RU2418745C1 - Способ очистки сточной воды целлюлозно-бумажного производства напорной флотацией - Google Patents

Способ очистки сточной воды целлюлозно-бумажного производства напорной флотацией Download PDF

Info

Publication number
RU2418745C1
RU2418745C1 RU2009145657/05A RU2009145657A RU2418745C1 RU 2418745 C1 RU2418745 C1 RU 2418745C1 RU 2009145657/05 A RU2009145657/05 A RU 2009145657/05A RU 2009145657 A RU2009145657 A RU 2009145657A RU 2418745 C1 RU2418745 C1 RU 2418745C1
Authority
RU
Russia
Prior art keywords
water
floatation
stream
flotation
ash
Prior art date
Application number
RU2009145657/05A
Other languages
English (en)
Inventor
Эдуард Львович Аким (RU)
Эдуард Львович Аким
Михаил Николаевич Смирнов (RU)
Михаил Николаевич Смирнов
Юрий Георгиевич Мандре (RU)
Юрий Георгиевич Мандре
Марина Викторовна Коваленко (RU)
Марина Викторовна Коваленко
Original Assignee
Эдуард Львович Аким
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эдуард Львович Аким filed Critical Эдуард Львович Аким
Priority to RU2009145657/05A priority Critical patent/RU2418745C1/ru
Application granted granted Critical
Publication of RU2418745C1 publication Critical patent/RU2418745C1/ru

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

Способ предназначен для очистки сточной воды целлюлозно-бумажного производства, содержащей как взвешенные частицы, так и органические растворенные загрязнители, включая вещества, придающие воде трудноудаляемую цветность. Способ очистки воды включает добавление в нее флотореагентов, насыщение в сатураторе под давлением части потока очищаемой и/или очищенной воды газом-воздухом или его смесью с диоксидом углерода. Затем проводят дросселирование насыщенной газом воды с одновременным смешиванием ее с остальной частью очищаемой воды или со всем ее потоком в эжекторе с образованием на его выходе равномерно вспененной воды. Последующее флотирование загрязнений проводят во флотокамере с раздельным выводом из камеры флотопены и очищенной воды. При этом в сатуратор дополнительно подают водный поток, приготовленный обработкой дисперсии летучей золы, образующейся в многотопливном котле (МТК) при сжигании флотошламов, избыточного активного ила, коры и древесных отходов, содержащими серную кислоту остатками от производства диоксида хлора или их смесью со свежей серной кислотой. При осуществлении способа цветность очищенной воды уменьшается ниже допустимого уровня, утилизируются опасные для окружающей среды промышленные отходы - зола МТК, кислые остатки производства диоксида хлора, а также уменьшается расход свежих флотореагентов. 1 з.п. ф-лы.

Description

Способ предназначен для очистки сточной воды целлюлозно-бумажного производства, содержащей как взвешенные частицы, например, целлюлозные волокна, наполнители, так и органические растворенные в воде вещества, включая вещества, придающие воде цветность.
Известен способ сорбционной очистки сточных вод, включающий использование в качестве сорбента золу, полученную при сжигании шлам-лигнина, являющегося отходом целлюлозно-бумажного производства, содержащую, мас.%: углерода 14,0-16,0, оксида железа 4,0-6,0, оксида кальция 2,5-3,5, оксида кремния 6,8-7,2, оксида алюминия 68,0-72,0 (RU №2136599, МПК C02F 1/28, опубл. 10.09.1999 г.). В одном из примеров использования способа в описании даются характеристики очищаемой воды по цветности и ХПК. Однако сведения о степени снижения цветности очищенной воды не приводятся. Снижение ХПК на 72% следует считать недостаточным.
Известен способ очистки сточных вод напорной флотацией, по которому сточную воду насыщают в сатураторе воздухом под давлением, затем подают ее в открытую флотационную камеру, где давление снижают до атмосферного и флотируют частицы загрязняющих примесей пузырьками воздуха, выделяющимися во всем объеме воды в результате снижения давления до атмосферного, а всплывшую пену с загрязнениями непрерывно удаляют с поверхности. Воздух подают в поток воды в сатураторе в количестве, соответствующем его предельной растворимости при заданных давлении газа и температуре воды (патент RU №2155716 C2, C02F 1/24, опубл. 10.09.2000 г.).
Недостаток этого способа связан с тем, что условие подачи воздуха в сатуратор в количестве, соответствующем его предельной растворимости при заданных давлении газа и температуре воды, требует точной регулировки потока воздуха в зависимости от величины потока воды и ее температуры.
Наиболее близким к предлагаемому способу по технической сущности и результату является способ очистки сточной воды напорной флотацией, включающий добавление в нее или в часть ее потока флотореагентов, насыщение части потока очищаемой и/или очищенной воды воздухом или его смесью с диоксидом углерода, дросселирование насыщенной газом воды с одновременным смешиванием с остальной частью очищаемой воды в эжекторе с образованием на его выходе равномерно вспененной воды, флотирование загрязнений во флотокамере, раздельный вывод из камеры пены и очищенной воды (№2327646 RU, МПК C02F l/24, B03D 1/02, C02F 103/28, опубл. 27.06.2008, БИ №18).
В этом способе достигается высокая степень очистки от взвешенных веществ, коллоидных лигнинных веществ, снижения БПК и ХПК воды. Однако и при его использовании при очистке сточных вод производства целлюлозы сохраняется высокая цветность воды. При последующей биологической доочистке такой воды устранение цветности до допустимого уровня также не достигается. Эта проблема особенно существенна при очистке сточной воды производства химико-термомеханической массы (ХТММ) из осиновой древесины. Осина на всей территории РФ заражена гнилью. При сортировке и отмывке щепы из осины полностью освободиться от гнили невозможно. Вещества, образующиеся из гнили при воздействии на нее химических реагентов и высокой температуры, ответственны за высокую цветность, которая практически не снижается при использовании способа по прототипу. При сбросе доочищенной биологическим методом воды в водоемы эти вещества небезопасны и при большой степени разбавления.
Новым техническим результатом при использовании предлагаемого изобретения является уменьшение цветности очищенной воды ниже допустимого уровня, утилизация опасных для окружающей среды промышленных отходов - золы многотопливных котлов, кислых остатков производства диоксида хлора, а также уменьшение расхода свежих флотореагентов.
Указанный технический результат достигается тем, что в способе очистки сточной воды целлюлозно-бумажного производства напорной флотацией, включающем добавление в нее флотоагентов, насыщение в сатураторе под давлением части потока очищаемой и/или очищенной воды газом-воздухом или его смесью с диоксидом углерода, дросселирование насыщенной газом воды с одновременным смешиванием с остальной частью очищаемой воды или со всем ее потоком в эжекторе с образованием на его выходе равномерно вспененной воды, флотирование загрязнений во флотокамере, раздельный вывод из камеры флотопены и очищенной воды, согласно изобретению в сатуратор дополнительно подают водный поток, приготовленный обработкой дисперсии летучей золы, образующейся в многотопливном котле (МТК) при сжигании флотошламов, избыточного активного ила, коры и древесных отходов, содержащими серную кислоту остатками от производства диоксида хлора или их смесью со свежей серной кислотой. При высокой загрязненности сточной воды можно также в дисперсию летучей золы добавлять 20-30% по массе сухих веществ летучей золы, измельченную подовую золу многотопливного котла.
Физико-химическими обоснованиями возможности и целесообразности использования предлагаемого способ являются следующие обстоятельства.
Как известно, в процессах флотационной очистки сточных вод в качестве коагулянта успешно используют сульфат алюминия. Известно также, что наличие в водной системе, наряду с коагулянтом, таких компонентов, как мелкодисперсные частицы оксида кремния, сульфата или карбоната кальция, способных образовывать пространственные коллоидные структуры, ускоряют процессы образования и роста флоккул, причем эти флоккулы при образовании и росте захватывают не только дискретные частицы загрязнителей или их агломераты, но также загрязнения коллоидного типа. Если же в системе возможно образование частиц таких веществ, как сульфоалюминаты кальция или магния, которые имеют на поверхности большое количество активных центров, в том числе полярных, и способны образовывать коагуляционные структуры гидрогеля, то образующиеся с участием этих частиц флоккулы захватывают по механизму полярных взаимодействий и растворенные загрязнители, такие, например, как низкомолекулярные лигнины, обусловливающие трудноудаляемую цветность воды.
В МТК сжигаются различные материалы - кора, древесные отходы, избыточный активный ил, флотошламы из систем флотационной очистки сточных вод и пр. Зола всех сжигаемых материалов содержит в своем составе в разных соотношениях следующие основные компоненты: оксиды алюминия, кремния, железа, кальция, магния, натрия, калия. Состав летучей золы можно обобщить в мас.% так: оксид алюминия 18-27, сумма оксидов кальция и магния 5-15, оксида железа 3-7, сумма оксидов натрия и калия 2-3. Остальная часть, практически полностью, - это диоксид кремния. Примерно такой же состав компонентов имеет подовая зола.
В реакциях с водой компоненты золы, кроме диоксида кремния, преобразуются в гидроксиды, которые в реакциях с серной кислотой образуют соответствующие сульфаты, в частности растворимые в воде сульфаты алюминия и железа, являющиеся хорошими коагулянтами, частицы сульфата кальция, которые, как химически свежеосажденные, имеют высокую дисперсность. Эти частицы, так же как мелкодисперсные частицы диоксида кремния, поступающие в очищаемую воду с золой, являются «затравками» для образования флоккул, то есть пространственно организованных структур, и сами благодаря своей высокой активности сорбируют частицы и молекулы загрязнений и сорбируются на более крупных частицах загрязнения и поэтому включатся в эти структуры. В параллельных реакциях образуются также гидрогели сульфоалюминатов кальция и магния.
Предлагаемый способ осуществляют следующим образом. На флотационную установку подают сточную воду после отделения отстаиванием грубодисперсных взвешенных частиц. В проточном смесителе из части подлежащей очистке воды, летучей золы с добавкой измельченной подовой золы (или без добавки) из МТК и содержащих серную кислоту остатков производства диоксида хлора с добавкой свежей серной кислоты или без добавки готовят дисперсию, содержащую, кроме нерастворимых компонентов, растворенные вещества, образованные в результате реакций компонентов золы с серной кислотой. Количество подаваемой в смеситель золы определяют по концентрации загрязняющих веществ, например, в расчете на ХПК, и показателю цветности (в градусах платиново-кобальтовой шкалы - ºПКШ) подлежащей очистке воды. Оно может составлять 2,0-10,0 кг/м3 воды. Кислые остатки подают с таким расчетом, чтобы значения pH воды на выходе из смесителей было примерно нейтральным, т.е. 6,5-7,5. Готовую дисперсию подают в сатуратор вместе с очищенной водой или с еще одной частью подлежащей очистке воды с добавкой очищенной воды или без добавки. Очищаемую воду разбавляют очищенной водой при высоком уровне загрязнения. Это позволяет избежать риска образования - отложений в сатураторе коагулята, появляющегося в большем или меньшем количестве в зависимости от степени загрязненности воды, при смешении ее с дисперсией. Подовую золу МТК добавляют в дисперсию при нехватке летучей золы, а свежую серную кислоту добавляют в дисперсию при нехватке кислых остатков. Возможность возникновения этих факторов также зависит от степени загрязненности очищаемой воды.
Водный поток в сатураторе насыщают газом при его повышенном давлении, в диапазоне 0,2-0,4 МПа. Газ - это воздух или смесь воздуха с диоксидом углерода. Смесь используют при высокой загрязненности воды. Диоксид углерода ускоряет процесс коагуляции и укрупнения флоккул коллоидного лигнина. Кроме того, диоксид углерода способен к пресыщению воды намного выше предела, обусловленного величиной парциального давления газа над водной фазой. Поэтому образование мелких пузырьков диоксида углерода продолжается во всем объеме флотокамеры, что способствует более быстрому и полному выведению флоккул на поверхность воды. Насыщенный газом поток из сатуратора подают под давлением в дросселирующее устройство, совмещенное с эжектором. В это устройство подают также основной поток очищаемой воды, в который предварительно добавляют заданное количество свежих флотореагентов - 0,1-0,3% от массы потока воды сульфата алюминия или его смеси с сульфатом железа. Оба потока смешиваются, давление на выходе снижается до нормальной величины, газ в объеме воды выделяется в виде мелких пузырьков, и вода в виде равномерно вспененной массы поступает во флотационную камеру. Загрязнения с пеной выносятся на поверхность воды и в виде флотошлама выводятся из флотатора. Флотошлам далее обезвоживают известными методами, подсушивают и сжигают в МТК. Флотошлам содержит практически все количество флотореагентов, поступивших в очищаемую воду в виде золы МТК и в виде свежих реагентов, добавленных в основной поток очищаемой воды. Соответственно, уловленная зола содержит все эти компоненты, и ее вновь используют в процессе очистки воды.
Осветленную воду из флотатора направляют в систему биологической доочистки с использованием активного ила. Образующийся в системе избыточный активный ил отбирают, обезвоживают, подсушивают и сжигают в МТК. Активный ил также содержит некоторое количество неорганических компонентов. Эти компоненты при сжигании ила оказываются в золе, и их вновь используют в процессе очистки воды.
Можно полагать, что в последовательных циклах получения и использования золы от сжигания флотошлама, активного ила и других отходов в ней накапливаются те компоненты и в таком их соотношении, которые являются оптимальными для всего процесса очистки, включающего стадии флотации и биологической очистки.
Перед запуском способа в промышленном масштабе для определения оптимальных технологических параметров, зависящих от характеристик сточной воды по составу загрязнителей, уровням общего загрязнения и цветности, проводят его испытания на лабораторной установке, известной по прототипу. Состав оборудования на этой установке и устройство каждого из его элементов такие же, как у промышленной установки, и позволяют определить или уточнить оптимальные технологические параметры, главным образом, расходы свежих флотореагентов и золы МТК. Для конкретного типа воды с известными составом загрязнителей, уровнями загрязнения и цветности количество расходуемых в процессе флотационной очистки этой воды свежих флотореагентов, вообще говоря, известно. Поэтому, предполагая, что эффективность золы равна эффективности свежих реагентов, для начала половину нужной дозы (все в расчете на 1 м3 воды) свежих реагентов подают в основной поток очищаемой воды, а в смеситель подают в таком же количестве по общей массе золу. Определяют эффективность очистки при этих условиях. Затем, изменяя количества добавляемых (или убавляемых) свежих флотореагентов и золы, определяют оптимальный расход этих компонентов, при котором степень очистки и по ХПК, и по цветности максимальна.
Представленные ниже примеры выполнялись в полном соответствии с описанными выше принципами исполнения способа. Поскольку подача в сатуратор только очищенной или неочиценной воды или ее смеси с очищенной водой, добавление к летучей золе в смеситель подовой золы являются чисто техническими приемами и практически не влияют на эффективность очистки, в примерах эти сведения не приводятся. Давление газа при сатурировании воды равно 0,2 МПа в примере 1, 0,4 МПа в примере 2 и 0,3 МПа в примере 3. В примере 2 воду сатурировали смесью воздуха с 20 об.% диоксида углерода.
В ряде проведенных испытаний, не представленных примерами, изменения при прочих равных условиях соотношения между количествами золы и свежих флотореагентов от 3:7 до 6:4 соответственно к существенным изменениям степени очистки воды в расчете на ХПК не приводили.
Пример 1. Очистке подвергают сточную воду производства целлюлозы по сульфитному способу варки после ее отстаивания со следующими характеристиками:
температура воды, °C 21,0
взвешенные вещества, мг/л 63,2.
ХПК, мг O2 127,0
цветность, град, платинокобальтовой шкалы (°ПКШ) 118,0
Результаты очистки: степень удаления взвешенных частиц 95,8%, снижения ХПК 91,6%, цветность очищенной воды 23°ПКШ. При использовании способа по прототипу цветность очищенной воды 66 °ПКШ.
Пример 2. Очистке подвергают сточную воду производства целлюлозы по сульфатному способу варки. Характеристики воды следующие:
температура воды, °C 60,0
взвешенные вещества, г/л 0,52
лигнинные вещества, г/л 1,26
цветность, ºПКШ 123,0
Результаты очистки: степень удаления взвешенных частиц 96,8%, лигнинных компонентов 98,3%, цветности 28°ПКШ. При использования способа по прототипу цветность очищенной воды 71°ПКШ.
Пример 3. Очистке подвергают сточную воду производства ХТММ из осины. Характеристики воды следующие:
температура воды, °C 32,0
ХПК, мг O2 74,0
цветность, °ПКШ 113,0
Результаты очистки: степень снижения ХПК 89,3%, цветность 25°ПКШ. При использовании способа по прототипу цветность очищенной воды 75°ПКШ.

Claims (2)

1. Способ очистки сточной воды целлюлозно-бумажного производства напорной флотацией, включающий добавление в нее флотореагентов, насыщение в сатураторе под давлением части потока очищаемой и/или очищенной воды газом-воздухом или его смесью с диоксидом углерода, дросселирование насыщенной газом воды с одновременным смешиванием ее с остальной частью очищаемой воды или со всем ее потоком в эжекторе с образованием на его выходе равномерно вспененной воды, флотирование загрязнений во флотокамере, раздельный вывод из камеры флотопены и очищенной воды, отличающийся тем, что в сатуратор дополнительно подают водный поток, приготовленный обработкой дисперсии летучей золы, образующейся в многотопливном котле при сжигании флотошламов, избыточного активного ила, коры и древесных отходов, содержащими серную кислоту остатками от производства диоксида хлора или их смесью со свежей серной кислотой.
2. Способ по п.1, отличающийся тем, что в дисперсию летучей золы добавляют 20-30% по массе сухих веществ летучей золы измельченную подовую золу многотопливного котла.
RU2009145657/05A 2009-12-10 2009-12-10 Способ очистки сточной воды целлюлозно-бумажного производства напорной флотацией RU2418745C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009145657/05A RU2418745C1 (ru) 2009-12-10 2009-12-10 Способ очистки сточной воды целлюлозно-бумажного производства напорной флотацией

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009145657/05A RU2418745C1 (ru) 2009-12-10 2009-12-10 Способ очистки сточной воды целлюлозно-бумажного производства напорной флотацией

Publications (1)

Publication Number Publication Date
RU2418745C1 true RU2418745C1 (ru) 2011-05-20

Family

ID=44733647

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009145657/05A RU2418745C1 (ru) 2009-12-10 2009-12-10 Способ очистки сточной воды целлюлозно-бумажного производства напорной флотацией

Country Status (1)

Country Link
RU (1) RU2418745C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468997C1 (ru) * 2011-09-06 2012-12-10 Леонид Асхатович Мазитов Способ очистки сточных вод от ионов алюминия
RU2498850C1 (ru) * 2012-06-21 2013-11-20 Леонид Асхатович Мазитов Способ получения композиционного сорбента на основе карбоната и гидроксида магния

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468997C1 (ru) * 2011-09-06 2012-12-10 Леонид Асхатович Мазитов Способ очистки сточных вод от ионов алюминия
RU2498850C1 (ru) * 2012-06-21 2013-11-20 Леонид Асхатович Мазитов Способ получения композиционного сорбента на основе карбоната и гидроксида магния

Similar Documents

Publication Publication Date Title
US7713422B2 (en) Black liquor treatment method
CN107892427A (zh) 一种燃煤电厂脱硫废水零排放处理系统及方法
RU2418745C1 (ru) Способ очистки сточной воды целлюлозно-бумажного производства напорной флотацией
Guo et al. Effects of agricultural waste-based conditioner on ultrasonic-aided activated sludge dewatering
CN109790687B (zh) 处理含有纤维素的废水污泥用于制造挂面纸板和生产纤维素乙醇的方法
CN110759589A (zh) 人造板纤维干燥尾气处理含污废水的处理方法
FR2999455A1 (fr) Methode de separation de carbonate de calcium et de gypse
CN101816889A (zh) 与印染废水结合的脱硫工艺
CN103030231A (zh) 一种脱硫海水的恢复系统及恢复工艺
RU2327646C1 (ru) Способ очистки сточных вод напорной флотацией
CN106517670A (zh) 一种废水的深度处理工艺
JPS6133285A (ja) 下水処理方法
CN108059276A (zh) 一种印染纺织业污水的处理方法
RU2430886C1 (ru) Способ и система для улавливания древесного волокна из сточных промышленных вод производства древесно-волокнистых плит
CN208545218U (zh) 一种提溴废液的净化装置
CN106045215A (zh) 高硬度高盐分造纸废水生化处理预处理工艺
JPH06134470A (ja) フライアッシュの無害化処理方法
Mahajan Comparative analysis for suitability of fly ash and coconut husk in BOD and COD removal from paper mill waste water
CN113877403B (zh) 一种石灰石-石膏湿法烟气脱硫工艺的浆液调控方法
CN1833761A (zh) 具有分开的洗涤液槽的烟道气净化装置
CN111533320B (zh) 一种有机废水的处理装置及方法
CN211367319U (zh) 一种人造板纤维干燥尾气处理含污废水的处理装置
Ochola et al. Pulp and paper
JP4405286B2 (ja) 水産加工排水スカムの処理方法
Dey et al. Pollution abatement in the Indian pulp and paper industry

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131211