RU2406171C1 - Мишень, преобразующая излучение в фотонейтроны - Google Patents
Мишень, преобразующая излучение в фотонейтроны Download PDFInfo
- Publication number
- RU2406171C1 RU2406171C1 RU2009147317/07A RU2009147317A RU2406171C1 RU 2406171 C1 RU2406171 C1 RU 2406171C1 RU 2009147317/07 A RU2009147317/07 A RU 2009147317/07A RU 2009147317 A RU2009147317 A RU 2009147317A RU 2406171 C1 RU2406171 C1 RU 2406171C1
- Authority
- RU
- Russia
- Prior art keywords
- target
- radiation
- photoneutrons
- ray
- neutron
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H6/00—Targets for producing nuclear reactions
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/11—Details
- G21B1/19—Targets for producing thermonuclear fusion reactions, e.g. pellets for irradiation by laser or charged particle beams
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1606—Antifouling paints; Underwater paints characterised by the anti-fouling agent
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G4/00—Radioactive sources
- G21G4/02—Neutron sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Measurement Of Radiation (AREA)
Abstract
Изобретение относится к мишеням, преобразующим излучение в фотонейтроны. Техническим результатом изобретения является создание мишени с повышенным выходом фотонейтронов. Согласно изобретению мишень испускает фотонейтроны при падении на нее рентгеновского излучения и содержит удлиненный корпус, имеющий первый и второй конец, причем в процессе работы рентгеновское излучение поступает в корпус и распространяется в направлении от первого конца ко второму концу, и корпус мишени имеет такую форму, которая, по существу, соответствует распределению интенсивности пучка рентгеновского излучения, так что рентгеновские лучи, имеющие более высокую интенсивность, могут распространяться на большем расстоянии внутри корпуса мишени. 7 з.п. ф-лы, 4 ил.
Description
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к мишеням, преобразующим излучение в фотонейтроны, в особенности к мишеням, которые используются в установках для обнаружения контрабанды и обеспечивают получение фотонейтронов с помощью рентгеновского излучения.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
В наше время терроризм представляет серьезную угрозу международной и национальной стабильности. Правительства различных стран прилагают большие усилия по борьбе терроризмом. Важным направлением антитеррористической деятельности является обнаружение контрабандных товаров и материалов, таких как, например, взрывчатые вещества.
В настоящее время для обнаружения контрабанды используется технология получения изображений в рентгеновских лучах. Такая технология нашла широкое применение в системах досмотра. Многие установки, в которых используется принцип получения изображений в рентгеновских лучах, используются в аэропортах и на железнодорожных вокзалах. Поскольку рентгеновское излучение большей частью реагирует с электронами, движущимися по орбитам вокруг атомного ядра, то это излучение не обеспечивает распознавания атомных ядер. Поэтому при использовании для досмотра рентгеновских лучей можно измерить лишь плотность просвечиваемого объекта, однако элементы, составляющие этот объект, определить невозможно. На практике, если контрабандные товары или материалы перемешаны с бытовыми предметами, и плотности их примерно одинаковы, то использование в этом случае технологий получения изображений в рентгеновских лучах малоэффективно. Хотя некоторые новые технологии получения изображений в рентгеновских лучах, например просвечивание пучками излучения с двумя уровнями энергии и технология компьютерной томографии, улучшили возможности таких установок в части распознавания или различения, однако все-таки они не могут преодолеть принципиальную невозможность распознавания элементов.
Другой применяемой в настоящее время технологией обнаружения незаконно провозимых объектов является использование нейтронов. Нейтроны могут реагировать с ядрами атомов вещества, и при этом возникает характеристическое гамма-излучение. В этом случае появляется возможность определения элементов, составляющих вещество, на основе анализа энергетического спектра гамма-излучения. Недостатком нейтронных досмотровых установок является невысокое разрешение, которое в настоящее время может достигать в лучшем случае 5 см × 5 см × 5 см, что гораздо хуже разрешения, достигаемого в рентгеновских досмотровых установках (порядка 1 мм). Кроме того, автономный источник нейтронов обычно дорог, имеет небольшой срок службы, и выход нейтронов недостаточно высок.
Поэтому имеется потребность в способах и/или в установках для досмотра, которые могут объединять технологию получения изображений с помощью рентгеновских лучей и технологию, использующую нейтроны, чтобы можно было получить высокое разрешение, которое обеспечивают рентгеновские лучи, и возможность определения элементов, обеспечиваемого нейтронными досмотровыми установками. В патенте US 5078952 описывается установка обнаружения взрывчатых веществ, в которой объединены различные средства обнаружения, в том числе устройство получения изображений с помощью рентгеновских лучей и нейтронное устройство, для повышения вероятности обнаружения и снижения уровня ложных тревог. Кроме того, в указанном патенте описывается объединение данных, полученных рентгеновской и нейтронной подсистемами, в результате чего повышается общее разрешение установки. Однако в установке, раскрытой в вышеуказанном патенте, используются источники рентгеновского излучения и нейтронов, которые независимы друг от друга, и, соответственно, стоимость такой установки будет достаточно высокой.
Стоит отметить, что нейтроны получают в результате бомбардировки пучком рентгеновских лучей мишени, которая преобразует падающее на нее излучение в нейтроны. Нейтроны, получаемые в этом случае, можно назвать фотонейтронами. Такой способ получения фотонейтронов открывает возможности получения рентгеновских лучей и нейтронов с использованием одного источника, что позволяет снизить стоимость установки по сравнению с вариантом, в котором используются независимые источники рентгеновских лучей и нейтронов.
В публикации WO 98/55851 международной заявки раскрывается система обнаружения и распознавания контрабандных товаров, в которой получают изображения с помощью рентгеновского излучения и пучка фотонейтронов. Система работает в две стадии. Сначала в установке с помощью линейного ускорителя электронов получают рентгеновское излучение, и для обнаружения объекта используется технология получения изображения в рентгеновских лучах. Если ничего подозрительного не обнаружено, то досматриваемый объект пропускается; если же в досматриваемом объекте обнаружена подозрительная зона, то на пути пучка рентгеновских лучей на время устанавливают бериллиевую мишень, преобразующую излучение в фотонейтроны, и осуществляется проверка объекта путем анализа характеристического гамма-излучения, возникающего в результате реакции радиационного захвата между фотонейтронами и ядрами атомов вещества. На первой стадии досмотра используется только рентгеновское излучение. Как уже указывалось, возможности технологии получения изображения в рентгеновских лучах по обнаружению контрабанды весьма ограниченны, и поэтому вероятность обнаружения невысока. Кроме того, в установке не обеспечивается одновременное получение рентгеновского излучения и пучка фотонейтронов, вместо этого рентгеновское излучение и фотонейтроны генерируются последовательно, в две стадии. То есть на одной стадии генерируется только рентгеновское излучение, без фотонейтронов, а фотонейтроны получают на второй стадии с использованием рентгеновского излучения. Однако рентгеновские лучи, которые генерируются на второй стадии, не используются для досмотра, а только для получения нейтронов. Кроме того, полученные фотонейтроны используются для проверки только подозрительной зоны досматриваемого объекта и не используются для проверки всего объекта.
В китайской заявке №200510086764.8, поданной заявителем по настоящей заявке, описывается способ распознавания материалов с использованием быстрых нейтронов и рентгеновского излучения. В заявке описывается способ и устройство одновременной генерации рентгеновского излучения и фотонейтронов, при котором пучок рентгеновского излучения, получаемого с помощью ускорителя, разделяется на два пучка, один из которых используется для получения фотонейтронов. Однако, как указывается в заявке, обнаружение с помощью пучка нейтронов осуществляется путем анализа интенсивности фотонейтронов, которые прошли сквозь досматриваемый объект, а не по характеристическому гамма-излучению, возникающему в результате реакции между нейтронами и веществом объекта. Кроме того, при таком способе обнаружения обычно необходимо пространственно разнести на некоторое расстояние пучок рентгеновского излучения и пучок нейтронов, чтобы в процессе работы рентгеновская и нейтронная части установки не создавали помех работе друг друга.
Вышеуказанные заявки и патенты полностью включаются ссылкой в настоящую заявку.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Целью изобретения является создание мишени, преобразующей излучение в фотонейтроны, с повышенным выходом фотонейтронов.
В изобретении предлагается мишень, преобразующая излучение в фотонейтроны, которая испускает фотонейтроны при падении на нее рентгеновского излучения и которая имеет удлиненный корпус с первым и вторым концами, причем в процессе работы рентгеновское излучение поступает в корпус и распространяется в направлении от первого конца ко второму концу, и корпус мишени имеет такую форму, которая, по существу, соответствует распределению интенсивности пучка рентгеновского излучения, так что рентгеновские лучи, имеющие более высокую интенсивность, могут распространяться на большем расстоянии внутри корпуса мишени.
В предлагаемой в настоящем изобретении мишени, преобразующей излучение в фотонейтроны, рентгеновское излучение может быть использовано полностью, в результате чего повышается выход фотонейтронов. Таким образом, если мишень, преобразующая излучение в фотонейтроны, используется в нейтронной досмотровой установке, то скорость анализа в такой установке может быть увеличена. Предлагаемая в настоящем изобретении мишень, преобразующая излучение в фотонейтроны, может найти применение в любой области для получения фотонейтронов с использованием рентгеновского излучения, и ее применение не ограничивается только вариантами осуществления изобретения, рассмотренными в настоящем описании.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 - схематический вид установки, предназначенной для обнаружения контрабанды с использованием фотонейтронов и рентгеновского излучения, в соответствии с одним из вариантов осуществления настоящего изобретения;
фиг.2 - увеличенный схематический вид в плане мишени, преобразующей излучение в фотонейтроны, фиг.1, на котором показан проход, формируемый в этой мишени;
фиг.3 - схематический вид с торца мишени, преобразующей излучение в фотонейтроны, фиг.2;
фиг.4 - схематический вид улучшенного детектора гамма-излучения.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Наиболее показательные конкретные варианты осуществления изобретения рассмотрены ниже подробно со ссылками на чертежи. Эти варианты используются лишь для иллюстрации изобретения и ни в коей мере не ограничивают его объем.
Как показано на фиг.1, в соответствии с одним из вариантов осуществления изобретения досматриваемый объект, например закрытый контейнер 8, располагается на платформе 19. Необходимо отметить, что на фиг.1 показано сечение контейнера 8, чтобы можно было видеть находящиеся в нем товары 10. Этими товарами могут быть различные материалы, например металл 11, деревянный блок 12 и взрывчатка 13. Платформа 19 втягивается тяговым устройство 20 в зону досмотра досмотровой установки в соответствии с настоящим изобретением. Контейнер 8 обычно изготавливается из гофрированного стального или алюминиевого листа. Такой досмотр может также осуществляться в отношении других типов контейнеров, например авиационных.
Когда датчик положения (не показан) определяет, что контейнер 8 уже установлен в заданное положение, он может включить генератор рентгеновского излучения предлагаемой в настоящем изобретении установки, чтобы начать досмотр контейнера. В одном из вариантов осуществления изобретения генератор рентгеновского излучения может содержать ускоритель электронов (не показан) и мишень 2. Ускоритель электронов генерирует пучок 1 электронов, падающий на мишень 2. Мишень 2 обычно состоит из материала с высоким атомным номером, например из вольфрама или золота. После торможения атомами вольфрама или золота электроны излучают основной пучок 3 рентгеновского излучения (тормозное излучение). Как будет более подробно описано ниже, основной пучок 3 рентгеновского излучения делится на первый и второй пучки, причем первый пучок рентгеновского излучения используется для проверки объекта с использованием изображений, получаемых в рентгеновских лучах, а второй пучок рентгеновского излучения используется для проверки объекта с помощью нейтронов. Досмотр с использованием изображений, получаемых в рентгеновских лучах, подразумевает, что рентгеновские лучи пропускают через досматриваемый объект и получают информацию о плотности объекта по ослаблению рентгеновских лучей; а досмотр с использованием нейтронов подразумевает, что нейтроны реагируют с атомами вещества досматриваемого объекта, в результате чего излучается характеристическое гамма-излучение, и по этому излучению определяют элементы досматриваемого объекта. Необходимо отметить, что в установке и способе в соответствии с настоящим изобретением досмотр объекта осуществляется при одновременном осуществлении проверки с использованием рентгеновского излучения и проверки с использованием нейтронов.
На фиг.1 показан частичный разрез мишени 4, преобразующей излучение в фотонейтроны. Пучок 3 рентгеновских лучей падает на мишень 4 для получения фотонейтронов 6, и проверка контейнера 8 с использованием нейтронов осуществляется с помощью этих фотонейтронов 6. В рассматриваемом варианте осуществления изобретения мишень 4, преобразующая излучение в фотонейтроны, также используется для расщепления основного пучка 3 рентгеновского излучения на первый пучок и второй пучок.
Мишень 4, преобразующая излучение в фотонейтроны, показана схематически в увеличенном виде на фиг.2 и 3. Как можно видеть на фиг.2, мишень 4 содержит корпус 401. В одном из вариантов осуществления изобретения корпус 401 имеет удлиненную форму в направлении распространения основного пучка 3 рентгеновского излучения с первым концом 402 и вторым концом 403. В корпусе 401 имеется проход 404, проходящий сквозь корпус от первого конца 402 до второго конца 403. В вариантах осуществления изобретения, показанных на фиг.2 и 3, проход 404 представляет собой щель, полностью находящуюся в плоскости Р (перпендикулярно к плоскостям фиг.2 и 3), так что корпус 401 разделен на две отдельные части. Предпочтительно проход 404 проходит через центр симметрии корпуса 401 и делит его на две симметричные части. Проход 404 формируется между этими двумя отдельными частями. Когда основной пучок 3 рентгеновского излучения входит в корпус 401 мишени 4, преобразующей излучение в фотонейтроны, часть 405 основного пучка проходит непосредственно через мишень 4 по проходу 404 без какой-либо реакции с материалом мишени. Эта часть основного пучка рентгеновского излучения является первым пучком 405. Другая часть 406 основного пучка рентгеновского излучения входит в корпус 401 и распространяется в направлении от первого конца 402 ко второму концу 403 и при своем распространении реагирует с ядрами атомов мишени 4, преобразующей излучение в фотонейтроны. Эта часть основного пучка рентгеновского излучения является вторым пучком 406. Как можно видеть, проход 404 используется в качестве расщепителя пучка, обеспечивающего разделение основного пучка 3 рентгеновского излучения на первый пучок и второй пучок. В других вариантах осуществления изобретения, которые в настоящем описании не рассматриваются, проход 404 может иметь и другие формы. Например, проход может быть сформирован как сквозное отверстие (не показано), проходящее через корпус 401 таким образом, что оно не разделяет его на две части, или же проход может иметь другую форму, определяемую корпусом 401, однако проход должен обеспечивать прохождение через корпус 401 веерообразного пучка рентгеновского излучения, используемого для получения изображений в рентгеновских лучах.
Для того чтобы полностью использовать основной пучок 3 рентгеновского излучения, выходящий из мишени 2, так чтобы увеличить выход фотонейтронов из мишени 4, мишень 4 может быть изготовлена таким образом, чтобы ее форма примерно соответствовала распределению интенсивности основного пучка 3 рентгеновского излучения, а именно ее форма может быть такой, чтобы рентгеновские лучи, имеющие большую интенсивность, проходили в корпусе 401 мишени 4 большее расстояние. Основной пучок 3 рентгеновского излучения, выходящий из мишени 2, обычно имеет распределение интенсивности, симметричное относительно продольной оси луча 1 электронов (см. фиг.1 и 2). Кроме того, как правило, чем ближе к оси симметрии распределения интенсивности, тем выше интенсивность рентгеновского излучения.
Соответственно, если не учитывать проход 404 внутри мишени 4, она в целом имеет форму, симметричную относительно продольной оси 409. Кроме того, форма мишени, симметричная относительно продольной оси, по существу, соответствует распределению интенсивности основного пучка 3 рентгеновского излучения, симметричного относительно продольной оси. В процессе работы установки ось 409 симметрии мишени совпадает с осью симметрии распределения интенсивности основного пучка 3 рентгеновского излучения. Предпочтительно по меньшей мере часть мишени 4, преобразующей излучение в фотонейтроны, суживается в направлении второго конца 403, так что мишень 4 имеет большую длину там, где она ближе к своей оси симметрии. В варианте осуществления изобретения, показанном на фиг.2, мишень 4, преобразующая излучение в фотонейтроны, содержит суживающуюся часть 408, примыкающую ко второму концу 403, и цилиндрическую часть 407, примыкающую к первому концу 402, причем цилиндрическая часть 407 может быть выполнена как единое целое с суживающейся частью 408. Суживающаяся часть 408 может заканчиваться на втором конце 403. Как можно видеть на фиг.2, суживающаяся часть 408 имеет форму усеченного конуса. Цилиндрическая часть 407 и суживающаяся часть 408 имеют общую продольную центральную ось, совпадающую с осью симметрии мишени. В других вариантах суживающаяся часть 408 может иметь форму полного конуса (без усечения) или же может суживаться в иной форме, например суживающаяся часть 408 может иметь криволинейную поверхность. В других вариантах мишень 4, преобразующая излучение в фотонейтроны, также может суживаться от первого конца 402 ко второму концу 403.
Хотя на фиг.1-3 показано, что проход 404, сформированный в мишени 4, служит в качестве расщепителя пучка, однако специалистам в данной области техники будет ясно, что для разделения основного пучка 3 рентгеновского излучения на первый пучок и второй пучок могут быть использованы и другие виды расщепителей пучка. Например, может быть использован разрезной коллиматор с двумя проходами, описанный в китайской заявке №200510086764.8 заявителя по настоящей заявке. Разрезной коллиматор с двумя проходами может расщеплять основной пучок 3 рентгеновского излучения на два пучка, разнесенных на некоторое расстояние друг от друга, и на пути одного из пучков будет располагаться мишень, преобразующая излучение в фотонейтроны.
Необходимо также отметить, что признак суживающейся части мишени 4 не ограничивается только рассмотренными вариантами осуществления настоящего изобретения. Этот признак может также использоваться в любых других вариантах, в которых пучок рентгеновского излучения используется для бомбардировки мишени, чтобы получить пучок фотонейтронов. Например, этот признак может использоваться в варианте, описанном в публикации WO 98/55851 международной заявки и китайской заявки №200510086764.8, для повышения выхода фотонейтронов. В этих других вариантах применения мишень, преобразующая излучение в фотонейтроны, может иметь вышеописанный проход, служащий расщепителем пучка, или может не иметь такого прохода.
Обычно выбор энергии пучка 1 электронов определяется требуемой энергией пучка рентгеновского излучения и материалом мишени, преобразующей излучение в фотонейтроны (см. фиг.1). В зависимости от различных типов досматриваемых объектов, скорости их досмотра и требований в части безопасности работы для просвечивания объектов могут выбираться рентгеновские лучи различной энергии. С точки зрения безопасности и стоимости обычно выбирается минимально возможный уровень энергии. Ускоритель электронов (не показан) может обеспечивать энергию в диапазоне от 1 МэВ до 15 МэВ. Подходящий материал для мишени 4, преобразующей излучение в фотонейтроны, должен иметь по возможности меньший порог реакции и как можно большее сечение фотонейтронной реакции, однако эти два требования трудно выполнить одновременно. Для энергии рентгеновского излучения от 1 МэВ до 15 МэВ, которая сравнительно невелика, выход фотонейтронов будет ниже для материала мишени с большим сечением реакции и с более высоким порогом. Однако бериллий (Be) или тяжелая вода (D2O) являются более подходящими материалами. Порог фотонейтронной реакции 9Be составляет всего лишь 1,67 МэВ, а порог реакции D в D2O равен 2,223 МэВ. Основной пучок 3 рентгеновского излучения, падающий на мишень 4, осуществляет фотонейтронную реакцию с 9Bе или с 2H, в результате чего излучаются фотонейтроны 6. Поскольку энергетический спектр основного пучка 3 рентгеновского излучения имеет непрерывное распределение, то энергетический спектр фотонейтронов 6 также имеет непрерывное распределение. Кроме того, если используемый ускоритель электронов может генерировать пучок 1 электронов с более высокой энергией, то в этом случае мишень 4 может быть изготовлена из материала с более высоким порогом фотонейтронной реакции и с большим сечением реакции, например из различных изотопов вольфрама (W) и различных изотопов урана (U).
В одном из вариантов осуществления изобретения ускоритель электронов может генерировать пучок 1 электронов с определенной частотой. Таким образом, пучок 1 электронов будет представлять собой импульсный поток с определенной частотой. В этом случае при падении импульсного пучка 1 электронов на мишень 2 будет генерироваться поток 3 рентгеновского излучения с такой же частотой импульсов. Частота импульсов может быть определена в зависимости от скорости перемещения досматриваемого контейнера 8 и может находиться в диапазоне от 10 Гц до 1000 Гц. В одном из вариантов осуществления изобретения частота импульсов может составлять 250 Гц. Импульсы пучка 1 электронов могут иметь ширину в диапазоне от 1 мкс до 10 мкс.
Необходимо заметить, что когда основной пучок 3 рентгеновского излучения падает на мишень 4, то для генерации фотонейтронов 6 требуется очень малое время, обычно меньше 1 мкс. Поэтому фотонейтроны 6, используемые для нейтронной бомбардировки объекта, и первый пучок 405 рентгеновского излучения, используемый для получения изображений объекта в рентгеновских лучах, генерируются почти одновременно. В результате просвечивание объектов рентгеновским излучением и нейтронами осуществляется одновременно. Это очевидным образом отличается от работы установки, раскрытой в публикации WO 98/55851 международной заявки.
Поток нейтронов 6, излучаемый мишенью 4, является изотропным. Поэтому только часть получаемых фотонейтронов имеет направление в сторону досматриваемого контейнера 8. Поскольку 9Ве и 2H в мишени 4 имеют большее сечение рассеивания нейтронов, то фотонейтроны 6, излучаемые мишенью 4, будут двигаться также и назад, а именно в направлении, противоположном направлению основного пучка 3 рентгеновского излучения, падающего на мишень 4. Для повышения эффективности работы источника фотонейтронов 6, так чтобы они направлялись на досматриваемый контейнер 8, за мишенью 4 (возле первого конца 402 мишени 4) может быть установлен отражатель нейтронов (не показан). Отражатель нейтронов используется для отражения фотонейтронов 6, которые перемещаются в сторону от досматриваемого контейнера 8, и направления их в сторону этого контейнера.
На пути прохождения первого пучка 405 (см. фиг.1) в направлении досматриваемого контейнера 8 установлен коллиматор 5 рентгеновского излучения для придания первому пучку рентгеновского излучения плоской веерообразной формы. Коллиматор 5 рентгеновских лучей предпочтительно устанавливается рядом со вторым концом 403 корпуса 401 мишени 4 и выровнен с проходом 404. Таким образом, первый пучок 405 рентгеновского излучения коллимируется с помощью коллиматора 5, после того как первый пучок 405 пройдет через мишень по сквозному проходу 404, в результате чего формируется пучок 7, имеющий плоскую веерообразную форму. То есть пространство за пределами пучка 7 рентгеновского излучения экранируется коллиматором 5. Таким образом, воздействие рентгеновского излучения на работу подсистемы досмотра с помощью пучка нейтронов, особенно на работу детектора гамма-излучения, будет снижаться.
Ниже описывается досмотр контейнера 8 путем получения рентгеновского изображения с использованием первого пучка 405 рентгеновского излучения и нейтронного облучения (нейтронные изображения) с использованием фотонейтронов 6, генерируемых вторым пучком 406 рентгеновского излучения. Необходимо отметить, что технологии досмотра с помощью рентгеновского излучения и нейтронов (по отдельности) хорошо известны средним специалистам в данной области техники. Однако в настоящем изобретении досмотр с использованием рентгеновского излучения и нейтронов может выполняться одновременно, поскольку первый пучок 405 рентгеновского излучения и фотонейтроны 6 могут генерироваться одновременно (или почти одновременно).
Ниже сначала описывается досмотр путем получения изображения в рентгеновских лучах. Как показано на фиг.1, веерообразный пучок 7 рентгеновского излучения, а именно коллимированный первый пучок 405 рентгеновского излучения, излучается в направлении досматриваемого контейнера 8. Товары, имеющиеся внутри контейнера 8, будут ослаблять веерообразный пучок 7. Устройство измерения рентгеновского излучения будет измерять интенсивность ослабленного излучения. В качестве устройства измерения рентгеновского излучения может использоваться матрица детекторов рентгеновского излучения. Степень ослабления рентгеновского излучения отражает поглощающую способность материала по линии от мишени 2 до соответствующего детектора рентгеновского излучения в матрице 15 детекторов.
Поглощающая способность связана с плотностью и составом вещества, имеющегося в контейнере 8. С помощью матрицы 15 детекторов рентгеновского излучения можно получить двумерное изображение контейнера 8 в рентгеновских лучах. В качестве детекторов в матрице 15 могут использоваться газовые ионизационные камеры, кристаллы вольфрамата кадмия, кристаллы CsI, а также и другие типы детекторов. Как уже указывалось, пучок 1 электронов, падающих на мишень 2, имеет определенную частоту, и при этом генерируется рентгеновское излучение, пульсирующее с такой же частотой. Для каждого импульса рентгеновского излучения матрица 15 детекторов будет получать одномерное изображение некоторого сечения контейнера 8. По мере того как тяговое устройство 20 перемещает контейнер 8, из множества одномерных изображений, полученных по измерениям многих детекторов, составляется двумерное изображение контейнера 8 в рентгеновских лучах.
Бомбардировка объекта нейтронами осуществляется одновременно с просвечиванием рентгеновскими лучами. После того как нейтроны 6 излучаются мишенью 4, они будут попадать в досматриваемый контейнер 8. После попадания в досматриваемый контейнер 8 энергия фотонейтронов 6 снижается за счет рассеивания (упругое и неупругое рассеивание). В коллимировании фотонейтронов 6 перед контейнером 8 нет необходимости, поскольку они распределяются в достаточно широком диапазоне в процессе рассеивания. Излучаемые фотонейтроны 6 - это быстрые нейтроны, которые становятся медленными нейтронами в течение нескольких мкс. В результате энергия нейтронов 6 снижается до энергии тепловых нейтронов. Как правило, фотонейтроны 6 превращаются из быстрых нейтронов в тепловые нейтроны примерно за 1 мс. Затем тепловые нейтроны будут исчезать: они будут поглощаться веществом или уходить в окружающее пространство. Время существования тепловых нейтронов в пространстве находится в диапазоне от 1 мс до 30 мс. Нейтроны также могут участвовать в реакции захвата в энергетических областях быстрых и медленных нейтронов, однако сечение реакции очень мало. Когда энергия нейтронов снижается, то сечение реакции будет быстро увеличиваться, поскольку сечение захвата обратно пропорционально скорости движения нейтронов. Поскольку ускоритель электронов работает в непрерывном импульсном режиме, то тепловые нейтроны различных импульсов будут существовать совместно. Например, если ускоритель электронов работает на частоте 250 Гц, и ширина импульса составляет 5 мкс, то в конечном счете будет существовать нейтронное поле, создаваемое в пространстве, которое представляет собой импульсы быстрых нейтронов с частотой 250 Гц и шириной импульса 5 мкс и которое накладывается на примерно постоянное поле тепловых нейтронов.
В результате реакции радиационного захвата веществом тепловых нейтронов возникает характеристическое гамма-излучение. Например, 1H может реагировать с нейтронами, в результате чего испускается характеристическое гамма-излучение с энергией 2,223 МэВ, а 14N и 17Cl могут реагировать с нейтронами, в результате чего испускается гамма-излучение с энергией 10,828 МэВ и 6,12 МэВ соответственно. Виды элементов в досматриваемом объекте могут быть определены путем измерения этих характеристических гамма-излучений. Различные материалы в досматриваемом контейнере 8 при облучении нейтронами могут испускать различные характеристические гамма-излучения. Виды таких материалов могут быть определены путем анализа энергетических спектров гамма-излучения. Например, если большое количество сигналов указывает на то, что внутри контейнера находятся элементы N и Н, то, возможно, в контейнере находятся взрывчатые вещества или "бомба из удобрения (из аммиачной селитры)", а если гамма-излучение указывает на Cl, то, возможно, в контейнере находятся наркотики, такие как героин и кокаин, которые контрабандисты обычно перевозят в форме хлорида. Кроме того, также могут быть обнаружены ядерные материалы, такие как, например, уран и плутоний, путем измерения нейтронов деления, вызванного фотонейтронами.
Измерение энергетического спектра гамма-излучения осуществляется с помощью измерительных средств. В качестве таких средств может быть использована одна или несколько матриц 14 детекторов гамма-излучения. Каждая матрица 14 детекторов содержит ряд детекторов, обеспечивающих возможность приема характеристического гамма-излучения. Кроме того, как показано на фиг.1, когда используется несколько матриц 14 детекторов гамма-излучения, они могут быть расположены по обе стороны от пути движения контейнера 8. Кроме того, матрицы 14 детекторов гамма-излучения могут отстоять на некотором расстоянии от матриц 15 детекторов рентгеновского излучения, то есть сдвинуты на некоторое расстояние от плоского веерообразного пучка 7 (первый пучок рентгеновского излучения), чтобы минимизировать влияние первого пучка рентгеновского излучения на работу детекторов гамма-излучения. Матрицы детекторов гамма-излучения обеспечивают получение распределения в плоскости определенного элемента на основе анализа спектрального сигнала гамма-излучения.
Могут использоваться самые разные типы детекторов γ-излучения, например, на основе NaI (TI), BGO, HPGe и LаВr3.
В предлагаемой в настоящем изобретении установке используются два вида детекторов: детекторы рентгеновского излучения и детекторы гамма-излучения. Эти два типа детекторов работают в условиях, когда одновременно существуют рентгеновское излучение, гамма-излучение и нейтроны. Любые два вида излучения могут создавать помехи друг другу. В особенности, рентгеновское излучение имеет очень большую интенсивность по сравнению с гамма-излучением и потоком нейтронов, и оно может вносить помехи в спектр энергии, измеряемый детекторами гамма-излучения. Поэтому существует настоятельная необходимость экранирования детекторов гамма-излучения от нейтронов и от рентгеновского излучения.
На фиг.4 приведен схематический вид улучшенного детектора гамма-излучения, основными частями которого являются кристалл 22 (NaI) и фотоумножитель 23. Кристалл 22 имеет переднюю торцевую поверхность 30, воспринимающую гамма-излучение, заднюю торцевую поверхность 31, противолежащую передней торцевой поверхности 30, и периферийную поверхность 32. Когда на кристалл 22 падает гамма-излучение, возникает фотоэлектрический эффект, рассеяние Комптона, или эффект электронной пары. Фотоны гамма-излучения передают энергию вторичным электронам. Вторичные электроны тормозятся и вызывают ионизацию внутри кристалла. Электронные дырки, возникающие в результате ионизации, создают флюоресценцию. Фотоны флюоресценции вызывают возникновение фотоэлектронов на катоде фотоумножителя 23. Затем фотоэлектроны умножаются фотоумножителем, и на выходе ступени предусилителя формируется напряжение. Для экранирования кристалла 22 от рентгеновского излучения и от нейтронов, как показано на фиг.4, детектор гамма-излучения содержит также экранирующий материал 28, защищающий от нейтронов, который окружает, по меньшей мере, периферийную поверхность 32 кристалла 22 и оставляет открытой его переднюю торцевую поверхность 30. Предпочтительно экранирующий материал 28 окружает также заднюю торцевую поверхность 31 кристалла 22. Экранирующий материал 28, защищающий от нейтронов, обычно состоит из вещества, богатого водородом (Н). Например, олефин, полиэтилен или вода являются подходящими материалами для этой цели. Учитывая требования прочности и пожарной безопасности, обычно выбирают полиэтилен. Атомы водорода в экранирующем материале 28, имеющем большое сечение рассеивания для нейтронов, могут отражать нейтроны, и при этом они быстро снижают и поглощают энергию нейтронов. Однако после реакции радиационного захвата между экранирующим материалом 28 и нейтронами, будет испускаться характеристическое γ-излучение водорода с энергией 2,223 МэВ. Это характеристическое гамма-излучение будет создавать помехи для измерительных детекторов. Поэтому внутри экранирующего материала 28, защищающего от нейтронов, детектор гамма-излучения содержит также экран 26 защиты от рентгеновского и гамма-излучения, который окружает, по меньшей мере, периферийную поверхность кристалла детектора, оставляя открытой переднюю торцевую поверхность кристалла 22 (NaI). Предпочтительно экран 26 окружает также и заднюю торцевую поверхность 31 кристалла 22. Экран 26 защиты от рентгеновского и гамма-излучения может не только поглощать гамма-излучение, возникающее, когда материал 28 реагирует с нейтронами, но также может поглощать большую часть рентгеновского излучения, исходящего из мишени 2, и рассеянных лучей, так что для детектора гамма-излучения могут быть обеспечены нормальные рабочие условия. В качестве материала экрана 26 может использоваться тяжелый металл, атомный номер которого равен или превышает 74, например, свинец Pb или вольфрам W. Кроме того, перед передней торцевой поверхностью 30 кристалла 22 детектора гамма-излучения устанавливается экран 27, поглощающий нейтроны. В отличие от требований, предъявляемых к экранирующему материалу 28, поглощающему нейтроны, экран 27 должен поглощать нейтроны без испускания гамма-излучения с энергией 2,223 МэВ, когда нейтрон захватывается ядром водорода. Экран 27, поглощающий нейтроны, может быть изготовлен из олефина или полиэтилена и материала бор 10В, имеющего очень высокую способность по поглощению тепловых нейтронов (полиэтилен, содержащий бор), так что водород не будет иметь возможности испускать гамма-фотоны. Чтобы детектор гамма-излучения измерял только то излучение, которое приходит из зоны объекта, находящейся непосредственно перед ним, и не реагировал на излучения, приходящие с других направлений (например, рассеянные рентгеновские лучи или фоновое гамма-излучение, связанное с азотом воздуха), детектор гамма-излучения содержит коллиматор 29, расположенный перед кристаллом 22 и экраном 27, поглощающим нейтроны, для экранирования от фонового рассеянного рентгеновского излучения в окружающем пространстве, и от фонового гамма-излучения, создаваемого нейтронами в окружающем пространстве. В коллиматоре 29 имеется сквозное отверстие, выровненное с передней торцевой поверхностью 30 кристалла 22. Сквозное отверстие определяет направление распространения излучений, и на переднюю торцевую поверхность детектора будут попадать только те рентгеновские и гамма-лучи, которые проходят в направлении распространения через сквозное отверстие, то есть осуществляется коллимирование измеряемого гамма-излучения. Диаметр сквозного отверстия может быть равен диаметру кристалла 22, и его длина обычно находится в диапазоне от примерно 5 см до примерно 30 см и может быть определена в зависимости от необходимого коллимирующего действия. Коллиматор 29 обычно изготавливается из тяжелого металла (например, из свинца Рb или из вольфрама W) с атомным номером, равным или превышающим 74, или из стали.
Кроме того, в работе детектора γ-излучения может использоваться стробирующая схема управления (не показана) для управления временем измерения детектора, так чтобы время измерения не накладывалось на время выхода основного пучка рентгеновского излучения. В этом случае можно еще больше снизить мешающее воздействие рентгеновского излучения на работу детектора гамма-излучения.
По сигналам, поступающим из матрицы 15 детекторов рентгеновского излучения и из матрицы 14 детекторов гамма-излучения, можно получить изображение досматриваемого контейнера 8 в рентгеновских лучах и изображение в пучке нейтронов (нейтронное изображение). В предлагаемой в настоящем изобретении установке схема 17 обработки сигналов принимает и обрабатывает сигналы из матрицы 15 детекторов рентгеновского излучения для получения изображения контейнера 8 в рентгеновских лучах. Схема 18 обработки сигналов гамма-излучения принимает сигналы из матрицы 14 детекторов гамма-излучения для анализа энергетического спектра с целью получения двумерного нейтронное изображения, содержащего двумерное распределение элементов рассматриваемого объекта. Двумерное нейтронное изображение объединяется с двумерным рентгеновским изображением для осуществления распознавания и обнаружения контрабанды в контейнере.
В процессе досмотра объекта матрица детекторов рентгеновского излучения и матрица детекторов гамма-излучения находятся в разных положениях. В результате рентгеновское изображение и нейтронное изображение не могут быть получены одновременно при движении досматриваемого объекта. Кроме того, изображения, получаемые соответствующими матрицами детекторов гамма-излучения, различаются, поскольку матрицы детекторов гамма-излучения расположены в разных местах. При объединении рентгеновского изображения с нейтронным изображением для обеспечения улучшенного обнаружения контрабанды, учитываются следующие соображения.
Что касается разных матриц детекторов гамма-излучения, поскольку расстояния между ними известны, то взаимное расположение в пространстве нейтронных изображений также известно. Учет положений нейтронных изображений, полученных в разные моменты времени, позволяет для матриц детекторов гамма-излучения, находящихся в разных местах, получить общую картину распределения элементов в объекте.
Что касается рентгеновского изображения и нейтронного изображения, то их взаимное расположение в пространстве также известно, и поэтому можно смещать нейтронное изображение и/или рентгеновское изображение и объединять их в одно изображение, так чтобы точки в одном и другом изображениях, соответствующие одним и тем же положениям досматриваемого объекта, полностью совпадали. Таким образом, в объединенном изображении каждая его точка содержит информацию о распределении элементов досматриваемого объекта и информацию о его плотности. В предлагаемой в настоящем изобретении установке могут использоваться средства объединения изображений (не показаны) для вышеуказанного приведения рентгеновского изображения и нейтронного изображения, чтобы получить единое изображение. Таким образом, оператору нужно просматривать только одно изображение для восприятия распределения элементов досматриваемого объекта и его плотности, чтобы осуществить сравнительно точное определение местоположения возможной контрабанды в досматриваемом объекте.
В описании были рассмотрены некоторые наиболее предпочтительные варианты осуществления изобретения, однако должно быть ясно, что изобретение не ограничивается лишь этими вариантами. Специалисты в данной области техники смогут предложить различные изменения и модификации настоящего изобретения. Однако все эти модификации и изменения находятся в пределах сущности и объема настоящего изобретения.
Claims (8)
1. Мишень, преобразующая излучение в фотонейтроны, которая испускает фотонейтроны при падении на нее пучка рентгеновского излучения и которая имеет удлиненный корпус с первым и вторым концами, причем в процессе работы пучок рентгеновского излучения поступает в корпус и распространяется в направлении от первого конца ко второму концу, и корпус мишени имеет такую форму, которая, по существу, соответствует распределению интенсивности пучка рентгеновского излучения, так что рентгеновские лучи, имеющие более высокую интенсивность, могут распространяться на большем расстоянии внутри корпуса мишени.
2. Мишень, преобразующая излучение в фотонейтроны, по п.1, в которой распределение интенсивности пучка рентгеновского излучения симметрично относительно продольной оси этого пучка, кроме того, корпус мишени симметричен относительно продольной оси мишени, причем симметричная форма мишени, по существу, соответствует симметричному распределению интенсивности пучка рентгеновского излучения, и в процессе работы ось симметрии мишени совпадает с осью симметрии распределения интенсивности пучка рентгеновского излучения.
3. Мишень, преобразующая излучение в фотонейтроны, по п.1 или 2, в которой по меньшей мере часть корпуса суживается в направлении второго конца удлиненного корпуса.
4. Мишень, преобразующая излучение в фотонейтроны, по п.3, в которой суживающаяся часть заканчивается на втором конце.
5. Мишень, преобразующая излучение в фотонейтроны, по п.4, в которой суживающаяся часть имеет форму конуса или усеченного конуса.
6. Мишень, преобразующая излучение в фотонейтроны, по п.3, в которой корпус содержит также цилиндрическую часть, причем суживающаяся часть примыкает ко второму концу, а цилиндрическая часть примыкает к первому концу.
7. Мишень, преобразующая излучение в фотонейтроны, по п.3, содержащая также проход, сформированный в корпусе и проходящий сквозь него от первого конца ко второму концу.
8. Мишень, преобразующая излучение в фотонейтроны, по п.7, в которой проход проходит вдоль оси симметрии корпуса мишени.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710117692 | 2007-06-21 | ||
CN200710117692.8 | 2007-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2406171C1 true RU2406171C1 (ru) | 2010-12-10 |
Family
ID=40185179
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009147319/07A RU2408942C1 (ru) | 2007-06-21 | 2008-06-19 | Мишень, преобразующая излучение в фотонейтроны, и источник рентгеновского излучения и фотонейтронов |
RU2009147317/07A RU2406171C1 (ru) | 2007-06-21 | 2008-06-19 | Мишень, преобразующая излучение в фотонейтроны |
RU2009147318/28A RU2415404C1 (ru) | 2007-06-21 | 2008-06-19 | Способ и установка для обнаружения контрабанды с использованием рентгеновского излучения и фотонейтронов |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009147319/07A RU2408942C1 (ru) | 2007-06-21 | 2008-06-19 | Мишень, преобразующая излучение в фотонейтроны, и источник рентгеновского излучения и фотонейтронов |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009147318/28A RU2415404C1 (ru) | 2007-06-21 | 2008-06-19 | Способ и установка для обнаружения контрабанды с использованием рентгеновского излучения и фотонейтронов |
Country Status (6)
Country | Link |
---|---|
US (3) | US8913707B2 (ru) |
CN (6) | CN101340771B (ru) |
AU (2) | AU2008267660B2 (ru) |
DE (2) | DE112008001701B4 (ru) |
RU (3) | RU2408942C1 (ru) |
WO (4) | WO2009000155A1 (ru) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101340771B (zh) * | 2007-06-21 | 2011-03-30 | 清华大学 | 一种光中子转换靶 |
WO2009137985A1 (zh) | 2008-05-12 | 2009-11-19 | 清华大学 | 一种检测特殊核材料的方法和系统 |
US20110170661A1 (en) * | 2008-08-26 | 2011-07-14 | General Electric Company | Inspection system and method |
CN101447241B (zh) * | 2008-12-25 | 2011-04-27 | 西北核技术研究所 | γ射线强源照射器 |
US8724872B1 (en) * | 2009-02-25 | 2014-05-13 | L-3 Communications Security And Detection Systems, Inc. | Single radiation data from multiple radiation sources |
CN102109607B (zh) * | 2009-12-29 | 2013-03-27 | 同方威视技术股份有限公司 | 快中子探测方法、物质识别方法及中子探测器 |
CN102109473B (zh) * | 2009-12-29 | 2012-11-28 | 同方威视技术股份有限公司 | 利用光中子透射对物体成像的方法及探测器阵列 |
US20120155592A1 (en) * | 2010-02-25 | 2012-06-21 | Tsahi Gozani | Systems and methods for detecting nuclear material |
CN102012527A (zh) * | 2010-11-25 | 2011-04-13 | 上海英迈吉东影图像设备有限公司 | 移动式x射线检查车及其检查方法 |
US9239303B2 (en) | 2011-09-01 | 2016-01-19 | L-3 Communications Security And Detection Systems, Inc. | Material discrimination system |
CN103091720A (zh) * | 2011-10-28 | 2013-05-08 | 中国原子能科学研究院 | 一种车辆扫描检查装置 |
CN104040374B (zh) * | 2012-01-13 | 2016-11-16 | 国立研究开发法人量子科学技术研究开发机构 | 放射性物质检测装置、放射线源位置可视化系统和放射性物质检测方法 |
JP5630666B2 (ja) * | 2012-03-30 | 2014-11-26 | 住友重機械工業株式会社 | 中性子捕捉療法用コリメータ及び中性子捕捉療法装置 |
US9857457B2 (en) | 2013-03-14 | 2018-01-02 | University Of Windsor | Ultrasonic sensor microarray and its method of manufacture |
CN104754852B (zh) * | 2013-12-27 | 2019-11-29 | 清华大学 | 核素识别方法、核素识别系统及光中子发射器 |
CN104754848B (zh) * | 2013-12-30 | 2017-12-08 | 同方威视技术股份有限公司 | X射线发生装置以及具有该装置的x射线透视成像系统 |
CN103995015A (zh) * | 2014-04-22 | 2014-08-20 | 中国工程物理研究院核物理与化学研究所 | 一种爆炸物检测装置 |
US9746583B2 (en) | 2014-08-27 | 2017-08-29 | General Electric Company | Gas well integrity inspection system |
CN104516010B (zh) * | 2014-12-31 | 2018-12-11 | 清华大学 | X射线束流强度监控装置和x射线检查系统 |
CN106353828B (zh) * | 2015-07-22 | 2018-09-21 | 清华大学 | 在安检系统中估算被检查物体重量的方法和装置 |
US10143076B2 (en) * | 2016-04-12 | 2018-11-27 | Varian Medical Systems, Inc. | Shielding structures for linear accelerators |
CN106226339A (zh) * | 2016-09-20 | 2016-12-14 | 清华大学 | 中子产生设备,中子成像设备以及成像方法 |
CN106290423B (zh) * | 2016-10-18 | 2024-04-05 | 同方威视技术股份有限公司 | 用于扫描成像的方法、装置以及系统 |
CN108934120B (zh) * | 2017-05-26 | 2024-04-12 | 南京中硼联康医疗科技有限公司 | 用于中子线产生装置的靶材及中子捕获治疗系统 |
JP6829837B2 (ja) * | 2017-03-29 | 2021-02-17 | 住友重機械工業株式会社 | 中性子捕捉療法システム及び中性子捕捉療法用ガンマ線検出器 |
WO2018232435A1 (en) * | 2017-06-23 | 2018-12-27 | Chrysos Corporation Limited | ARMORED X-RAY RADIATION APPARATUS |
CN107607568A (zh) * | 2017-10-20 | 2018-01-19 | 清华大学 | 光中子源和中子检查系统 |
CN107748170B (zh) * | 2017-11-01 | 2023-10-13 | 中国工程物理研究院激光聚变研究中心 | 中子和x射线双谱段成像相机 |
US10705243B2 (en) * | 2018-01-29 | 2020-07-07 | Korea Atomic Energy Research Institute | Nondestructive inspection system |
IT201800002327A1 (it) * | 2018-02-02 | 2019-08-02 | Theranosticentre S R L | Apparato per radioterapia intraoperatoria. |
CN110779939B (zh) * | 2018-07-11 | 2020-12-29 | 同方威视技术股份有限公司 | 双模探测方法、控制器和系统 |
CN109187598A (zh) * | 2018-10-09 | 2019-01-11 | 青海奥越电子科技有限公司 | 基于数字图像处理的违禁物品检测系统及方法 |
CN109496051A (zh) * | 2018-12-21 | 2019-03-19 | 北京中百源国际科技创新研究有限公司 | 一种用于增加低中子数量的慢化装置 |
KR102187572B1 (ko) * | 2019-01-24 | 2020-12-07 | 한국원자력연구원 | 방사선을 이용하여 위험물의 검출 및 위치 탐지가 가능한 보안 검색 장치 |
JP7223993B2 (ja) * | 2019-02-27 | 2023-02-17 | 株式会社トプコン | 非破壊検査システム及び非破壊検査方法 |
CN109884096A (zh) * | 2019-04-11 | 2019-06-14 | 北京中百源国际科技创新研究有限公司 | 一种高安全性的中子检测装置 |
CN109884095B (zh) * | 2019-04-11 | 2024-07-30 | 广东太微加速器有限公司 | 一种可精准检测的中子检测装置 |
CN110047860B (zh) * | 2019-04-26 | 2021-06-25 | 锐芯微电子股份有限公司 | 射线影像传感器 |
CN110837129B (zh) * | 2019-11-11 | 2021-03-09 | 中国原子能科学研究院 | 可疑物检测方法 |
CN110927809B (zh) * | 2019-12-27 | 2024-05-31 | 中国原子能科学研究院 | 特殊核材料检测装置 |
KR102284602B1 (ko) * | 2020-02-03 | 2021-08-03 | 한국원자력연구원 | 중성자선과 엑스선을 이용하는 보안 검색 장치 |
CN111403073B (zh) * | 2020-03-19 | 2023-01-03 | 哈尔滨工程大学 | 一种基于电子加速器的多用途终端 |
CN111474186A (zh) * | 2020-03-31 | 2020-07-31 | 安徽理工大学 | 一种x光成像和cnn的快递包裹违禁品检测方法 |
CN112837838A (zh) * | 2020-11-24 | 2021-05-25 | 中国工程物理研究院应用电子学研究所 | 一种医用放射性同位素生产装置 |
CN113075241A (zh) * | 2021-04-01 | 2021-07-06 | 中国原子能科学研究院 | 中子成像和x射线成像系统、方法以及装置 |
CN113238270A (zh) * | 2021-06-25 | 2021-08-10 | 清华大学 | 铀矿石的检测方法、装置、系统、设备及介质 |
CN114732426B (zh) * | 2022-04-06 | 2023-04-07 | 四川大学 | 一种三维超快x光ct成像系统及成像方法 |
CN118225586A (zh) * | 2024-03-22 | 2024-06-21 | 哈尔滨工业大学 | 一种用于中子与x射线联合成像的原位力学性能测试装置 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7707357A (en) * | 1977-07-04 | 1979-01-08 | Philips Nv | Anode for neutron generator ion source - has holes aligned to outlets in cathode converging beams on target |
DE2926841A1 (de) * | 1979-07-03 | 1981-01-22 | Siemens Ag | Elektronenbeschleuniger |
US4980901A (en) * | 1988-09-09 | 1990-12-25 | The Titan Corporation | Apparatus for and methods of detecting common explosive materials |
US5078952A (en) * | 1989-06-16 | 1992-01-07 | Science Applications International Corporation | Multi-sensor explosive detection system |
US5124554A (en) * | 1990-02-20 | 1992-06-23 | Rolls-Royce And Associates Limited | Explosives detector |
CA2131784A1 (en) * | 1993-09-09 | 1995-03-10 | Ulf Anders Staffan Tapper | Particle analysis and sorting |
US5784423A (en) * | 1995-09-08 | 1998-07-21 | Massachusetts Institute Of Technology | Method of producing molybdenum-99 |
US5838759A (en) | 1996-07-03 | 1998-11-17 | Advanced Research And Applications Corporation | Single beam photoneutron probe and X-ray imaging system for contraband detection and identification |
US5896429A (en) * | 1997-09-15 | 1999-04-20 | Massachusetts Institute Of Technology | Method for measurement of blast furnace liner thickness |
US6011266A (en) * | 1998-04-15 | 2000-01-04 | Lockheed Martin Energy Research Corporation | Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation |
US6373066B1 (en) * | 1999-08-20 | 2002-04-16 | Saint-Gobain Industrial Ceramics, Inc. | Thermal neutron detector using a scintillator with background gamma ray shielding |
US8666015B2 (en) | 2001-05-08 | 2014-03-04 | The Curators Of The University Of Missouri | Method and apparatus for generating thermal neutrons using an electron accelerator |
US7781172B2 (en) * | 2003-11-21 | 2010-08-24 | Kimberly-Clark Worldwide, Inc. | Method for extending the dynamic detection range of assay devices |
CN2591645Y (zh) * | 2002-11-27 | 2003-12-10 | 中国原子能科学研究院 | 一种γ放射性安全检测装置 |
US7486769B2 (en) * | 2004-06-03 | 2009-02-03 | Brondo Jr Joseph H | Advanced multi-resonant, multi-mode gamma beam detection and imaging system for explosives, special nuclear material (SNM), high-z materials, and other contraband |
CN101128731A (zh) * | 2004-10-05 | 2008-02-20 | 澳联邦科学与工业研究组织 | 射线照相设备 |
US7405409B2 (en) * | 2005-02-18 | 2008-07-29 | The Regents Of The University Of Michigan | Neutron irradiative methods and systems |
US7335891B2 (en) * | 2005-06-27 | 2008-02-26 | General Electric Company | Gamma and neutron radiation detector |
CN100582758C (zh) | 2005-11-03 | 2010-01-20 | 清华大学 | 用快中子和连续能谱x射线进行材料识别的方法及其装置 |
CN2890900Y (zh) * | 2005-11-03 | 2007-04-18 | 清华大学 | 一种用快中子和连续能谱x射线进行材料识别的装置 |
US7852979B2 (en) * | 2007-04-05 | 2010-12-14 | General Electric Company | Dual-focus X-ray tube for resolution enhancement and energy sensitive CT |
CN101340771B (zh) * | 2007-06-21 | 2011-03-30 | 清华大学 | 一种光中子转换靶 |
US7622726B2 (en) * | 2007-09-12 | 2009-11-24 | Hamilton Sundstrand Corporation | Dual neutron-gamma ray source |
CN201286192Y (zh) * | 2008-06-19 | 2009-08-05 | 清华大学 | 一种光中子转换靶和光中子-x射线源 |
CN201286191Y (zh) * | 2008-06-19 | 2009-08-05 | 清华大学 | 一种光中子转换靶 |
-
2008
- 2008-06-19 CN CN2008101251976A patent/CN101340771B/zh active Active
- 2008-06-19 DE DE112008001701.8T patent/DE112008001701B4/de active Active
- 2008-06-19 US US12/665,306 patent/US8913707B2/en active Active
- 2008-06-19 RU RU2009147319/07A patent/RU2408942C1/ru active
- 2008-06-19 DE DE112008001662T patent/DE112008001662T5/de active Pending
- 2008-06-19 WO PCT/CN2008/001198 patent/WO2009000155A1/zh active Application Filing
- 2008-06-19 US US12/665,296 patent/US8396189B2/en active Active
- 2008-06-19 RU RU2009147317/07A patent/RU2406171C1/ru active
- 2008-06-19 CN CNU2008201257272U patent/CN201247208Y/zh not_active Expired - Lifetime
- 2008-06-19 RU RU2009147318/28A patent/RU2415404C1/ru active
- 2008-06-19 CN CN2008101251891A patent/CN101329283B/zh active Active
- 2008-06-19 CN CN2008101251919A patent/CN101329284B/zh active Active
- 2008-06-19 AU AU2008267660A patent/AU2008267660B2/en active Active
- 2008-06-19 CN CNU2008201257291U patent/CN201247209Y/zh not_active Expired - Fee Related
- 2008-06-19 WO PCT/CN2008/001199 patent/WO2009000156A1/zh active Application Filing
- 2008-06-19 WO PCT/CN2008/001197 patent/WO2009000154A1/zh active Application Filing
- 2008-06-19 US US12/665,301 patent/US8374310B2/en active Active
- 2008-06-19 AU AU2008267661A patent/AU2008267661B2/en active Active
- 2008-06-19 WO PCT/CN2008/001200 patent/WO2009000157A1/zh active Application Filing
- 2008-06-19 CN CN2008101251904A patent/CN101330795B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN101340771A (zh) | 2009-01-07 |
US8396189B2 (en) | 2013-03-12 |
US8374310B2 (en) | 2013-02-12 |
AU2008267660A1 (en) | 2008-12-31 |
WO2009000155A1 (en) | 2008-12-31 |
CN201247209Y (zh) | 2009-05-27 |
RU2415404C1 (ru) | 2011-03-27 |
CN101340771B (zh) | 2011-03-30 |
WO2009000156A1 (en) | 2008-12-31 |
AU2008267661A1 (en) | 2008-12-31 |
AU2008267660B2 (en) | 2011-06-16 |
DE112008001662T5 (de) | 2010-05-20 |
US20100266103A1 (en) | 2010-10-21 |
AU2008267661B2 (en) | 2011-04-07 |
WO2009000154A1 (en) | 2008-12-31 |
US20100246763A1 (en) | 2010-09-30 |
CN101329284B (zh) | 2011-11-23 |
CN101330795A (zh) | 2008-12-24 |
US20100243874A1 (en) | 2010-09-30 |
CN101329284A (zh) | 2008-12-24 |
CN101329283B (zh) | 2011-06-08 |
CN201247208Y (zh) | 2009-05-27 |
US8913707B2 (en) | 2014-12-16 |
RU2408942C1 (ru) | 2011-01-10 |
DE112008001701B4 (de) | 2018-10-11 |
CN101330795B (zh) | 2011-03-30 |
WO2009000157A1 (en) | 2008-12-31 |
DE112008001701T5 (de) | 2010-05-12 |
CN101329283A (zh) | 2008-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2406171C1 (ru) | Мишень, преобразующая излучение в фотонейтроны | |
US20200025955A1 (en) | Integrated Primary and Special Nuclear Material Alarm Resolution | |
US9207195B2 (en) | High-energy X-ray-spectroscopy-based inspection system and methods to determine the atomic number of materials | |
US8149988B2 (en) | Use of nearly monochromatic and tunable photon sources with nuclear resonance fluorescence in non-intrusive inspection of containers for material detection and imaging | |
EP2539902B1 (en) | Systems and methods for detecting nuclear material | |
KR20150022899A (ko) | 물체식별을 위한 비행시간 중성자심문방법과 장치 | |
JP2007513336A (ja) | 核共鳴蛍光画像化を用いた物質の適応走査 | |
Jones et al. | Photofission-based, nuclear material detection: technology demonstration | |
WO2015020710A2 (en) | Integrated primary and special nuclear material alarm resolution | |
CN110927809A (zh) | 特殊核材料检测装置 |