links

Images

Abstract

Изобретение относится к аналитической химии органических соединений, а именно к способу определения в воздухе ацетона (в том числе в выдохе человека). Способ заключается в том, что сенсорный слой на основе прозрачного силикатного ксерогеля, полученного с помощью метода золь-гель синтеза в присутствии органического красителя Нильского красного, освещают светом с длиной волны 560-610 нм и регистрируют интенсивность флуоресценции сенсорного слоя в диапазоне длин волн 630-680 нм. По изменению интенсивности флуоресценции судят о присутствии ацетона в газовой фазе. Изобретение позволяет проводить определение наличия паров ацетона в воздухе с помощью малогабаритных устройств в течение 5 мин. 2 ил.

Description

Область техники
Настоящее изобретение относится к области аналитической химии органических соединений и может быть применено для определения содержания в воздухе ацетона для мониторинга выдоха человека.
Уровень техники
Основным аналитическим методом определения присутствия ацетона в газовой фазе и в растворах является газовая хроматография (WO 2012033443). Несмотря на высокую чувствительность и селективность, которых можно добиться в системах, построенных на основе хроматографического метода анализа, их использование для создания портативных сенсорных систем невозможно.
Другой метод, получивший широкое распространение при производстве медицинских аппаратов для контроля выдоха человека на содержание ацетона, получили устройства на основе электрохимических сенсорных элементов на основе переходных металлов, нанесенных на подложки различной природы (CN 102050493, CN 102953059, CN 103091369, CN 103149330). Изменение проводимости сенсорных материалов на основе переходных металлов позволяет осуществлять детектирование присутствия ацетона в концентрациях порядка нескольких ppm, однако высокая чувствительность к посторонним компонентам в газовой смеси, например, углекислому газу и метану, не позволяют проводить экспресс, анализ в загрязненных помещениях.
Наиболее близким аналогом предлагаемого способа детектирования летучих органических соединений, в том числе ацетона, является способ, описанный в документе FR 2975397 (А1), опубликованном 23.11.2012, в котором предлагается использовать полисилоксаны с ковалентно связанными флуорофорами в качестве материала для определения наличия в воздухе летучих органических соединений. Тонкие пленки из описанного материала, нанесенные на подложку, освещают и регистрируют изменение интенсивности флуоресценции с длиной волны, характерной для конкретного флуорофора, по которому судят о присутствии органических аналитов в воздухе. В качестве недостатков способа, предложенного в FR 2975397, следует отметить то, что используемые для получения материалы требуют разработки методов синтеза в случае изменения типа красителя. Кроме того, предлагаемые материалы обладают низкой пористостью, что приводит к необходимости использовать методы получения тонких пленок на их основе с целью уменьшения времени отклика на газообразные аналиты. Необходимость использования материалов в виде тонких пленок снижает интенсивность флуоресцентного сигнала, понижая соотношение сигнал/шум, таким образом повышая нижний предел детектирования.
Задачей, на решение которой направлено заявляемое изобретение, является создание нового способа детектирования ацетона с помощью флуоресцентного метода анализа, характеризующегося быстродействием, простота получения сенсорного материала и возможность использования недорогих систем регистрации флуоресцентного сигнала (оптоволоконных спектрофлуориметров).
Техническим результатом, обеспечиваемым предложенным изобретением, является сокращение времени отклика сенсорного материала вследствие его высокой пористости.
Технический результат достигается способом определения ацетона в газовой фазе, заключающимся в том, что освещают размещенный в газовой фазе сенсорный слой, включающий флуорофор, регистрируют интенсивность флуоресценции сенсорного слоя на характерной для флуорофора длине волны и по изменению интенсивности флуоресценции судят о присутствии ацетона в газовой фазе, отличающимся тем, что используют сенсорный слой на основе прозрачного силикатного ксерогеля, полученного с помощью золь-гель синтеза в присутствии флуорофора, в качестве которого используют краситель Нильский красный, освещение сенсорного слоя осуществляют светом с длиной волны 560-610 нм, а регистрацию интенсивности флуоресценции сенсорного слоя осуществляют в диапазоне длин волн 630-680 нм.
Предложенный способ осуществляют с помощью дешевых обратимых прозрачных сенсорных материалов, чувствительных к полярным органическим соединениям в малых концентрациях, что позволяет использовать их в качестве рабочих материалов для систем контроля выдоха человека. Измерение интенсивности флуоресценции сенсорных слоев возможно с помощью малогабаритных оптоволоконных измерительных приборов.
Авторами было установлено, что воздействие паров ацетона приводит к изменениям в системе Нильский красный - матрица ксерогеля, заключающимся в обратимом конкурентном образовании водородных связей между молекулами ацетона и матрицей ксерогеля. Разрыв водородных связей с молекулой Нильского красного сопровождается существенным увеличением интенсивности флуоресценции с изменением положения максимума длины волны флуоресценции.
Размеры образца материала, необходимого для проведения измерений, лежат в широком диапазоне и определяются удобством работы и необходимой интенсивностью сигнала. В проведенных экспериментах полезная площадь сенсорного слоя, с которой считывался флуоресцентный сигнал, составляла не более 3 мм2.
Большим преимуществом предлагаемого способа является возможность измерения аналитического сигнала с помощью малогабаритной оптоволоконной техники. Использование флуоресцентных зондов и оптоволоконных устройств регистрации сигнала делает возможным дистанционные измерения и измерения в труднодоступных местах.
Небольшое (в пределах нескольких минут) время отклика (время регистрации выходного сигнала) является одним из наиболее важных требований к современным сенсорным системам. Использование флуоресценции в качестве аналитического сигнала позволяет сравнительно легко получить эти значения. Показано, что разгорание флуоресценции в изученных образцах происходит в течение нескольких десятков секунд.
Сущность изобретения поясняется чертежами, на которых изображено:
на фиг.1 - изменения в спектрах флуоресценции образца сенсорного материала под действием насыщенных паров ацетона во времени;
на фиг.2 - кинетика изменения интенсивности флуоресценции сенсорного материала под действием паров ацетона.
Предложенный способ детектирования ацетона в газовой фазе осуществляется следующим образом. Сенсорный слой, представляющий собой слой прозрачного ксерогеля, содержащего флуорофор - краситель Нильский красный, толщиной от нескольких микрон до нескольких миллиметров на поверхности твердой подложки, облучают светом с длиной волны 580 нм. Спектр флуоресценции сенсорного слоя представляет собой широкий пик с максимумом в области 670 нм (фиг.1). Под действием паров ацетона соединений происходит изменение интенсивности флуоресценции сенсорного слоя со смещением максимума полосы флуоресценции в область 654 нм.
Рассмотрим конкретный пример реализации данного изобретения.
Для получения сенсорного материала на основе прозрачного флуоресцентного ксерогеля в круглодонную колбу помещали 3 мл тетраэтоксисилана, 0.98 мл дистиллированной воды, 0.04 мл концентрированной соляной кислоты и 3 мл метанола. Раствор перемешивали на скорости 250 об./мин при температуре 60°С в течение 1.5 часов. Реакционную смесь охлаждали до комнатной температуры, после чего к 0.5 мл реакционной смеси добавили 0.5 мл раствора Нильского красного в метаноле с концентрацией 5×10-4 моль/л и 0.1 мл гидроксида аммония. Смесь оставляли при комнатной температуре в закрытой емкости на 10 минут до окончания гелеобразования, после чего емкость открывали и сушили гель при комнатной температуре в течение 24 часов. Полученный твердый продукт размалывали с помощью ступки с пестиком, после чего наносили на стеклянные подложки. Для получения спектров флуоресценции в присутствии паров ацетона образцы помещали в герметичный бокс объемом 15 см3, оснащенный системой принудительной циркуляции воздуха, в который помещали стеклянную кювету с 0.5 мл ацетона. Спектры флуоресценции образцов регистрировали с помощью введенного в бокс оптоволоконного флуоресцентного зонда R400-7 UV/VIS, присоединенного к оптоволоконному спектрофлуориметру D-2000 Ocean Optics. Зонд размещали перпендикулярно образцу на расстоянии 5 мм от сенсорного слоя. В качестве источника света использовали светодиод (λмакс=580 нм), освещение образца проводили через регистрирующий зонд. Запись спектров производили с использованием программного обеспечения Ocean Optics OOIBase 32, время интегрирования 300 мс, усреднение по трем спектрам. Измерение интенсивности проводилось на длине волны 660 нм.
На фиг.1 представлены изменения спектра флуоресценции сенсорного материала под действием насыщенных паров ацетона во времени. Видно, что происходит разгорание флуоресценции, сопровождающееся гипсохромным смещением максимума полосы флуоресценции.
На фиг.2 представлена кинетика изменения интенсивности флуоресценции сенсорного материала под действием паров ацетона; стрелками обозначены моменты впуска паров (А) и начала продувки - окончания экспозиции (Б). Время отклика образца составляло 9 сек. Под временем отклика понимается промежуток времени, за который уровень сигнала после начала подачи паров аналита изменяется более чем на 5σ, где σ - среднеквадратичное отклонение зависимости интенсивности флуоресценции образца от времени в отсутствие аналита (для данного примера измеренное значение σ составляет 2.83).

Claims (1)

  1. Способ определения ацетона в газовой фазе, заключающийся в том, что освещают размещенный в газовой фазе сенсорный слой, включающий флуорофор, и регистрируют интенсивность флуоресценции сенсорного слоя на характерной для флуорофора длине волны и по изменению интенсивности флуоресценции судят о присутствии ацетона в газовой фазе, отличающийся тем, что используют сенсорный слой на основе прозрачного силикатного ксерогеля, полученного с помощью золь-гель синтеза в присутствии флуорофора, в качестве которого используют краситель Нильский красный, освещение сенсорного слоя осуществляют светом с длиной волны 580 нм, а регистрацию интенсивности флуоресценции сенсорного слоя осуществляют в диапазоне длин волн 630-680 нм.
RU2013153190/28A 2013-12-02 2013-12-02 Способ детектирования ацетона в газовой фазе RU2547893C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013153190/28A RU2547893C1 (ru) 2013-12-02 2013-12-02 Способ детектирования ацетона в газовой фазе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013153190/28A RU2547893C1 (ru) 2013-12-02 2013-12-02 Способ детектирования ацетона в газовой фазе

Publications (1)

Publication Number Publication Date
RU2547893C1 true RU2547893C1 (ru) 2015-04-10

Family

ID=53296520

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013153190/28A RU2547893C1 (ru) 2013-12-02 2013-12-02 Способ детектирования ацетона в газовой фазе

Country Status (1)

Country Link
RU (1) RU2547893C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11344223B2 (en) 2020-09-16 2022-05-31 Solvax Systems Inc. Method and an apparatus for measuring acetone concentrations in breath

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU958930A1 (ru) * 1981-02-23 1982-09-15 Рубежанский филиал Ворошиловградского машиностроительного института Способ определени паров ацетона в воздухе
RU2427822C1 (ru) * 2009-12-03 2011-08-27 Учреждение Российской академии наук Центр фотохимии РАН Способ анализа содержания летучих органических соединений в газовой среде и матричный анализатор для его осуществления
FR2975397A1 (fr) * 2011-05-19 2012-11-23 Thales Sa Polymeres fluorescents polysiloxane a chaine laterale pour la detection de traces de composes organiques a l'etat gazeux
CN102953059A (zh) * 2012-08-28 2013-03-06 河北工业大学 氧化锌掺杂二氧化钛基的丙酮气敏传感器制备方法
CN103149330A (zh) * 2013-02-20 2013-06-12 北京联合大学生物化学工程学院 一种丙酮的纳米敏感材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU958930A1 (ru) * 1981-02-23 1982-09-15 Рубежанский филиал Ворошиловградского машиностроительного института Способ определени паров ацетона в воздухе
RU2427822C1 (ru) * 2009-12-03 2011-08-27 Учреждение Российской академии наук Центр фотохимии РАН Способ анализа содержания летучих органических соединений в газовой среде и матричный анализатор для его осуществления
FR2975397A1 (fr) * 2011-05-19 2012-11-23 Thales Sa Polymeres fluorescents polysiloxane a chaine laterale pour la detection de traces de composes organiques a l'etat gazeux
CN102953059A (zh) * 2012-08-28 2013-03-06 河北工业大学 氧化锌掺杂二氧化钛基的丙酮气敏传感器制备方法
CN103149330A (zh) * 2013-02-20 2013-06-12 北京联合大学生物化学工程学院 一种丙酮的纳米敏感材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11344223B2 (en) 2020-09-16 2022-05-31 Solvax Systems Inc. Method and an apparatus for measuring acetone concentrations in breath

Similar Documents

Publication Publication Date Title
JP4933271B2 (ja) 複数の検体の化学分析用ディスポーザルエレメントを備えたハンドヘルド装置
US10197477B2 (en) Analysis cartridge and method for using same
JP3764482B2 (ja) pHおよびpCO▲下2▼についての同時二重励起/一重発光蛍光感知方法
CN103852446B (zh) 一种基于光腔衰荡光谱技术的血液成分识别与分析仪器
Werner et al. Fiber optic sensor designs and luminescence-based methods for the detection of oxygen and pH measurement
Xiong et al. An integrated micro-volume fiber-optic sensor for oxygen determination in exhaled breath based on iridium (III) complexes immobilized in fluorinated xerogels
US4857472A (en) Method for continuous quantitative detection of sulphur dioxide and an arrangement for implementing this method
Zhao et al. Luminescence ratiometric oxygen sensor based on gadolinium labeled porphyrin and filter paper
Wang et al. Optical carbon dioxide sensor based on fluorescent capillary array
EP3218717A1 (en) Dynamic switching biosensor
Chu et al. A new portable optical sensor for dual sensing of temperature and oxygen
Mills Optical sensors for carbon dioxide and their applications
Wang et al. Development of novel handheld optical fiber dissolved oxygen sensor and its applications
RU2547893C1 (ru) Способ детектирования ацетона в газовой фазе
JP2008523414A5 (ru)
US6436717B1 (en) System and method for optical chemical sensing
Gorbunova et al. A monitor calibrator as a portable tool for determination of luminescent compounds
Fortes et al. Combined sensing platform for advanced diagnostics in exhaled mouse breath
RU2620169C1 (ru) Способ определения концентрации адсорбатов наночастиц серебра на поверхности нанопористого кремнезема
Yang et al. A cost-efficient and portable sulfide device with in situ integrating gas-permeable porous tube isolation and long path absorbance detection
RU2499249C1 (ru) Способ определения пиридина в воздухе
JP2005257388A (ja) 芳香族炭化水素類の濃度測定方法および装置
RU2532238C1 (ru) Способ детектирования аминов в газовой фазе
Meier Luminescent single and dual sensors for in vivo imaging of pH and pO2
Khimchenko et al. А simple RGB type chromogenic sensor based on color modulation of chloranilic acid for moisture determination of alcohols

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151203

NF4A Reinstatement of patent

Effective date: 20170124

MM4A The patent is invalid due to non-payment of fees

Effective date: 20191203