RU2427595C2 - Композиция для получения вспенивающегося полистирола - Google Patents

Композиция для получения вспенивающегося полистирола Download PDF

Info

Publication number
RU2427595C2
RU2427595C2 RU2009131943/05A RU2009131943A RU2427595C2 RU 2427595 C2 RU2427595 C2 RU 2427595C2 RU 2009131943/05 A RU2009131943/05 A RU 2009131943/05A RU 2009131943 A RU2009131943 A RU 2009131943A RU 2427595 C2 RU2427595 C2 RU 2427595C2
Authority
RU
Russia
Prior art keywords
melt
granules
polymer
wax
additive
Prior art date
Application number
RU2009131943/05A
Other languages
English (en)
Other versions
RU2009131943A (ru
Inventor
Рустем Ахтямович Рахимкулов (RU)
Рустем Ахтямович Рахимкулов
Александр Михайлович Кирюхин (RU)
Александр Михайлович Кирюхин
Андрей Степанович Алябьев (RU)
Андрей Степанович Алябьев
Владимир Викторович Емсин (RU)
Владимир Викторович Емсин
Original Assignee
Открытое акционерное общество "Газпром нефтехим Салават"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Газпром нефтехим Салават" filed Critical Открытое акционерное общество "Газпром нефтехим Салават"
Priority to RU2009131943/05A priority Critical patent/RU2427595C2/ru
Publication of RU2009131943A publication Critical patent/RU2009131943A/ru
Application granted granted Critical
Publication of RU2427595C2 publication Critical patent/RU2427595C2/ru

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Изобретение относится к химии полимеров и, в частности, к получению вспенивающихся гранул винилароматического полимера. Вспенивающиеся гранулы стирольного полимера получают методом прямого насыщения расплава полимера вспенивающим агентом в системе статических смесителей. Способ включает в себя подачу в расплав добавки и последующую грануляцию полученного расплава с помощью подводного гранулятора. В качестве добавки используется окисленный или неокисленный полиэтиленовый воск с температурой каплепадения более 70°С в количестве от 0,1 до 2,5 мас.% на массу гранулы вспенивающегося стирольного полимера. В качестве дополнительной добавки может использоваться антипирен гексабромциклододекан. В результате достигается одновременное улучшение взаимного смешения компонентов расплава полимера, активация течения расплава полимера, экономия электроэнергии, улучшение внутренней структуры вспененного изделия при использовании одной добавки. 1 з.п. ф-лы, 1 ил., 1 табл.

Description

Настоящее изобретение относится к химии полимеров и, в частности, к получению вспенивающихся гранул винилароматического полимера. Наиболее часто в качестве вспенивающегося винилароматического полимера используются гранулы вспенивающегося полистирола (ВПС). ВПС используется в целом ряде областей, важнейшими из которых являются строительство и упаковка. Блоки из вспененного полистирола обладают высокими термо- и звукоизолирующими свойствами, что способствует непрерывному росту объема производства и применения.
ВПС традиционно получают суспензионным способом (полимеризацией в реакторах с последующим насыщением бисера вспенивающим агентом). У этого способа ряд существенных недостатков: большое количество трудноутилизируемых водных стоков, периодичность работы оборудования (цикл работы единицы оборудования не менее 24 часов, что приводит к плохой воспроизводимости результатов), затруднения по производству необходимого гранулометрического состава (образуется значительная часть мелкой и крупной фракции, которые пускаются в рецикл).
Широко распространен способ получения пенополистирольных блоков методом экструзии расплава полимера. Вспенивающий агент и другие добавки вводят в расплав полистирола, после чего полученную композицию пропускают через плоскощелевую головку. Выходя из последней, материал вспенивается, охлаждается и нарезается на блоки необходимой формы. Недостатки этого способа заключаются в получении материала низкой плотности, который нерационально перевозить на большие расстояния, до конечного потребителя. Дополнительным фактором, сдерживающим применение указанного способа, является дороговизна используемого оборудования и высокие требования к качеству полистирола. Поэтому необходимо использовать несколько марок полистирола с различными физико-химическими характеристиками (показатель текучести расплава, молекулярно-массовое распределение).
Указанных недостатков лишен способ получения гранул ВПС путем пропитки вспенивающим агентом расплава полистирола, полученного методом блочной полимеризации. В композицию также вводят необходимые добавки, обеспечивающие высокие эксплуатационные свойства конечного продукта. Расплав гранулируют в условиях, предотвращающих заметное вспенивание материала. Этот метод позволяет получить материал со свойствами, аналогичными или превосходящими свойства суспензионного ВПС. При этом производство пеноблоков может быть осуществлено на широко распространенном оборудовании, расположенном непосредственно у потребителей, которые в настоящее время работают на суспензионном ВПС. Материалу, полученному по данной технологии, можно придать диапазон потребительских свойств, недостижимый при традиционном суспензионном способе производства (теплоизоляционные характеристики, физико-механические показатели и др.).
Компонентами, улучшающими конечные свойства вспененных изделий, являются:
- антипирены, вещества снижающие горючесть пеноизделия;
- термо-, светостабилизаторы, обеспечивающие сохранность свойств изделия в процессе эксплуатации пеноизделия;
- красители;
- нуклеаторы (структурообразователи), вещества, регулирующие размер ячеек при вспенивании;
- пластификаторы и другие процессинговые добавки, необходимые для повышения производительности конкретного типа оборудования;
- наполнители, удешевляющие стоимость готовой продукции без ухудшения потребительских свойств.
Традиционно в качестве антипиренов используются галогенуглеводороды с содержанием Br или Cl от 50 до 85%. Для снижения горючести вовлекаются синергетики Sb2O5, перекись дикумила, гидроокиси алюминия и магния и др. В качестве антипирена для ВПС используется промышленный концентрат гексабромциклододекана с содержанием основного вещества 50 мас.%. Расход этого концентрата 2,5% на готовый ВПС.
Термостабилизаторы для полистирола и полиолефинов - соединения фосфитного и фенольного типов. Например, Ирганокс 1010 (производства фирмы Ciba Gage) добавляется при производстве полистирола общего назначения в количестве менее 0,1% на полимер.
Светостабилизаторы, например Беназол П, Тинувин П и др.
Красители органические и неорганические, традиционные для химии полимеров (TiO2, FeO, фталоциановые и др. красители).
Наполнители: мелкодисперсная сажа, графит, цеолиты различной природы, измельченные горные минералы, оксиды кремния, магния, алюминия и др.
В качестве нуклеаторов используются различные оксиды и гидрооксиды магния, кремния, алюминия, тальк, воска различной природы (нефтяные, синтетические и другие).
Близким техническим решением к нашему изобретению является патент РФ №2295439, в котором описывается способ «… получения гранул вспенивающегося стирольного полимера, включающего подачу потоков расплава полимера и вспенивающего агента (ВА) в зону смешения, диспергирование ВА в расплаве полимера при интенсивном разрезающем перемешивании в первом статическом смесителе, выдержку образовавшейся смеси при интенсивном разрезающем перемешивании во втором статическом смесителе, охлаждение смеси при перемешивании в третьем статическом смесителе до промежуточной температуры с последующим охлаждением смеси до температуры, необходимой для грануляции, выдавливание нитей полимера с их резким охлаждением и грануляцию…». По мнению авторов преимущества предлагаемого метода - это возможность переработки в ВПС широкого диапазона сортов полистирола для дальнейшего получения пенополистирола в широком диапазоне потребительских характеристик. Этот эффект достигается использованием определенного профиля температур, задаваемого алгоритмом, зависимым от физико-химических параметров сырья и диапазона соотношения потока расплава и потока вспенивающего агента. Недостатком этого метода является использование нескольких статических смесителей с высокой смесительной способностью для предварительного смешения полистирола со вспенивателем. Для проведения процесса смешения предлагаются повышенные температуры расплава полимера (при использовании гексабромциклододекана в качестве антипирена он в заметной степени разлагается; использование других антипиренов снижает огнестойкость вспененных блоков, что приводит к неоправданному завышению их концентрации). В качестве нуклеаторов используются неорганические агенты (тальк, оксиды и гидроксиды алюминия, магния и т п.). Введение их в расплав полистирола налагает жесткие требования к смешивающему оборудованию (высокоэффективные статические смесители, двухшнековые экструдеры). При использовании неорганических нуклеаторов на заявляемом оборудовании наблюдается периодическая забивка отдельных участков фильерной доски отложениями из указанных ингредиентов.
Наиболее близким по совокупности существенных признаков является патент РФ №2307844, где предлагается способ производства вспенивающихся гранул, включающий в себя:
1) загрузку в экструдер винилароматического полимера вместе с 0-50 мас.% сополимера;
2) нагревание полимеров до температуры, превышающей относительную температуру плавления;
3) введение вспенивающих агентов в расплавленный продукт до начала экструзии через экструзионную головку и
4) формование через экструзионную головку гранул, возможно, вспениваемых, по существу, сферической формы со средним диаметром от 0,2 до 2 мм.
В прототипе предусмотрено использование 0,05% полиэтиленового воска в качестве инициатора зародышеобразования. При такой концентрации полиэтиленовый воск не способствует существенному улучшению текучести сополимера и не оказывает гомогенизирующего действия на полимерную композицию. Недостатками указанного способа является отсутствие стадии введения добавок, улучшающих потребительские свойства готового продукта (термостабилизаторы, светостабилизаторы, антипирены). Использование экструдера приводит к высоким затратам на нагревание полимерной массы. К тому же для достижения хорошей вспениваемости в данном патенте используется смесь различных полимеров.
Технический результат, на достижение которого направлено заявляемое изобретение, - это одновременное улучшение взаимного смешения компонентов расплава полимера, активация течения расплава полимера, экономия электроэнергии, улучшение внутренней структуры вспененного изделия, при использовании одной добавки.
В заявляемом изобретении для производства вспенивающихся гранул стирольного полимера используется метод прямого насыщения расплава полимера вспенивающим агентом. Для интенсификации стадии насыщения используется серия статических смесителей, на которых за счет разрезающего воздействия стационарных элементов происходит интенсивное перемешивание. Полученный расплав направляют на грануляцию в условиях, предотвращающих заметное вспенивание гранул.
На степень смешения существенное влияние оказывает вязкость получаемого расплава. Известно, что для снижения вязкости обычно повышается температура. Вязкость расплава также можно уменьшить, используя различные активаторы течения расплава (заявка №2001108370 ДЗЕ ДАУ КЕМИКАЛ КОМПАНИ, в которой активатор течения выбирают из диметилдифенилбутана, перекиси дикумила или α,α'-бис-трет-бутилпероксидиизопропилбензола).
Согласно настоящему изобретению заявляемый технический результат достигается тем, что в качестве комплексной добавки используется окисленный или неокисленный полиэтиленовый воск, имеющий температуру каплепадения более 70°С, в количестве от 0,1 до 2,5 мас.% на массу гранулы вспенивающегося стирольного полимера.
При использовании воска в концентрациях ниже 0,1 мас.% наблюдается только улучшение внутренней структуры вспененного изделия. Другие положительные качества (улучшение взаимного смешения компонентов расплава полимера, активация течения расплава полимера, экономия электроэнергии) использования воска в заявляемом способе производства становятся заметными при концентрациях воска свыше 0,1%. Увеличение же концентрации свыше 2,5-3,0% приводит к резкому увеличению поверхностной концентрации воска, что препятствует перерабатываемости полимера при заявляемом способе получения вспенивающихся гранул. Снижение вязкости позволяет существенно снизить нагрузку на насосы расплава, на экструдеры, традиционно применяемые для транспорта расплава полимера. Таким образом, установлено, что воск является эффективным активатором течения. Также отмечено, что вовлечение воска улучшает равномерность распределения ингредиентов в расплаве.
Способ может быть осуществлен на установке, состоящей из узла 1 дозирования расплава полистирола (см. чертеж). Узел 1 может быть экструдером расплава либо установкой, производящей полистирол непрерывным и (или) полунепрерывным способом. Из узла 1 расплав полимера с избыточным давлением, создаваемым насосом расплава Р00 поступает в первый статический смеситель 3. На вход первого смесителя также дозатором 2 подается вспенивающий агент. Дозатор обеспечивает необходимую концентрацию вспенивателя в композиции. В смесителе 3 происходит смешение вспенивающего агента с расплавом полистирола при непрерывном разрезающем воздействии смесительных устройств. Далее при помощи экструдера 7 в полученную смесь подаются необходимые добавки (добавка), экструдер 7 оснащен дозатором 4, обеспечивающим точное введение компонентов, затем смесь поступает на статический смеситель 5. После смесителя 5 смесь подается на узел гранулирования 6, представляющий собой подводный гранулятор, обеспечивающий формование вспенивающихся гранул стирольного полимера без видимого вспенивания. Для компенсирования градиента давления в статических смесителях и для создания необходимого для гранулирования давления производственная линия оснащена насосами расплава Р01, Р03. Таким образом получаются способные вспениваться гранулы стирольного полимера.
Увеличение же концентрации до свыше 2,5-3,0% приводит к резкому увеличению поверхностной концентрации воска, что препятствует перерабатываемости полимера при заявляемом способе получения вспенивающихся гранул. Снижение вязкости позволяет существенно снизить нагрузку на насосы расплава, на экструдеры, традиционно применяемые для транспорта расплава полимера. Таким образом, установлено, что воск является эффективным активатором течения. Также отмечено, что вовлечение воска улучшает равномерность распределения ингредиентов в расплаве.
Способ может быть осуществлен на установке, состоящей из узла 1 дозирования расплава полистирола (см. Принципиальную схему установки). Узел 1 может быть экструдером расплава либо установкой, производящей полистирол непрерывным и (или) полунепрерывным способом. Из узла 1 расплав полимера с избыточным давлением, создаваемым насосом расплава Р00, поступает в первый статический смеситель (3). На вход первого смесителя также дозатором (2) подается вспенивающий агент. Дозатор обеспечивает необходимую концентрацию вспенивателя в композиции. В смесителе 3 происходит смешение вспенивающего агента с расплавом полистирола при непрерывном разрезающем воздействии смесительных устройств. Далее при помощи экструдера 7 в полученную смесь подаются необходимые добавки (добавка), экструдер 7 оснащен дозатором 4, обеспечивающим точное введение компонентов, затем смесь поступает на статический смеситель 5. После смесителя 5 смесь подается на узел гранулирования 6, представляющий собой подводный гранулятор, обеспечивающий формование вспенивающихся гранул стирольного полимера без видимого вспенивания. Для компенсирования градиента давления в статических смесителях и для создания необходимого для гранулирования давления производственная линия оснащена насосами расплава Р01, Р03. Таким образом получаются способные вспениваться гранулы стирольного полимера.
Методики определения показателей.
Определение горючести проводили по ОСТ 301-05-202-92 на пяти образцах размером (120,0±1,0)×(44,0±1,0)×(30,0±1,0) мм. За горючесть образца принимается среднеарифметическое значение результатов трех образцов, расхождение между которыми не должно превышать 2 с. Поэтому для части образцов определить горючесть не представлялось возможным, что косвенно свидетельствует о плохом распределении антипирена гексабромциклододекана между различными гранулами.
Для определения качества смешения использовали зеленый краситель. После гранулирования визуально по пятибалльной системе определяли качество смешения по однородности окраски полученных гранул ВПС. Для этого из навески 10 г гранул ВПС отделяли фракцию, визуально отличающуюся по степени окрашивания от основной (гранулы с большей степенью окрашивания и с меньшей). Эту фракцию взвешивали и определяли ее процентное содержание.
Балльная шкала однородности окрашивания: 5 баллов - менее 5,0 мас.% фракции с окраской, отличающейся от основной; 4 балла - 5,0-10,0%; 3 балла - 10,0-15,0%; 2 балла - 15,0-20,0%; 1 балл - 20,0-25,0%; 0 баллов - более 25,0% фракции.
Полученные гранулы ВПС вспенивали для анализа внутренней структуры пенополистирола. Средние размеры ячеек вспененных гранул, толщину стенки, распределение ячеек пены определяли с использованием микрометрической шкалы микроскопа. Визуально оценивалась также степень однородности ячеек внутри вспененной гранулы. Пеноблоки имели кажущуюся плотность от 25 до 30±2 кг/м3.
Эффект улучшения взаимного смешения компонентов расплава полимера проявляется в лучшем распределении красителя между различными гранулами одной партии и возможности определение горючести по ОСТ 301-05-202-92. Эффект улучшения внутренней структуры вспененного изделия проявляется в лучшей однородности распределения ячеек внутри вспененной гранулы по форме и в меньшем разбросе размеров ячеек пены и толщин их стенок.
Далее приведены примеры, иллюстрирующие заявляемое изобретение
Пример 1.
С технологической линии по производству полистирола общего назначения с расходом 1400 кг/ч расплав полимера поступает на вышеописанный узел. Полистирол имеет ПТР=5,0 г/10 мин (по ГОСТ 11645-73), средневесовая молекулярная масса которого равна 265000 г/моль. Температура расплава полимера 250°С.
Полиэтиленовый воск Viscowax 115 (неокисленный неполярный полиэтиленовый воск) с вязкостью при 120°С 400-500 мм2/с, Mn=2400 г/моль, температура застывания 103-108°С, температура каплепадения 112-117°С. Воск Viscowax 115 представляет собой углеводород (у/в) со структурной формулой (-CHR1-CHR2-)n, в которой R1, R2 в каждом случае представляет собой H или радикал с 1-20 атомами углерода, n представляет целые числа в интервале от 10 до 120. Расход воска 0,2 мас.% на массу гранулы ВПС.
В качестве вспенивающего агента использовалась изопентановая фракция (содержащая изопентан 97,5 мас.%, нормальный пентан 2,5 мас.% подаваемая в количестве 5,5 мас.% на массу гранулы ВПС.
Для снижения горючести пеноматериала использовался гексабромциклододекан в количестве 2,5 мас.%, который вводился в расплав в виде 50%-ного мастербатча.
Основными параметрами, характеризующими проведение процесса смешения, являются температура, давление, потребляемая насосами расплава мощность. Требуемый профиль температур достигается регулированием степени нагрева циркулирующего по замкнутому контуру теплоносителя.
Насосы Р00, Р01 и Р03 имеют номинальную мощность 30 кВт каждый, экструдер R00 имеет номинальную электрическую мощность 90 кВт, после экструдера R00 установлен насос Р04, имеющий мощность 9 кВт.
Для определения качества смешения использовали зеленый краситель.
В данном примере получаются гранулы, которые содержат (после вспенивания) ячейки преимущественно правильной формы, доля деформированных и сплюснутых ячеек незначительна, достигнуто одновременное улучшение взаимного смешения компонентов расплава полимера, активация течения расплава полимера, экономия электроэнергии, улучшение внутренней структуры вспененного изделия при использовании одной добавки.
Пример 2.
Эксперимент проводился в тех же условиях, что и пример 1, но с содержанием воска Viscowax 116 2,5 мас.% на массу гранулы ВПС, обладающего высокой температурой каплепадения 114-120°С и температурой застывания 105-110°С. Воск Viscowax 116 представляет собой у/в со структурной формулой (-CHR1-CHR2-)n, в которой R1, R2 в каждом случае представляет собой Н или радикал с 1-20 атомами углерода, n представляет целые числа в интервале от 10 до 300. Следует отметить равномерную окраску всей полимерной массы. Краситель между различными гранулами распределен однородно, внутри отдельных гранул не встречаются неокрашенные участки. Внутренняя структура пеногранул удовлетворительная, толщина стенок и размеры ячеек равномерны, доля деформированных ячеек незначительна. Вспененные гранулы имели кажущуюся плотность 20 кг/см3. Дальнейшее увеличение концентрации воска не представляется возможным из-за резкого падения производительности всей установки.
Пример 3.
Эксперимент проводился в тех же условиях, что и пример 2, но с содержанием воска Viscowax 116 0,2 мас.% на массу гранулы ВПС. При концентрации 0,2 мас.% воск проявляет эффект улучшения внутренней структуры вспененного изделия и улучшения взаимного смешения компонентов расплава полимера, что подтверждено исследованиями микроструктуры вспененных гранул. Окраска гранул удовлетворительная, дефектных ячеек в грануле мало - менее 10%.
Пример 4.
Эксперимент проводился в тех же условиях что и пример 1, но с использованием окисленного воска марки LUVAX ОА 2 (фирмы BASF, tпл 103-112°С, температура каплепадения 108-116°С, кислотность 19-25 мг KOH/г). Воск представляет собой окисленный у/в со структурной формулой (-CHR1-CHR2-)n, в которой R1, R2 в каждом случае независимо обозначают Н, R' или группу -OH, группу -COOH, группу -C=O, группу -O-CO-CH3, группу -COOR', где R' представляет собой радикал с 1-20 атомами углерода, n представляет целые числа в интервале от 10 до 200, в качестве комплексной добавки. При концентрации 0,1 мас.% на массу гранулы ВПС воск проявляет хороший эффект улучшения внутренней структуры вспененного изделия и улучшения взаимного смешения компонентов расплава полимера. Исследования микроструктуры вспененных гранул показали результаты, идентичные примеру 1. Равномерность окраски гранул хорошая.
Пример 5.
Эксперимент проводился в тех же условиях, что и пример 1, но с использованием воска в качестве комплексной добавки с более низкой температурой каплепадения 70-73°С (температура застывания 64-66°C). Воск представляет собой у/в со структурной формулой (-CHR1-CHR2-)n, в которой R1, R2 в каждом случае независимо обозначают Н, R' или группу -ОН, группу -COOH, группу -CO, группу -O-CO-CH3, группу -COOR', где R' представляет собой радикал с 1-20 атомами углерода, n представляет целые числа в интервале от 10 до 100. При концентрации 0,2 мас.% на массу гранулы ВПС воск проявляет эффект улучшения внутренней структуры вспененного изделия, что подтверждено исследованиями микроструктуры вспененных гранул. Окраска гранул удовлетворительная, эффект активации течения расплава и соответственно нагрузка на насосах расплава сравнимы с примером 1.
Пример 6 (сравнительный).
Эксперимент проводился в тех же условиях, что и в примере 1, но без использования воска. В отличие от примера 1 потребляемая мощность насосами расплава заметно возрастает, давление, необходимое для продавливания расплава полимера, увеличивается. Краситель между различными гранулами распределен неоднородно, внутри отдельных гранул встречаются непрокрашенные участки. Внутренняя структура пеногранул неудовлетворительная: толщина стенок и размеры ячеек сильно варьируются, количество деформированных ячеек значительно (около 15%). Вспененные гранулы имели кажущуюся плотность 20 кг/см3.
Пример 7 (сравнительный).
Эксперимент проводился в тех же условиях, что и в примере 1, но с концентрацией воска Viscowax 115 0,01 мас.% на массу гранулы ВПС. В отличие от примера 1 потребляемая мощность насосами расплава возрастает, давление, необходимое для продавливания расплава полимера, увеличивается. Краситель между различными гранулами распределен так же неоднородно, внутри отдельных гранул встречаются неокрашенные участки. Внутренняя структура пеногранул неудовлетворительная, доля деформированных ячеек около 10%, толщина стенок и размеры ячеек существенно различаются. Вспененные гранулы имели кажущуюся плотность 20 кг/см3.
Пример 8 (сравнительный).
Эксперимент проводился в тех же условиях, что и в примере 1, но с использованием талька вместо воска. При его концентрации 0,2 мас.% на массу гранулы ВПС проявляется незначительный эффект улучшения внутренней структуры вспененного изделия, но тальк не улучшает смешиваемость компонентов в полимерной массе, что заметно в плохом распределении красителя в образованных гранулах, к тому же потребляемая мощность насосами расплава сопоставима с величинами из примера 6.
Пример 9 (сравнительный).
Эксперимент проводился в тех же условиях, что и в примере 1, но с использованием парафина нефтяного твердого марки В5 по ГОСТ 23683-89 с температурой плавления 61°С и с температурой каплепадения 66°С. При концентрации воска 0,2 мас.% на массу гранулы ВПС эффект улучшения внутренней структуры вспененного изделия незначительный. Не наблюдается существенного улучшения микроструктуры вспененных гранул. Активация течения расплава и соответственно нагрузка на насосах расплава заметно снижается по сравнению с примером 1. Окраска полимерной массы неравномерная, таким образом, улучшение взаимного смешения компонентов расплава полимера и улучшение внутренней структуры вспененного изделия не достигается.
Физико-химические свойства получаемых гранул вспенивающегося полистирола и условия его получения
Пример
Наименование 1 Viscowax 115 0,2% 2
Viscowax 116 2,5%
3
Viscowax 116 0,2%
4
Luvax 0,1%
5
Воск Ткпад=70-73 0,2%
6
Без воска
7 Viscowax 115 0,01% 8 Тальк 0,2% 9
Воск В5 0,2%
Размер ячеек пены, мкм 50-150 50-150 70-200 50-150 100-250 30-800 100-250 100-300 50-400
Толщина
стенок ячеек, мкм 1-2 1-2 1-3 1-2 1-3 1-6 1-3 1-5 1-5
Однородность распределения
ячеек внутри вспененной Хорошая Хорошая Уд Хорошая Уд Неуд Уд Уд Неуд
гранулы
Распределение
красителя между
различными 5 5 4 5 5 2 2 2 3
гранулами одной
партии, балл
Горючесть вспененных блоков, с 0,5 0,6 0,5 0,5 0,7 Не опр* He опр* Не опр* 0,7
% установленной
мощности Р00 30 30 30 30 30 30 30 30 30
% установленной
мощности Р01 15 7 17 14 14 43 40 38 7-14
% установленной
мощности Р03 17 8 20 18 16 47 42 42 8-15
% установленной
мощности, экструдер 7 15 6 17 16 14 17 17 17 7-14
% установленной
мощности Р04 12 5 13 12 11 24 21 22 5-10

Claims (2)

1. Способ получения вспенивающихся гранул стирольного полимера методом прямого насыщения расплава полимера вспенивающим агентом в системе статических смесителей, включающий в себя подачу в расплав добавки и последующую грануляцию полученного расплава с помощью подводного гранулятора, при этом в качестве добавки используется окисленный или не окисленный полиэтиленовый воск с температурой каплепадения более 70°С в количестве от 0,1 до 2,5 мас.% на массу гранулы вспенивающегося стирольного полимера.
2. Способ по п.1, отличающийся тем, что в качестве дополнительной добавки используют антипирен гексабромциклододекан.
RU2009131943/05A 2009-08-24 2009-08-24 Композиция для получения вспенивающегося полистирола RU2427595C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009131943/05A RU2427595C2 (ru) 2009-08-24 2009-08-24 Композиция для получения вспенивающегося полистирола

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009131943/05A RU2427595C2 (ru) 2009-08-24 2009-08-24 Композиция для получения вспенивающегося полистирола

Publications (2)

Publication Number Publication Date
RU2009131943A RU2009131943A (ru) 2011-02-27
RU2427595C2 true RU2427595C2 (ru) 2011-08-27

Family

ID=44756932

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009131943/05A RU2427595C2 (ru) 2009-08-24 2009-08-24 Композиция для получения вспенивающегося полистирола

Country Status (1)

Country Link
RU (1) RU2427595C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574059B2 (en) 2013-08-27 2017-02-21 Sh Energy & Chemical Co., Ltd Thermal insulation expandable polystyrene particles and method of preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574059B2 (en) 2013-08-27 2017-02-21 Sh Energy & Chemical Co., Ltd Thermal insulation expandable polystyrene particles and method of preparing the same
RU2620412C2 (ru) * 2013-08-27 2017-05-25 ЭсЭйч ЭНЕРДЖИ энд КЕМИКАЛ КО., ЛТД. Расширяющиеся частицы полистирола для теплоизоляции и способ их получения

Also Published As

Publication number Publication date
RU2009131943A (ru) 2011-02-27

Similar Documents

Publication Publication Date Title
RU2510406C2 (ru) Композиции из вспениваемых винилароматических полимеров с улучшенной теплоизоляционной способностью, способ их получения и вспененные изделия, полученные из этих композиций
JP6555251B2 (ja) スチレン系樹脂発泡成形体及びその製造方法
JP3561022B2 (ja) 発泡性プラスチック粒体の生成方法
JP4996485B2 (ja) 発泡性スチレンポリマー顆粒の製造方法
JP6144693B2 (ja) スチレン系ポリマー、ポリエチレンワックスおよび臭素化ビニル芳香族/ブタジエン−コポリマーを含むポリマー発泡体のための組成物
JP2009536687A (ja) 断熱特性に優れた発泡性ポリスチレン粒子の2段階製造方法
CA2227270A1 (en) Continuous process for the preparation of expandable styrene polymers
CN102015851A (zh) 具有提高隔热能力的可发泡乙烯基芳族聚合物的组合物、它们的制备方法和由其得到的发泡制品
CN102443215B (zh) 复合树脂发泡颗粒及其制造方法以及可发泡复合树脂颗粒的制造方法
EP2285872B1 (en) Physically blown polyethylene foam
CN101796113A (zh) 聚丙烯类树脂挤出发泡体及其制造方法
HUT56757A (en) Method and apparatus for producing thermoplastic foam
RU2427595C2 (ru) Композиция для получения вспенивающегося полистирола
EP1702945B1 (de) Füllstoffhaltige Polyolefinpartikelschaumstoffe
EP1730221A1 (en) Foam structure with an inorganic blowing agent
CN102888053B (zh) 一种无卤阻燃聚丙烯发泡材料及制备方法
US5830924A (en) Non-linear styrenic polymer-based foams
JP6854672B2 (ja) マスターバッチ、およびその製造方法、並びに、発泡性熱可塑性樹脂粒子の製造方法
KR950010981B1 (ko) 발포되는 스티렌중합체 및 스티렌중합체 포움
JP7144955B2 (ja) スチレン系樹脂組成物および発泡性スチレン系樹脂粒子の製造方法
EP3778741A1 (en) Expandable thermoplastic resin particles
RU2320684C2 (ru) Пенопласты на основе полиолефинов
JP6854671B2 (ja) 発泡性熱可塑性樹脂粒子、およびその製造方法
RU2400494C1 (ru) Способ получения пенополистирольных плит с высоким сопротивлением сжатию
KR100906955B1 (ko) 무가교형 폴리에틸렌 발포 성형체의 재생 방법

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20170222