RU2425298C1 - Термоэлектрический модуль - Google Patents

Термоэлектрический модуль Download PDF

Info

Publication number
RU2425298C1
RU2425298C1 RU2010110454/06A RU2010110454A RU2425298C1 RU 2425298 C1 RU2425298 C1 RU 2425298C1 RU 2010110454/06 A RU2010110454/06 A RU 2010110454/06A RU 2010110454 A RU2010110454 A RU 2010110454A RU 2425298 C1 RU2425298 C1 RU 2425298C1
Authority
RU
Russia
Prior art keywords
module
output bus
output
parts
power source
Prior art date
Application number
RU2010110454/06A
Other languages
English (en)
Inventor
Николай Александрович Сидоренко (RU)
Николай Александрович Сидоренко
Валерий Иванович Гришин (RU)
Валерий Иванович Гришин
Original Assignee
Открытое Акционерное Общество "Автоштамп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Автоштамп" filed Critical Открытое Акционерное Общество "Автоштамп"
Priority to RU2010110454/06A priority Critical patent/RU2425298C1/ru
Application granted granted Critical
Publication of RU2425298C1 publication Critical patent/RU2425298C1/ru

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Изобретение относится к области термоэлектричества, в частности к термоэлектрическим устройствам Пельтье или Зеебека, эксплуатируемых в условиях многократного термоциклирования. Термоэлектрический модуль содержит полупроводниковые ветви p- и n- проводимости, соединенные коммутационными шинами с образованием электрической цепочки, выводные шины, соединенные с источником питания. Каждая выводная шина состоит из двух не соприкасающихся друг с другом и связанных между собой электрически с помощью перемычки - проводника тока частей. Одна из частей выводной шины имеет электрический контакт с полупроводниковым элементом n- или p- типа проводимости. Вторая часть выводной шины имеет электрический контакт с одним из токопроводов подключения модуля к источнику питания при работе модуля для охлаждения или нагрева или к потребителю электрической энергии при работе модуля в качестве генератора тока. Перемычка припаяна или приварена, или приклеена к одной части каждой выводной шины. Перемычка может быть выполнена в виде отрезка токопровода. Такое конструктивное выполнение позволяет создать надежное соединение модуля с проводами подключения модуля к источнику питания или к потребителю электрической энергии, т.е. повысить надежность работы модуля. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области термоэлектричества, в частности к термоэлектрическим устройствам Пельтье или Зеебека, эксплуатируемых в условиях многократного термоциклирования.
Известен охлаждающий модуль - термоэлектрический модуль (Пельтье), предназначенный для эксплуатации преимущественно в условиях многократного термоциклирования, содержащий полупроводниковые ветви n- и p-типов проводимости, соединенные между собой коммутационными шинами, а также теплообменные пластины. В известном модуле шины соединены с теплообменными пластинами посредством так называемого «теплоконтактного соединения», выполненного в виде упругого слоя клеевого компаунда (RU 2117362).
Наиболее близким аналогом заявленного изобретения является термоэлектрический модуль, содержащий полупроводниковые ветви р- и n-проводимости, соединенные коммутационными шинами с образованием электрической цепочки, выводные шины, соединенные с источником питания (RU 51288), а также теплообменные пластины. В известном модуле, по сравнению с модулем, известным из RU 2117362, дополнительно предлагается использовать между шинами и теплообменной пластиной со стороны шины адгезионного слоя металлоорганического соединения.
Общим недостатком известных термоэлектрических модулей, как показал опыт их эксплуатации, является то, что использование упругого теплопроводящего материала для закрепления выводных шин на теплообменной пластине не предотвращает деформацию контакта полупроводниковых ветвей с выводными шинами. Такая деформация может привести к выходу из строя термоэлектрического модуля.
Обычно к выводным шинам припаиваются (привариваются) внешние провода для подключения модуля к источнику питания (или к нагрузке при работе модуля в режиме генерации электрического тока). Механическое усилие со стороны внешнего провода, используемого для подключения модуля к источнику питания, может привести к повреждению контакта между выводной шиной и полупроводниковой ветвью. Подобное нарушение контакта между выводной шиной и полупроводниковой ветвью приводит к резкому возрастанию контактного электрического сопротивления и как следствие этого к значительному повышению температуры контакта вплоть до его выгорания и соответственно к выходу модуля из строя.
Существует также рад дополнительных факторов, снижающих надежность связи выводных шин с теплообменной пластиной:
1) если модуль эксплуатируется при повышенных температурах, то имеет место снижение прочности связи теплопроводящего клея как с выводными шинами, так и с теплообменной пластиной модуля.
2) из-за существенной разницы в коэффициентах теплового расширения выводных шин, теплообменных пластин и упругого теплопроводящего клея, возникающие механические напряжения в условиях смены тепловой нагрузки приводят к ослаблению связи выводных шин с теплообменной пластиной модуля.
Таким образом, при монтаже и эксплуатации известных термоэлектрических модулей велика вероятность повреждения электрического контакта между полупроводниковыми ветвями и выводными шинами.
Задачей заявляемого изобретения является устранение указанных недостатков известных термоэлектрических модулей, связанных с низкой надежностью контакта полупроводниковых ветвей с выводными шинами модуля.
Технический результат - повышение надежности термоэлектрических модулей, эксплуатируемых в условиях многократного термоциклирования.
Это достигается тем, что в известном термоэлектрическом модуле, содержащем полупроводниковые ветви p- и n-проводимости, соединенные коммутационными шинами с образованием электрической цепочки, выводные шины для соединения с источником питания, согласно изобретению, каждая выводная шина состоит из двух не соприкасающихся друг с другом частей, связанных между собой электрически с помощью токопроводящей перемычки, при этом одна из частей выводной шины имеет электрический контакт с полупроводниковым элементом n- или p-типа проводимости, а вторая часть выводной шины имеет электрический контакт с одним из токопроводов подключения модуля к источнику питания при работе модуля для охлаждения или нагрева или к потребителю электрической энергии при работе модуля в качестве генератора тока. Для каждой выводной шины токопроводящая перемычка припаяна или приварена, или приклеена к каждой из двух частей выводной шины. Токопроводящие перемычки выполнены в виде отрезка токопровода питания модуля.
На чертеже показан термоэлектрический модуль, общий вид.
Термоэлектрический модуль содержит полупроводниковые ветви 1, 2, соответственно, р- и n-проводимости. Ветви 1, 2 соединены коммутационными шинами 3 с образованием электрической цепочки. Каждая выводная шина состоит из двух не соприкасающихся друг с другом частей 4 и 4а. Части 4 и 4а каждой выводной шины связаны между собой электрически с помощью перемычки 5, являющейся проводником тока. Части 4 каждой выводной шины, находящиеся в электрическом контакте с полупроводниковой ветвью 1 или 2 (р- или n-проводимости), приклеены к теплообменной пластине 6 с помощью упругого теплопроводящего клея. Части 4а каждой выводной шины прочно закреплены на теплообменной пластине 7 (например, с помощью напыления, методами диффузионного сращивания, пайки и т.п.).
Удельное усилие отрыва части 4а выводной шины от теплообменной пластины 6 должно быть не менее 3 кг/мм2. Такое удельное усилие отрыва части выводной шины обеспечивает надежное закрепление внешних проводов питания 8 и 9 к теплообменной пластине 6. Удельное усилие отрыва части 4 выводной шины от теплообменной пластины 6 обычно не превышает 1.2 кг/мм2.
Каждая из перемычек 5 может быть выполнена, например, из отрезка одножильного или многожильного провода, металлической (медной или серебряной) ленты или любого проводника тока, усилие деформации которого при работе модуля не превышает усилие отрыва частей 4 или 4а выводных шин от теплообменной пластины 6. Каждая перемычка 5 припаяна или приварена или приклеена к частям 4 и 4а соответствующей выводной шины.
Части 4а каждой выводной шины имеют электрический контакт с одним из проводов 8 или 9 подключения модуля к источнику питания (на чертеже не показан).
Заявляемый термоэлектрический модуль в режиме охлаждение/нагрев работает следующим образом.
Источник постоянного тока присоединяют к внешним проводам 8, 9 модуля и пропускают постоянный ток через полупроводниковые ветви 1 и 2. Вследствие эффекта Пельтье на спаях ветвей 1 и 2 и коммутационных шин 3, расположенных на охлаждающей теплообменной пластине 7, происходит поглощение тепловой энергии и соответственно постепенно охлаждается до требуемой температуры объект, размещенный на внешней поверхности теплообменной пластины 7. На спаях ветвей 1 и 2 и коммутационных шин 3, расположенных на теплоотводящей теплообменной пластине 6, происходит выделение тепловой энергии, которая отводится с внешней поверхности теплообменной пластины 6. При этом имеет место повышение температуры теплообменной пластины 6 и расположенных на ней коммутационных шин, выводных шин и упругого слоя между теплообменной пластиной 6 и коммутационными и выводными шинами. При смене направления тока через модуль происходит понижение температуры теплообменной пластины 6 и расположенных на ней компонентов модуля. В процессе изменения температуры теплообменной пластины 6 модуля возникают тепловые деформации упругого слоя между теплообменной пластиной 6 и коммутационными 3 и выводными шинами 4.
Опыт показывает, что различие в коэффициентах теплового расширения коммутационных шин 3 и выводных шин 4 и теплообменной пластины 6 приводит к движению шин относительно теплообменной пластины. При использовании медных шин и керамических (AlN или Аl2O3) теплообменных пластин величина смещения шин относительно теплообменной пластины 6 может достигать 0.02 мм при размере теплообменной пластины ≈40×40 мм2 и перепадах температур ≈100°С.
Возникающие при этом механические напряжения в местах контакта ветвей с коммутационными шинами или выводными шинами нивелируются упругим слоем теплопроводящего материала, который используется для приклеивания шин.
Для того чтобы обеспечить: а) длительную работу ТЭ модуля в циклическом режиме, б) высокую надежность соединения внешних проводов с ТЭ модулем, необходимо, чтобы конструкция выводных шин позволяла решить задачу сочетания двух противоположных требований:
1) возможности смещения выводных шин относительно теплообменной пластины 6, что необходимо для снижения механических напряжений в области контактов полупроводниковых ветвей с коммутационными и выводными шинами;
2) высокой прочности соединения с теплообменной пластиной 6 выводных шин с прикрепленными к ним внешними проводами модуля так, чтобы исключить повреждение контактов цепи «внешний провод - выводная шина - полупроводниковая ветвь» при монтаже и эксплуатации термоэлектрического модуля.
В заявляемом изобретении вышеупомянутая задача решается за счет разделения каждой выводной шины на две не соприкасающиеся друг с другом части, электрически соединенные друг с другом с помощью упругой или достаточно легко деформируемой электропроводящей перемычки.
Первые части выводных шин 4 находятся в контакте с крайними Р или N ветвями и соединены с теплообменной пластиной 6 посредством упругого теплопроводящего материала.
Вторые части выводных шин 4а прочно соединены с теплообменной пластиной 6 (посредством клея, диффузионного сращивания, пайки и т.п.) и к ним припаиваются, привариваются, приклеиваются внешние провода 8 и 9 для подключения термоэлектрического модуля к источнику питания (модуль Пельтье) или к нагрузке (модуль Зеебека).
Обе части каждой выводной шины 4 и 4а соединены друг с другом с помощью упругой или достаточно легко деформируемой токопроводящей перемычки 5. Перемычка может быть выполнена из одножильного или многожильного провода, электропроводящей пленки, металлической или полимерной ленты.
Соединение токопроводящей перемычки 5 с частями выводных шин 4 и 4а может осуществляться методами пайки, сварки, диффузионного сращивания, с помощью электропроводящих клеев.
Основные требования к токопроводящей перемычке:
1) перемычка должна быть в состоянии длительное время (в течение всего времени эксплуатации ТЭ модуля) пропускать ток питания ТЭ модуля,
2) усилие деформации перемычки в области закрепления перемычки и части выводной шины, находящейся в контакте с полупроводниковой ветвью, не должно превышать усилие отрыва данной части выводной шины.
В сравнении с известным модулем предлагаемый термоэлектрический модуль обладает повышенной надежностью при монтаже и при эксплуатации в условиях многократного термоциклирования.
Так, при испытаниях, в которых при термоциклировании перепад температур составляет 50°С, известный модуль выдерживал не более 100000 термоциклов (нагрев-охлаждение), после чего его характеристики, например внутреннее электрическое сопротивление, выходили за допустимые пределы, а предлагаемый модуль выдерживал более 200000 термоциклов (нагрев-охлаждение) и его характеристики оставались в допустимых пределах. При монтаже образцов предлагаемого термоэлектрического модуля ни на одном из образцов не наблюдались повреждения контакта полупроводниковых ветвей с выводными шинами.

Claims (3)

1. Термоэлектрический модуль, содержащий полупроводниковые ветви р- и n-проводимости, соединенные коммутационными шинами с образованием электрической цепочки, выводные тины для соединения с источником питания, отличающийся тем, что каждая выводная шина состоит из двух частей, не соприкасающихся друг с другом и связанных между собой электрически с помощью токопроводящей перемычки, при этом одна из частей выводной тины имеет электрический контакт с полупроводниковым элементом n- или p-типа проводимости, а вторая часть выводной шины имеет электрический контакт с одним из токопроводов подключения модуля к источнику питания при работе модуля для охлаждения или нагрева или к потребителю электрической энергии при работе модуля в качестве генератора тока.
2. Термоэлектрический модуль по п.1, отличающийся тем, что для каждой выводной шины токопроводящая перемычка припаяна, или приварена, или приклеена к каждой из двух частей выводной шины.
3. Термоэлектрический модуль по п.1 или 2, отличающийся тем, что токопроводящие перемычки выполнены в виде отрезка токопровода.
RU2010110454/06A 2010-03-22 2010-03-22 Термоэлектрический модуль RU2425298C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010110454/06A RU2425298C1 (ru) 2010-03-22 2010-03-22 Термоэлектрический модуль

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010110454/06A RU2425298C1 (ru) 2010-03-22 2010-03-22 Термоэлектрический модуль

Publications (1)

Publication Number Publication Date
RU2425298C1 true RU2425298C1 (ru) 2011-07-27

Family

ID=44753637

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010110454/06A RU2425298C1 (ru) 2010-03-22 2010-03-22 Термоэлектрический модуль

Country Status (1)

Country Link
RU (1) RU2425298C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483256C1 (ru) * 2011-11-24 2013-05-27 Геннадий Леонидович Огнев Термоэлектрический модуль
RU2654376C2 (ru) * 2016-05-31 2018-05-17 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ работы прямого и обратного обратимого термоэлектрического цикла и устройство для его реализации (варианты)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483256C1 (ru) * 2011-11-24 2013-05-27 Геннадий Леонидович Огнев Термоэлектрический модуль
RU2654376C2 (ru) * 2016-05-31 2018-05-17 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ работы прямого и обратного обратимого термоэлектрического цикла и устройство для его реализации (варианты)

Similar Documents

Publication Publication Date Title
US9118126B2 (en) Power semiconductor package with conductive clip
US9013065B2 (en) Connecting mechanism arrangeable to a photovoltaic module
US10064310B2 (en) Power-module device, power conversion device, and method for manufacturing power-module device
JP2014534798A (ja) ダイオードセルモジュール
JP2004047883A (ja) 電力半導体装置
CN105720478A (zh) 一种可替换芯片的传导冷却型半导体激光器及其制备方法
JP2014127538A (ja) 半導体モジュール
CN105051898A (zh) 半导体装置
RU2425298C1 (ru) Термоэлектрический модуль
US20170084515A1 (en) Power-Module Device and Power Conversion Device
KR20120009161A (ko) 유연기판을 이용한 열전 냉각 소자 및 그 제조 방법
JP2017208478A (ja) 熱電変換モジュールおよび熱電変換装置
JP6069945B2 (ja) 熱電ユニット
US20040178517A9 (en) Split body peltier device for cooling and power generation applications
JP2018093152A (ja) 熱発電デバイス
JP2016164910A (ja) 熱電発電モジュールおよび熱電発電装置
CN102956571A (zh) 功率半导体布置、具有多个该布置的功率半导体模块以及包含多个该模块的模块组装件
JP2013236035A (ja) 半導体モジュール及び半導体モジュールの製造方法
JP2012174911A (ja) 熱電変換モジュール
KR20100003494A (ko) 플렉시블 열전도체 밴드 와이어를 이용한 열전냉각장치
WO2020071036A1 (ja) 熱電変換モジュールおよびそれを用いた冷却装置または温度測定装置または熱流センサまたは発電装置
JP3404841B2 (ja) 熱電変換装置
CN106133896B (zh) 半导体模块
US10714670B2 (en) Thermoelectric conversion module
RU2545317C2 (ru) Термоэлектрический модуль

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 21-2011 FOR TAG: (57)