RU2422404C1 - Керамический сегнетоэлектрический композитный материал с малыми диэлектрическими потерями - Google Patents

Керамический сегнетоэлектрический композитный материал с малыми диэлектрическими потерями Download PDF

Info

Publication number
RU2422404C1
RU2422404C1 RU2009149839/03A RU2009149839A RU2422404C1 RU 2422404 C1 RU2422404 C1 RU 2422404C1 RU 2009149839/03 A RU2009149839/03 A RU 2009149839/03A RU 2009149839 A RU2009149839 A RU 2009149839A RU 2422404 C1 RU2422404 C1 RU 2422404C1
Authority
RU
Russia
Prior art keywords
magnesium
composite material
mgo
containing mixture
tio
Prior art date
Application number
RU2009149839/03A
Other languages
English (en)
Inventor
Елизавета Аркадьевна Ненашева (RU)
Елизавета Аркадьевна Ненашева
Алексей Дмитриевич Канарейкин (RU)
Алексей Дмитриевич Канарейкин
Original Assignee
Елизавета Аркадьевна Ненашева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Елизавета Аркадьевна Ненашева filed Critical Елизавета Аркадьевна Ненашева
Priority to RU2009149839/03A priority Critical patent/RU2422404C1/ru
Application granted granted Critical
Publication of RU2422404C1 publication Critical patent/RU2422404C1/ru

Links

Images

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

Изобретение относится к технологии производства керамических сегнетоэлектрических композитных материалов и может быть использовано в электронной промышленности при изготовлении широкого класса управляемых электрическим полем элементов и приборов электронной техники. Технический результат изобретения заключается в снижении уровня диэлектрических потерь в диапазоне радиочастот и СВЧ-диапазоне материалов с диэлектрической проницаемостью от 152 до 796, а также в повышении управляемости диэлектрической проницаемости электрическим полем. Предлагаемый керамический сегнетоэлектрический композитный материал получен из композиции, включающей ВаТiO3 и SrTiO3, содержащей дополнительно магнийсодержащую смесь ортотитаната магния Mg2TiO4 и оксида магния MgO, при следующем соотношении компонентов, мас.%: ВаТiO3 27,0-48,8, SrTiO3 25,0-39,5, магнийсодержащая смесь Mg2TiO4 и MgO - остальное. Компоненты в магнийсодержащей смеси имеют следующее соотношение, мас.%: Mg2TiO4 6,2-92,4, MgO - остальное. 2 табл., 2 ил.

Description

Область техники
Изобретение относится к технологии производства керамических сегнетоэлектрических композитных материалов и может быть использовано в электронной промышленности при изготовлении широкого класса управляемых электрическим полем элементов и приборов электронной техники.
Предшествующий уровень техники
Известен керамический композитный материал [патент РФ №2293717, МПК C04B 35/465, опубл. 2007.02.20], включающий BaTiO3, SrTiO3 и содержащий твердый раствор барий-лантаноидного тетратитаната общей формулы: (Ba1-xSrx)Ln2Ti4O12, где 0,2≥x≥0, a Ln - лантаноид из ряда: Nd-Sm, при следующем соотношении компонентов, мас.%:
BaTiO3 - 40-60,
SrTiO3 - 20-30,
(Ba1-xSrx)Ln2Ti4O12 - остальное.
При этом керамический композитный материал дополнительно может содержать BaTi4O9 в количестве 1-5% или Nd2O3·3TiO2 в количестве 5-25%.
Недостатком указанного выше композитного материала является относительно высокий уровень диэлектрических потерь в диапазоне радиочастот и СВЧ-диапазоне, особенно для составов с повышенной управляемостью диэлектрической проницаемости. Кроме того, этот композитный материал не обеспечивает возможность работы электронного прибора при повышенной напряженности электрического управляющего поля, превышающей 1,8 В/мкм (18 кВ/см).
Известен керамический композитный материал для электронных приборов [патент США №6074971, МПК C04B 35/053, дата публ. 2000.06.13.], включающий BaTiO3. SrTiO3 (твердый раствор), а также добавки, содержащие оксид магния.
К недостаткам известного керамического композитного материала, описанного в патенте США №6074971, следует отнести узкий диапазон диэлектрической проницаемости (ε=99-130) и недостаточно высокую управляемость в постоянном электрическом поле.
Известен композитный материал для изделий с электрически управляемыми толстыми пленками (от 2 до 25 микрон) из управляемых фаз, таких как титанат бария-стронция, и дополнительных оксидов (оксидных диэлектрических фаз) [патент США №6737179, МПК B32B 18/00, дата публ. 2004.05.18.] являющийся наиболее близким аналогом по компонентному составу материала и выбранный в качестве прототипа предлагаемого керамического сегнетоэлектрического композитного материала. Толстые пленки из композитного материала могут содержать составные фазы такие, как барий-стронций титанат и MgTiO3, Mg2SiO4, CaSiO3, MgO, MgZrO3, CaTiO3, MgAi2O4, и MgSrZrTiO5. Толстые пленки могут содержать, кроме того, добавки, такие как цирконаты, станнаты, редкие земли, ниобаты и танталаты, например, CaZrO3, BaZrO3, SrZrO3, BaSnO3, CaSnO3, MgSnO3, Bi2O3·2SnO2, Nd2O3, Pr7O11, Yb2O3, Ho2O3, La2O3, MgNb2O6, SrNb2O6, BaNb2O6, MgTa2O6, BaTa2O6, и Ta2O3 для того, чтобы улучшить электрические и микроволновые свойства толстопленочных композиций. Размер частиц этих пленок может быть проконтролирован для того, чтобы оптимизировать электрические и микроволновые свойства. Композиции электрически управляемых толстых пленок могут быть изготовлены с использованием технологии трафаретной печати или осаждения распылением.
Следует отметить, что композитный материал для электрически управляемых толстых пленок, описанный в патенте США №6737179, имеет повышенный уровень диэлектрических потерь на частоте 1 МГц и 10 ГГц (tgδ=0.00046-0.00086 на частоте 1 МГц и tgδ=0.0077-0.025 на частоте 10 ГГц).
Перед авторами настоящего изобретения стояла задача улучшения диэлектрических и микроволновых свойств массивного материала с широким диапазоном диэлектрической проницаемости за счет снижения уровня диэлектрических потерь в диапазоне радиочастот и СВЧ-диапазоне при сохранении повышенной управляемости и обеспечении работы материала при повышенной напряженности электрического управляющего поля до 40-50 кВ/см.
Раскрытие изобретения
Технический результат, обеспечиваемый изобретением, заключается в снижении уровня диэлектрических потерь в диапазоне радиочастот и СВЧ-диапазоне для материалов с диэлектрической проницаемостью в диапазоне значений от ε=152 до ε=796; а также в повышении управляемости диэлектрической проницаемости электрическим полем при повышенной напряженности электрического управляющего поля.
В настоящее время из патентной и научно-технической литературы неизвестен керамический сегнетоэлектрический композитный материал, обеспечивающий снижение уровня диэлектрических потерь на частоте 1 МГц и 10 ГГц; повышение управляемости электрическим полем за счет возможности подачи повышенных напряжений (до напряженности 50 кВ/см) на массивный керамический сегнетоэлектрический композитный материал с диэлектрической проницаемостью в диапазоне значений от ε=150 до ε=800 вследствие повышенной электрической прочности сегнетоэлектрического материала, обеспечивающей возможность подачи на образец такого высокого напряжения.
В результате проведения исследований авторы обнаружили, что перечисленные выше проблемы могут быть решены с помощью получения нового материала.
Для достижения технического результата предлагается керамический сегнетоэлектрический композитный материал, полученный из композиции, включающей BaTiO3 и SrTiO3, содержащий дополнительно магнийсодержащую смесь ортотитаната магния Mg2TiO4 и оксида магния MgO, при следующем соотношении компонентов, мас.%:
BaTiO3 27.0-48.8
SrTiO3 25.0-39.5
Магнийсодержащая смесь Mg2TiO4 и MgO остальное,
при этом компоненты в магнийсодержащей смеси имеют следующее соотношение, мас.%:
Mg2TiO4 6.2-92.4
MgO остальное
В предлагаемом керамическом сегнетоэлектрическом композитном материале в отличие от прототипа используют смесь Mg2TiO4 и MgO, в состав которой входит новый компонент Mg2TiO4. Именно это не приводит к падению, а более того, приводит к увеличению управляемости диэлектрической проницаемости.
Это особенно значимо при повышенной концентрации этого компонента в магниевой смеси и одновременно увеличенном содержании этой смеси в композите. Введение в магнийсодержащую смесь с оксидом магния нового компонента Mg2TiO4 обеспечивает получение сегнетоэлектриков с малыми диэлектрическими потерями как на частоте 1 МГц, так и на частоте 10 ГГц в сочетании с повышенной управляемостью диэлектрической проницаемости постоянным электрическим полем.
Указанное преимущество предлагаемого керамического сегнетоэлектрического композитного материала обеспечивается при смешении всех составляющих компонентов композиции в виде порошков и последующем спекании полученной смеси в одном технологическом цикле, что также отличает предлагаемый материал от материала, выбранного в качестве прототипа, где при получении материала используют предварительно сформированные твердые растворы барий-стронций титанатов.
Краткое описание фигур и чертежей
Сущность изобретения иллюстрируется фигурами, и поясняется таблицами.
На Фиг.1 представлена диаграмма состояния в системе MgO-TiO2, подтверждающая отсутствие химического взаимодействия компонентов, составляющих смесь Mg2TiO4 и MgO, в интервале температур вплоть до 1700°C.
Для иллюстрации влияния компонентов магнийсодержащей смеси на электрические свойства композитного сегнетоэлектрического материала на Фиг.2 представлены графики зависимости диэлектрической проницаемости (ε), точки Кюри (Tc) и коэффициента управляемости (Ку) от процентного содержания компонента MgO (кривая - 1) и компонента Mg2TiO4 (кривая - 2) на примере композитов-смесей для BaTiO3 и SrTiO3 в диапазоне составов, соответствующих BaTiO3 от 45,8% до 34,4% и SrTiO3 от 37,5% до 28,1%.
В Таблице 1 представлены составы керамического сегнетоэлектрического композитного материала.
В Таблице 2 представлены количественные значения электрических характеристик материалов, которые соответственно имеют состав, указанный в Таблице 1.
Как видно из представленной на Фиг.1 диаграммы состояния оксидов магния и титана, из всех известных титанатов магния, ортотитанат магния Mg2TiO4 является наиболее высокотемпературным (сохраняется в твердом состоянии вплоть до 1732°C) и устойчивым во всем интервале температур спекания композита (от 1380°C до 1450°C). Кроме того, важно отметить, что ортотитанат магния Mg2TiO4 сохраняет эту устойчивость в присутствии оксида магния MgO.
Как наглядно видно из экспериментальных данных, представленных на Фиг.2 в виде графиков, сочетание компонентов магнийсодержащей смеси позволяет получать материал в заявленном количественном соотношении компонентов с широким набором значений диэлектрической проницаемости в диапазоне значений от ε~150 до ε~800 и широким диапазоном Ку, вплоть до значений Ку~1.18, при E=20 кВ/см.
Перечисленные выше факторы обеспечивают достижение в предлагаемом керамическом сегнетоэлектрическом композитном материале сочетания уменьшенных диэлектрических потерь на частоте 1 МГц и 10 ГГц с ε в диапазоне значений от ε=152 до ε=796 и повышенной управляемостью диэлектрической проницаемости электрическим полем.
Вариант осуществления изобретения
Возможность объективного проявления технического результата при использовании изобретения подтверждена достоверными данными, иллюстрирующими изобретение, которые содержат сведения экспериментального характера, полученные в процессе проведения исследований по методикам, принятым в данной области исследований материалов.
Согласно настоящему изобретению для получения керамического сегнетоэлектрического композитного материала было приготовлено несколько смесей, которые имеют составы, указанные в Таблице 1.
Таблица 1
Содержание компонентов композиции материала, мас. % Содержание составляющих в 100 % магнийсодержащей смеси
ВаТiO3 SrTiO3 магнийсодержащая смесь Mg2TiO4 и MgO Mg2TiO4, мас.% MgO, мас.%
1 27.0 27.0 54.0 23.5 76.5
2 30.3 30.3 39.4 92.4 7.6
3 35.7 35.7 28.6 87.4 12.6
4 30.5 25.0 44.5 6.2 93.8
5 30.6 25.0 44.4 75.0 25.0
6 39.3 32.1 28.6 12.6 87.4
7 48.2 39.5 12.3 35.8 64.2
8 48.8 32.5 18.7 12.8 82.2
9 39.7 29.3 31.0 50.0 50.0
10 37.5 25.0 37.5 66.7 33.3
11 38.5 25.6 35.9 55.3 44.7
12 41.4 27.6 31.1 44.4 55.6
Исходные компоненты смеси BaTiO3 и SrTiO3 в соответствии с концентрациями, мас.%, указанными в Таблице 1, смешивают в вибромельнице в течение 3 часов с предварительно синтезированным ортотитанатом магния Mg2TiO4. Затем в полученный порошок вводят связку, например, водный раствор поливинилового спирта, и изготавливают дисковые образцы методом гидравлического прессования при удельном давлении 0.8-1.0 т/м2.
Полученные образцы спекают в электрической печи в воздушной атмосфере в интервале температур от 1380° до 1450° в течение 2-4 часов до нулевого водопоглащения.
Для измерения электрических параметров образцов их покрывают серебросодержащей пастой, которую вжигают при температуре 840°±20°C, в результате чего формируются электроды.
Измерение электрических параметров на частоте 1 МГц проводят на металлизированных образцах мостовым методом с использованием стандартной аппаратуры.
Измерение электрических параметров на частоте 10 ГГц проводят методом волноводно-диэлектрического резонатора на неметаллизированных образцах по методике, известной в данной отрасли (Государственный реестр Российской Федерации МИ 00173-2000), соответствующей международному стандарту МЭК.
Измерение коэффициента управляемости (Ку) диэлектрической проницаемости (ε) постоянным электрическим полем при напряженности поля (E), соответствующей значениям от E=20-40 кВ/см до E=50 кВ/см, проводят на образцах, металлизированных золотом, которое наносилось на образцы методом вакуумного напыления.
Испытания образцов керамического сегнетоэлектрического композитного материала показали, что он имеет следующие характеристики:
- tgδ=0.00011-0.00030 на частоте 1МГц и tgδ=0.004-0.012 на частоте 10 ГГц;
- ε=152-796;
- от Ку=1.07-1.22 при E=20 кВ/см до Ку=1.17-1.66 при E=50 кВ/см.
В Таблице 2 приведены характеристики материалов, имеющих составы, указанные в Таблице 1, а именно следующие характеристики: ε - диэлектрическая проницаемость; tgδ - тангенс угла диэлектрических потерь; Ку - коэффициент управляемости.
Таблица 2
ε tgδ
F=1МГц
tgδ
F=10ГГц
Kу
20 кВ/см
Ку
30 кВ/см
Ку
40 кВ/см
Ку
50 кВ/см
1 152 0.00011 0.004 1.07 1.10 1.12 1.17
2 241 0.00011 0.006 1.09 1.11 1.15 1.20
3 370 0.00016 0.005 1.08 1.10 1.13 1.19
4 190 0.00019 0.006 1.10 1.15 1.19 1.24
5 210 0.00016 0.009 1.14 1.20 1.29 1.42
6 390 0.00021 0.006 1.09 1.15 1.20 1.25
7 796 0.00022 0.009 1.11 1.16 1.19 1.24
8 604 0.00020 0.009 1.10 1.18 1.21 1.29
9 456 0.00018 0.008 1.14 1.21 1.29 1.37
10 278 0.00024 0.012 1.18 1.28 1.41 1.54
11 420 0.00030 0.011 1.22 1.31 1.48 1.66
12 469 0.00023 0.010 1.17 1.26 1.35 1.49
Таким образом, как видно из приведенных в Таблице 2 характеристик образцов полученного материала, керамический сегнетоэлектрический композитный материал обладает низким уровнем диэлектрических потерь на частоте 1 МГц и 10 ГГц, широким диапазоном значений диэлектрической проницаемости от ε=152 до ε=796 и повышенной управляемостью электрическим полем до Ку=1.66 при напряженности поля до E=50 кВ/см.
При этом, как следует из приведенных в Таблице 2 характеристик, минимальные значения тангенса угла диэлектрических потерь на частоте 1 МГц и 10 ГГц, обеспечивает образец (имеющий состав, указанный в Таблице 1 под номером 1) керамического сегнетоэлектрического композитного материала, включающий BaTiO3 и SrTiO3, содержащий дополнительно магнийсодержащую смесь ортотитаната магния Mg2TiO4 и оксида магния MgO, при следующем соотношении компонентов, мас.%:
BaTiO3 27.0
SrTiO3 27.0
при этом компоненты в магнийсодержащей смеси имеют следующее соотношение, мас.%:
Mg2TiO4 23.3
MgO 76.5
Наибольшую управляемость демонстрирует образец (имеющий состав, указанный в Таблице 1 под номером 11) керамического сегнетоэлектрического композитного материала, включающий BaTiO3 и SrTiO3, содержащий дополнительно магнийсодержащую смесь ортотитаната магния Mg2TiO4 и оксида магния MgO, при следующем соотношении компонентов, мас.%:
BaTiO3 38.5
SrTiO3 25.6
при этом компоненты в магнийсодержащей смеси имеют следующее соотношение, мас.%:
Mg2TiO4 55.3
MgO 44.7

Claims (1)

  1. Керамический сегнетоэлектрический композитный материал, полученный из композиции, включающей ВаТiO3 и SrТiO3, содержащей дополнительно магнийсодержащую смесь ортотитаната магния Mg2TiO4 и оксида магния MgO, при следующем соотношении компонентов, мас.%:
    ВаТiO3 27,0-48,8 SrТiO3 25,0-39,5 Магнийсодержащая смесь Mg2TiO4 и MgO остальное,

    при этом компоненты в магнийсодержащей смеси имеют следующее соотношение, мас.%:
    Mg2TiO4 6,2-92,4 MgO остальное
RU2009149839/03A 2007-11-26 2007-11-26 Керамический сегнетоэлектрический композитный материал с малыми диэлектрическими потерями RU2422404C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009149839/03A RU2422404C1 (ru) 2007-11-26 2007-11-26 Керамический сегнетоэлектрический композитный материал с малыми диэлектрическими потерями

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009149839/03A RU2422404C1 (ru) 2007-11-26 2007-11-26 Керамический сегнетоэлектрический композитный материал с малыми диэлектрическими потерями

Publications (1)

Publication Number Publication Date
RU2422404C1 true RU2422404C1 (ru) 2011-06-27

Family

ID=44739135

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009149839/03A RU2422404C1 (ru) 2007-11-26 2007-11-26 Керамический сегнетоэлектрический композитный материал с малыми диэлектрическими потерями

Country Status (1)

Country Link
RU (1) RU2422404C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2527965C1 (ru) * 2013-02-12 2014-09-10 Открытое акционерное общество "Научно-исследовательский институт "Феррит-Домен" Керамический материал с низкой температурой обжига
RU2529682C1 (ru) * 2013-04-23 2014-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГОУ ВПО "ВГУ") Нанокомпозитный материал с сегнетоэлектрическими характеристиками
RU2751527C1 (ru) * 2020-10-22 2021-07-14 федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет» Сегнетоэлектрический керамический материал на основе титаната бария-стронция

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEDYK. A.I. et al. "I-V and C-V Characteristics of Ceramic Materials Based on Barium Strontium Titanate", Technical Physics 2006, vol.51 N 9, с.1168-1173. CHOU XIUJIAN et al. "Dielectric tunable properties of low dielectric constant *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2527965C1 (ru) * 2013-02-12 2014-09-10 Открытое акционерное общество "Научно-исследовательский институт "Феррит-Домен" Керамический материал с низкой температурой обжига
RU2529682C1 (ru) * 2013-04-23 2014-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГОУ ВПО "ВГУ") Нанокомпозитный материал с сегнетоэлектрическими характеристиками
RU2751527C1 (ru) * 2020-10-22 2021-07-14 федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет» Сегнетоэлектрический керамический материал на основе титаната бария-стронция

Similar Documents

Publication Publication Date Title
Jeon et al. Effects of BaO–B2O3–SiO2 glass additive on densification and dielectric properties of BaTiO3 ceramics
US8067324B2 (en) Low dielectric loss ceramic ferroelectric composite material
Nenasheva et al. High dielectric constant microwave ceramics
Syamaprasad et al. Dielectric properties of the Ba1− xSrxTiO3 system
Pfaff Sol–gel synthesis of barium titanate powders of various compositions
Stojanovic et al. Barium titanate screen-printed thick films
JP3835254B2 (ja) チタン酸バリウム粉末の製造方法
EP1279179B1 (en) Tunable electrical devices comprising cacu3 ti4o12
EP2266933A1 (en) Sintered material for dielectric substance and process for preparing the same
RU2422404C1 (ru) Керамический сегнетоэлектрический композитный материал с малыми диэлектрическими потерями
EP0295133A1 (en) Temperature stable dielectric composition at high low frequencies
EP2399876A2 (en) Sintering precursor powders for manufacturing dielectric substance and method for manufacturing the same
Lee et al. Microwave dielectric properties and microstructures of Ba2Ti9O20-based ceramics with 3ZnO–B2O3 addition
KR101559036B1 (ko) 유전체 세라믹 및 단판 콘덴서
RU2293717C1 (ru) Керамический композитный материал
Tang et al. Low-Temperature Sintering of Ba 0.5 Sr 0.5 TiO 3-SrMoO 4 Dielectric Tunable Composite Ceramics for LTCC Applications
KR910001347B1 (ko) 초저온에서 소결되는 세라믹 조성물 및 그 제조방법
RU2751527C1 (ru) Сегнетоэлектрический керамический материал на основе титаната бария-стронция
KR940011696B1 (ko) 온도 보상용 자기 유전체 조성물
US4388415A (en) High voltage dielectric (SRT I03)
KR940011689B1 (ko) 온도보상용 유전체 자기 조성물
KR950008601B1 (ko) 온도보상용 유전체 자기 조성물
KR100268462B1 (ko) 온도보상용 유전체 자기조성물
Xiang et al. Preparation and dielectric tunability of bismuth-based pyrochlore dielectric thick films on alumina substrates
JP2893129B2 (ja) 誘電体磁器組成物