RU2419543C2 - Способ армирования материала основы для композитных конструкций - Google Patents

Способ армирования материала основы для композитных конструкций Download PDF

Info

Publication number
RU2419543C2
RU2419543C2 RU2008106981/12A RU2008106981A RU2419543C2 RU 2419543 C2 RU2419543 C2 RU 2419543C2 RU 2008106981/12 A RU2008106981/12 A RU 2008106981/12A RU 2008106981 A RU2008106981 A RU 2008106981A RU 2419543 C2 RU2419543 C2 RU 2419543C2
Authority
RU
Russia
Prior art keywords
base
reinforcing
base material
sewing
diameter
Prior art date
Application number
RU2008106981/12A
Other languages
English (en)
Other versions
RU2008106981A (ru
Inventor
Маттиас Александер РОТ (DE)
Маттиас Александер РОТ
Original Assignee
Эвоник Рем ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эвоник Рем ГмбХ filed Critical Эвоник Рем ГмбХ
Publication of RU2008106981A publication Critical patent/RU2008106981A/ru
Application granted granted Critical
Publication of RU2419543C2 publication Critical patent/RU2419543C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49801Shaping fiber or fibered material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49833Punching, piercing or reaming part by surface of second part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49833Punching, piercing or reaming part by surface of second part
    • Y10T29/49835Punching, piercing or reaming part by surface of second part with shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49838Assembling or joining by stringing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Woven Fabrics (AREA)
  • Panels For Use In Building Construction (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Изобретение относится к способу армирования материала основы для композитных конструкций. Захватная система прокалывает с одной стороны конструкции материал основы или материал основы с нанесенными на него покровными слоями. На противоположной стороне захватная система захватывает армирующую структуру и путем обратного движения вводит ее в материал основы или материал основы с нанесенными на него покровными слоями. Обеспечивается повышение трансверсальных и плоскостных механических свойств композитных конструкций с помощью армирующих элементов, проникающих сквозь композитный материал в направлении его толщины. 4 з.п.ф-лы, 5 ил.

Description

Изобретение относится к конструированию и изготовлению армирующих элементов согласно ограничительной части п.1 формулы изобретения, проникающих сквозь композитный материал в направлении его толщины, для усиления композитных конструкций.
Изобретение пригодно для армирования композитных конструкций. Композитная конструкция может включать в себя предпочтительно волокнисто-полимерный композитный материал с покровными слоями из текстильных полуфабрикатов (Фиг.1; 3 и 5, например, ткани, обкладочного слоя, холстов и т.д.), с основным слоем из полимерного, природного или структурированного материала основы (Фиг.1; 4, например, полимерного пеноматериала) и с полимерным матричным материалом (термопласта или реактопласта). Композитные конструкции представляют собой многослойные структуры, включающие в себя относительно толстый основной слой (Фиг.1; 4) с низкой кажущейся плотностью.
Настоящее изобретение позволяет заметно повысить трансверсальные механические свойства композитных конструкций (например, жесткость и прочность при сжатии, соответственно при растяжении в z-направлении, жесткость и прочность при сдвиге в xz- и yz-плоскости, сопротивление расслаиванию между покровным слоем и основой, отказоустойчивость), а также плоскостные механические свойства композитных конструкций (например, жесткость и прочность в направлении плоскости плиты) с помощью армирующих элементов, проникающих сквозь композитный материал в направлении его толщины.
Уровень техники
Все известные до сих пор способы армирования композитных конструкций в направлении их толщины, такие как, например, швейная техника двойной сплошной прострочки, потайного стежка или двухигольной прошивки, а также пучковой прошивки, имеют то общее, что армирующие элементы (например, швейная нить, ровница) вводятся в композитную конструкцию совместно с иглой. У обычных швейных материалов из текстиля введение швейной иглы, включая швейную нить, и последующее извлечение иглы и оставление нити в прошивном отверстии, как правило, не представляет никакой проблемы благодаря восстанавливающему действию текстильных изделий. Однако в случае композитных конструкций, в которых материалом основы является жесткий полимерный пеноматериал, введение иглы, включая швейную нить, в основу приводит к разрушению ячеистой структуры и к искажению формы жесткого полимерного пеноматериала вследствие пластической и упругой деформации до значений, сопоставимых с диаметром швейной иглы.
После извлечения иглы и оставления нити в прошивном отверстии происходит уменьшение сквозного отверстия в результате упругих компонентов деформации стенок ячеек, благодаря чему диаметр отверстия в основе снова становится меньше, чем диаметр швейной иглы (см. Фиг.2). Между образовавшимся диаметром сквозного отверстия в основе и диаметром применяемой швейной иглы существует почти прямая зависимость (Фиг.2), т.е. чем больше диаметр швейной иглы, тем больше также образовавшееся сквозное отверстие в основе. Кроме того, швейная нить еще дополнительно способствует увеличению диаметра отверстия в основе. Это дополнительное увеличение диаметра приблизительно соответствует площади поперечного сечения швейной нити (Фиг.2). И в этом случае также действует правило о том, что чем больше площадь поперечного сечения швейной нити, тем больше дополнительное увеличение диаметра.
После пропитки композитной конструкции жидким матричным материалом и последующего отверждения можно с помощью микроскопических исследований определить диаметр отверстия в основе, а также объемное содержание волокон швейной нити в проделанном в основе отверстии. При этом экспериментальные исследования, проведенные на композитных конструкциях, прошитых с помощью прошивной технологии с двойным простроченным швом и с применением швейной иглы с диаметром 1,2 мм и арамидной нити с линейным весом 62 г/км, показывают, что диаметр (около 1,7 мм) полимерного столба, образовавшегося в материале основы, больше, чем определенный диаметр отверстия в основе непропитанной композитной конструкции (около 1,1 мм; см. Фиг.2 и 2) при одноразовом проколе. Причина этого заключается в том, что в результате прокалывания основы швейной иглой разрушаются соседние стенки ячейки в пределах диаметра швейной иглы. В эти открывшиеся таким образом поры со средним диаметром около 0,7 мм в дальнейшем, во время последующего инфильтрационного процесса, может проникнуть полимер (Фиг.4).
При применении швейной техники двойной сплошной прострочки на один прокол постоянно вводятся две швейные нити в z-направлении композитной конструкции (см. Фиг.4 и 5). Чтобы повысить объемное содержание швейной нити внутри сквозного отверстия и тем самым эффект армирования, уже прошитые места могут быть прошиты еще раз, или еще много раз. При этом, однако, швейные нити, уже находящиеся в отверстии основы, могут быть повреждены в результате нового прокалывания основы швейной иглой. С помощью микроскопических исследований было установлено, что, вопреки ожиданиям, объемное содержание швейной нити может быть увеличено непропорционально количеству проколов (Фиг.3, 4 и 5). Причина этого заключается в том, что диаметр отверстия в основе с ростом количества проколов и введенных в отверстие швейных нитей не остается постоянным, но увеличивается в результате дополнительного введения швейных нитей приблизительно на площадь поперечного сечения нити (Фиг.3, штриховая кривая). Однако также еще было установлено, что истинный ход кривой (Фиг.3, сплошная линия) подчиняется этой теории лишь при очень большом количестве проколов. Диаметр отверстия, напротив, при небольшом количестве проколов увеличивается непропорционально сильно. Причиной этого является точность позиционирования швейной машины. При новом заходе в позицию, которая должна быть прошита еще раз, швейная игла прокалывает уже существующее отверстие не точно по центру его, но в рамках точности позиционирования немного сбоку, вследствие чего отверстие в основе увеличивается более чем пропорционально. После приблизительно восьмикратного вкалывания иглы в то же самое отверстие, это отверстие расширено уже настолько сильно, что швейная игла попадает в существующее отверстие без дополнительного разрушения стенок ячеек. При последующих прокалываниях расширение отверстия происходит только в результате дополнительного введения швейных нитей. На Фиг.4 и 5 представлено возможное увеличение объемного содержания швейной нити с ростом количества швейных нитей в отверстии основы. Черная кривая на Фиг.4 описывает пропорциональное увеличение объемного содержания швейной нити при постоянном диаметре отверстия в основе, черная штрихпунктирная кривая описывает увеличение объемного содержания швейной нити согласно вышеупомянутой теории точного позиционирования и дополнительного расширения диаметра отверстия в основе благодаря введенным швейным нитям, и пунктирная кривая описывает истинное изменение объемного содержания швейной нити с увеличением количества швейных нитей, соответственно проколов. При однократном прокалывании объемное содержание волокна составляет лишь около 3,2%, и оно повышается лишь приблизительно до 20% в результате выполнения до 10 прокалываний (Фиг.4 и 5). Объемное содержание волокна отдельной пряди швейной нити, напротив, составляет около 58% (см. Фиг.5).
В результате этих исследований становится ясно, что получающийся диаметр отверстия в полимерном материале основы при применении обычных технологических способов (например, способа двойной сплошной прострочки) зависит главным образом от применяемого диаметра швейной иглы, площади поперечного сечения швейной иглы, а также от диаметра пор применяемого жесткого полимерного пеноматериала. Так как во всех известных до сих пор способах армирования швейная игла и швейная нить прокалывают композитную конструкцию одновременно, то результатом этого всегда является неблагоприятное отношение получающейся площади поперечного сечения армирующих элементов к размеру диаметра отверстия в основе. Высокие объемные содержания волокон в диаметре отверстия основы, подобные объемному содержанию волокон в покровных слоях (>50%), поэтому не могут быть достигнуты обычными способами армирования. Так как, однако, механические свойства обусловлены главным образом высокой жесткостью и прочностью, которые сообщаются армирующими элементами, то цель должна состоять в том, чтобы стремиться к максимально высокому объемному содержанию волокон армирующего элемента в диаметре отверстия основы. Кроме того, высокая доля полимера в диаметре отверстия основы способствует повышению веса, которое весьма нежелательно, в частности, в воздухоплавании и космонавтике.
Задача
В основу настоящего изобретения положена задача улучшить механические свойства композитных конструкций путем введения армирующих элементов в направлении толщины композитной конструкции (z-направление), причем существует возможность достижения высокого объемного содержания армирующего элемента в диаметре отверстия основы. Далее, введение армирующих элементов в композитную конструкцию не должно слишком отрицательно влиять на вес. Эта новая швейная техника также может быть использована как для предварительного формования, так и для крепления дополнительных компонентов детали (например, стрингеров, шпангоутов и др.) к композитной конструкции.
Решение
Эта задача решается тем, что выполнение необходимого сквозного отверстия в материале основы и введение армирующей структуры разнесено по времени друг от друга, причем объемное содержание волокна армирующего элемента в диаметре отверстия основы может быть задано путем выбора соответствующей площади поперечного сечения швейной иглы. На Фиг.1 наглядно показано изготовление, в соответствии с предлагаемым изобретением, армированной таким образом композитной конструкции. Захватная система (2) односторонне прокалывает с одной стороны композитной конструкции (шаг 1 и 2) в материал (4) основы и, если имеются покровные слои, то прокалывает также верхний (3) и нижний (5) текстильные покровные слои и захватывает (шаг 2) с помощью захвата (1) на противоположной стороне армирующую структуру (6), например прошивную нить, выступающие усиленные искусственным волокном прутки, подводимые устройством (7), и вводит армирующую структуру путем обратного движения в композитную конструкцию (шаг 3). В последующей стадии процесса захватная система (2) движется вверх и втягивает армирующую структуру в основу, соответственно в композитную конструкцию (шаг 3).
В качестве материала (4) основы может применяться жесткий пластполимер, например, РМ1 (полиметакрилимид), PVC (поливинилхлорид), РЕI (полиэтиленимин), PU (полиуретан) и др. Материал (4) основы может иметь толщину до 150 мм, ширину около 1250 мм и длину 2500 мм. Верхний (3) и нижний (5) текстильные покровные слои могут иметь одинаковое строение и быть выполнены из стекла, углерода, арамида или других упрочняющих материалов. Толщина отдельного текстильного покровного слоя может быть одинаковой или разной и составлять от 0,1 мм до 1,0 мм. В качестве полимерного матричного материала могут быть использованы термопласты или реактопласты. Покровные слои, основной слой и армирующие элементы заделаны в полимерный матричный материал.
Армирующая структура (6) может состоять либо из текстильных усилительных структур (например, швейных нитей, ровницы), либо из прутковых элементов (например, спиц из однонаправленного волокнисто-полимерного композитного материала, неармированной пластмассы или металла и др.). Типичные армирующие структуры (6) могут иметь диаметры от 0,1 мм до 2,0 мм.
В последующей стадии процесса швейный материал или армирующая единица подводятся к следующей рабочей позиции, и процесс армирования повторяется затем уже в этой позиции. Подведенную армирующую структуру обычно не разрезают на мерные длины, однако дополнительно ее можно разделить на мерные длины, так чтобы одно место прокола не соединялось с другим. Это разделение может быть выполнено с помощью любых обычных технических способов, таких как, например, отрезание или опаливание. В результате втягивания захватной системы внутрь композитной конструкции может произойти расширение диаметра отверстия в основе, которое образовалось после прокалывания, композитной конструкции захватной системой, что может способствовать реализации высокого объемного содержания волокна. Введение армирующих элементов под действием тягового усилия в композитную конструкцию или только в материал основы обеспечивает очень хорошую их ориентацию и исключает продольный изгиб армирующей структуры. Армирующие элементы, введенные с помощью этого способа армирования, при действии на них поперечной нагрузки могут располагаться относительно z-оси также под углом, отличным от 0°, например, под углом +/-45°.
Композитные конструкции, армированные согласно изобретению в направлении толщины, могут найти применение в транспортном секторе, например, в воздухоплавании и космонавтике, автомобилестроении и строительстве железнодорожного подвижного состава, в судостроении, в спортивном секторе и медицине, а также в строительстве.
По окончании процесса армирования композитная конструкция может быть пропитана термореактивным или термопластичным матричным материалом по способу жидкофазного формования композита.
Перечень позиций
Номер Наименование
1 захват
2 захватная система
3 верхний текстильный покровный слой
4 материал основы, основной слой, основа
5 нижний текстильный покровный слой
6 армирующая структура
7 устройство для подачи армирующих элементов (6)

Claims (5)

1. Способ армирования композитных конструкций, отличающийся тем, что захватная система (1, 2) прокалывает с одной стороны конструкции материал (4) основы или материал (3, 4) основы с нанесенными на него покровными слоями, захватывает на противоположной стороне армирующую структуру (6) и путем обратного движения вводит ее в материал (4) основы или материал (3, 4) основы с нанесенными на него покровными слоями.
2. Способ по п.1, отличающийся тем, что армирующая структура (6) состоит из текстильных усилительных структур или прутковых элементов.
3. Способ по п.1, отличающийся тем, что покровные слои (3) выполнены из текстильных полуфабрикатов, основной слой (4) выполнен из полимерного, природного или структурированного материала основы и что покровные слои, основной слой и армирующие элементы заделаны в полимерный матричный материал.
4. Способ по одному из пп.1-3, отличающийся тем, что армирующую структуру (6) после введения в материал (4) основы или в материал (3, 4) основы с нанесенными на него покровными слоями (3, 4) не разрезают на мерные длины.
5. Способ по одному из пп.1-3, отличающийся тем, что армирующую структуру (6) после введения в материал (4) основы или в материал (3, 4) основы с нанесенными на него покровными слоями разрезают на мерные длины.
RU2008106981/12A 2005-07-27 2006-04-05 Способ армирования материала основы для композитных конструкций RU2419543C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005035681.8 2005-07-27
DE102005035681A DE102005035681A1 (de) 2005-07-27 2005-07-27 Fertigungsverfahren zur Armierung von Kernmaterialien für Kernverbunde sowie von Kernverbund-Strukturen

Publications (2)

Publication Number Publication Date
RU2008106981A RU2008106981A (ru) 2009-09-10
RU2419543C2 true RU2419543C2 (ru) 2011-05-27

Family

ID=36609036

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008106981/12A RU2419543C2 (ru) 2005-07-27 2006-04-05 Способ армирования материала основы для композитных конструкций

Country Status (20)

Country Link
US (1) US20080226876A1 (ru)
EP (1) EP1907193B8 (ru)
JP (1) JP4751448B2 (ru)
KR (1) KR101319703B1 (ru)
CN (1) CN101198459B (ru)
AT (1) ATE500049T1 (ru)
AU (1) AU2006274270B2 (ru)
BR (1) BRPI0613882A2 (ru)
CA (1) CA2616655C (ru)
DE (2) DE102005035681A1 (ru)
DK (1) DK1907193T3 (ru)
ES (1) ES2361617T3 (ru)
HK (1) HK1120768A1 (ru)
IL (1) IL186761A (ru)
NZ (1) NZ563572A (ru)
PL (1) PL1907193T3 (ru)
RU (1) RU2419543C2 (ru)
TW (1) TWI388429B (ru)
WO (1) WO2007012353A1 (ru)
ZA (1) ZA200800782B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678021C1 (ru) * 2017-09-11 2019-01-22 Государственное бюджетное образовательное учреждение высшего образования Московской области "Технологический университет" Способ изготовления объемно армированного композиционного материала

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7861969B2 (en) 2007-05-24 2011-01-04 The Boeing Company Shaped composite stringers and methods of making
DE102007033120A1 (de) * 2007-07-13 2009-01-15 Evonik Röhm Gmbh Verbesserte Stumpfstoßverbindungen für Kernwerkstoffe
DE102007051422A1 (de) * 2007-10-25 2009-04-30 Evonik Röhm Gmbh Zweiseiten-Einnadel-Unterfaden-Nähtechnik
US7879276B2 (en) 2007-11-08 2011-02-01 The Boeing Company Foam stiffened hollow composite stringer
DE102007055684A1 (de) * 2007-11-21 2009-06-10 Airbus Deutschland Gmbh Vorrichtung zur Herstellung eines verstärkten Schaumwerkstoffes
US8127450B2 (en) * 2008-01-31 2012-03-06 Airbus Operations Gmbh Method for producing a sandwich construction, in particular a sandwich construction for the aeronautical and aerospace fields
DE102008006981B3 (de) * 2008-01-31 2009-06-10 Airbus Deutschland Gmbh Verfahren zum Herstellen eines Kernverbundes, insbesondere eines Kernverbundes im Luft- und Raumfahrtbereich
DE102008001826B3 (de) * 2008-05-16 2009-09-17 Airbus Deutschland Gmbh Ausschnittverstärkung für Kernverbunde sowie ein Verfahren zum Herstellen einer Ausschnittverstärkung für Kernverbunde
DE102008041788A1 (de) 2008-09-03 2010-03-11 Airbus Deutschland Gmbh Sandwichplatte mit integrierter Verstärkungsstruktur sowie Verfahren zu deren Herstellung
US8540921B2 (en) 2008-11-25 2013-09-24 The Boeing Company Method of forming a reinforced foam-filled composite stringer
US8500066B2 (en) 2009-06-12 2013-08-06 The Boeing Company Method and apparatus for wireless aircraft communications and power system using fuselage stringers
US8570152B2 (en) 2009-07-23 2013-10-29 The Boeing Company Method and apparatus for wireless sensing with power harvesting of a wireless signal
US8617687B2 (en) 2009-08-03 2013-12-31 The Boeing Company Multi-functional aircraft structures
DE102010054935B4 (de) * 2010-12-17 2013-11-28 Daimler Ag Karosseriemodulbauteil
CN108453993B (zh) 2012-07-24 2021-07-02 赢创运营有限公司 Pmi泡沫材料的新成型方法和/或由其制备的复合组件
GB2510133B (en) * 2013-01-24 2017-08-30 Bae Systems Plc Conductive bonded composites
DE102013223347A1 (de) 2013-11-15 2015-05-21 Evonik Industries Ag Mit Poly(meth)acrylimid-Schaum gefüllte Wabenstrukturen
DE102013018158A1 (de) 2013-12-05 2015-06-11 Airbus Defence and Space GmbH Verfahren zur Herstellung von verstärkten Materialien und Material erhältlich aus diesem Verfahren
DE102014014961A1 (de) * 2014-10-14 2016-04-14 Airbus Defence and Space GmbH Vorrichtung sowie Verfahren
CA2971793A1 (en) * 2014-12-22 2016-06-30 Basf Se Fiber reinforcment of foams made from mutually bonded segments
DE102015202035A1 (de) * 2015-02-05 2016-08-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Faser-Kunststoff-Verbund-Bauteils
DE102015110855B4 (de) 2015-07-06 2019-12-05 Technische Universität Chemnitz Verfahren zur Fertigung von komplexen 3D-Preformen
EP3263321B1 (de) 2016-06-29 2021-07-28 Airbus Defence and Space GmbH Verfahren zur herstellung eines sandwich-paneels mit einem verstärkten schaumstoffkern
GB201903190D0 (en) * 2019-03-09 2019-04-24 Rolls Royce Plc An apparatus for gripping a plurality of reinforcement rods
DE102019114433A1 (de) * 2019-05-29 2020-12-03 Airbus Operations Gmbh Verfahren und ein System zum Herstellen eines Bauteils oder Halbzeugs mit einem faserverstärkten Schaumkern
FR3098444B1 (fr) * 2019-07-08 2021-10-01 Soc Internationale Pour Le Commerce Et Lindustrie Procédé de renforcement d’un panneau et un procédé de fabrication de panneau composite mettant en œuvre un tel procédé

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996330A (en) * 1959-11-12 1961-08-15 Edwin L Hutto Remotely operated manipulator
DE3246803A1 (de) * 1982-12-17 1984-06-20 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren zum herstellen von bauteilen aus lagen von faserverstaerktem kunststoff
GB9014770D0 (en) 1990-07-03 1990-08-22 Short Brothers Plc Manufacture of a composite material
DE4030989A1 (de) * 1990-10-01 1992-04-09 Airbus Gmbh Verfahren und vorrichtung zum verstaerken von bauteilen aus lagen von faserverstaerktem thermoplastischem kunststoff
DE4200855A1 (de) * 1992-01-15 1993-07-22 Mst Draenbedarf Schutzabdeckung fuer erdboeden
EP0653984B1 (en) * 1993-05-04 2007-01-24 Foster-Miller, Inc. Truss reinforced foam core sandwich structure
AU3411395A (en) * 1995-08-21 1997-03-12 Foster-Miller Inc. System for inserting elements in composite structure
US6027798A (en) * 1995-11-01 2000-02-22 The Boeing Company Pin-reinforced sandwich structure
US5876652A (en) * 1996-04-05 1999-03-02 The Boeing Company Method for improving pulloff strength in pin-reinforced sandwich structure
US6722842B1 (en) * 1998-01-13 2004-04-20 Btm Corporation End arm manipulator
US6367856B1 (en) * 1999-04-15 2002-04-09 Thomas J. Jasperse Transfer apparatus for automated parts movement
US7056576B2 (en) * 2001-04-06 2006-06-06 Ebert Composites, Inc. 3D fiber elements with high moment of inertia characteristics in composite sandwich laminates
US7105071B2 (en) * 2001-04-06 2006-09-12 Ebert Composites Corporation Method of inserting z-axis reinforcing fibers into a composite laminate
US6645333B2 (en) * 2001-04-06 2003-11-11 Ebert Composites Corporation Method of inserting z-axis reinforcing fibers into a composite laminate
US6676785B2 (en) * 2001-04-06 2004-01-13 Ebert Composites Corporation Method of clinching the top and bottom ends of Z-axis fibers into the respective top and bottom surfaces of a composite laminate
US6984277B2 (en) * 2003-07-31 2006-01-10 Siemens Westinghouse Power Corporation Bond enhancement for thermally insulated ceramic matrix composite materials
BRPI0414160B1 (pt) * 2003-09-08 2014-12-02 Evonik Roehm Gmbh Ponto de Introdução de Força em Compósitos de Núcleo Apresentando um Reforçamento da Estrutura do Compósito de Núcleo com Elementos de Reforço que Atravessam a Espessura do Dito Compósito de Núcleo, e seu Uso e seus Processos de Produção
US20060006023A1 (en) * 2004-07-08 2006-01-12 The United States Of America As Represented By Secretary Of The Army Combination rear impact guard, ladder, and ramp for military cargo vehicles
US7563497B2 (en) * 2004-12-27 2009-07-21 Mkp Structural Design Associates, Inc. Lightweight, rigid composite structures
DE102005024408A1 (de) * 2005-05-27 2006-11-30 Airbus Deutschland Gmbh Verstärkung von Schaumwerkstoffen
DE102007055684A1 (de) * 2007-11-21 2009-06-10 Airbus Deutschland Gmbh Vorrichtung zur Herstellung eines verstärkten Schaumwerkstoffes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678021C1 (ru) * 2017-09-11 2019-01-22 Государственное бюджетное образовательное учреждение высшего образования Московской области "Технологический университет" Способ изготовления объемно армированного композиционного материала

Also Published As

Publication number Publication date
BRPI0613882A2 (pt) 2011-02-15
ZA200800782B (en) 2008-12-31
AU2006274270A1 (en) 2007-02-01
NZ563572A (en) 2010-08-27
HK1120768A1 (en) 2009-04-09
WO2007012353A1 (de) 2007-02-01
JP4751448B2 (ja) 2011-08-17
CA2616655C (en) 2014-01-07
KR20080031908A (ko) 2008-04-11
IL186761A0 (en) 2008-02-09
KR101319703B1 (ko) 2013-10-17
EP1907193B1 (de) 2011-03-02
DK1907193T3 (da) 2011-06-14
PL1907193T3 (pl) 2011-08-31
EP1907193B8 (de) 2011-10-12
CA2616655A1 (en) 2007-02-01
CN101198459B (zh) 2012-02-22
CN101198459A (zh) 2008-06-11
ES2361617T3 (es) 2011-06-20
TW200709929A (en) 2007-03-16
JP2009502562A (ja) 2009-01-29
IL186761A (en) 2011-01-31
DE502006009011D1 (de) 2011-04-14
RU2008106981A (ru) 2009-09-10
DE102005035681A1 (de) 2007-02-08
ATE500049T1 (de) 2011-03-15
EP1907193A1 (de) 2008-04-09
US20080226876A1 (en) 2008-09-18
TWI388429B (zh) 2013-03-11
AU2006274270B2 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
RU2419543C2 (ru) Способ армирования материала основы для композитных конструкций
US8474388B2 (en) Two-sided single-needle understitch sewing technique
US6645333B2 (en) Method of inserting z-axis reinforcing fibers into a composite laminate
AU2004308244B2 (en) Method of inserting z-axis reinforcing fibers into a composite laminate
EP3237511B1 (de) Faserverstärkung anisotroper schaumstoffe
CA2947203A1 (en) Method and needle for reinforcing cellular materials
JP2007152672A (ja) 3次元繊維強化樹脂複合材及び3次元織物
CN108468159B (zh) 一种三维面内准各向同性缝合织物的制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160406