RU2402191C2 - Способ и устройство управления уборочной сельхозмашиной - Google Patents

Способ и устройство управления уборочной сельхозмашиной Download PDF

Info

Publication number
RU2402191C2
RU2402191C2 RU2006119152/21A RU2006119152A RU2402191C2 RU 2402191 C2 RU2402191 C2 RU 2402191C2 RU 2006119152/21 A RU2006119152/21 A RU 2006119152/21A RU 2006119152 A RU2006119152 A RU 2006119152A RU 2402191 C2 RU2402191 C2 RU 2402191C2
Authority
RU
Russia
Prior art keywords
control
mode
processes
coordinator
speed
Prior art date
Application number
RU2006119152/21A
Other languages
English (en)
Other versions
RU2006119152A (ru
Inventor
Вилли БЕНКЕ (DE)
Вилли БЕНКЕ
Кристоф БУССМАНН (DE)
Кристоф БУССМАНН
Йоахим БАУМГАРТЕН (DE)
Йоахим БАУМГАРТЕН
Андреас ВИЛЬКЕН (DE)
Андреас ВИЛЬКЕН
Вернер ФИТЦНЕР (DE)
Вернер Фитцнер
Original Assignee
КЛААС Зельбстфаренде Эрнтемашинен ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36940352&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2402191(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by КЛААС Зельбстфаренде Эрнтемашинен ГмбХ filed Critical КЛААС Зельбстфаренде Эрнтемашинен ГмбХ
Publication of RU2006119152A publication Critical patent/RU2006119152A/ru
Application granted granted Critical
Publication of RU2402191C2 publication Critical patent/RU2402191C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Combines (AREA)
  • Harvester Elements (AREA)

Abstract

Изобретение относится к сельскому хозяйству и может быть использовано при регулировании различных рабочих аппаратов уборочной сельскохозяйственной машины. При реализации способа управления уборочной машиной на основе выбранных получаемых управляющих команд в ходе нескольких отдельных процессов регулирования настраивают и/или контролируют различные аппараты уборочной машины. Посредством координатора процессов определяют режим первого процесса регулирования с учетом действительного режима второго процесса регулирования. Изобретение относится также к устройству управления уборочной машиной, реализующему упомянутый способ управления, уборочной машине, оснащенной таким устройством управления, и к компьютерному программному продукту, который загружается в запоминающее устройство программируемого устройства управления уборочной машины. Изобретение обеспечивает эффективное управление уборочной сельскохозяйственной машиной при регулировании работы ее различных аппаратов. 4 н. и 12 з.п. ф-лы, 2 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу управления сельхозмашиной, в особенности самоходной сельхозмашиной, такой как зерноуборочные комбайны, полевые измельчители и подобные машины, при котором на основе выбранных получаемых управляющих команд в ходе нескольких отдельных процессов регулирования настраивают и/или контролируют различные аппараты уборочной машины. Изобретение относится также к соответствующему устройству управления для осуществления данного способа управления и к уборочной сельхозмашине, оснащенной этим устройством управления.
Уровень техники
Уборочные сельхозмашины предназначены для обработки различных убираемых культур с помощью одного или нескольких регулируемых рабочих аппаратов. При этом в современных самоходных сельхозмашинах эти отдельные рабочие аппараты, как правило, оснащены дистанционно управляемыми из кабины водителя устройствами регулировки, с помощью которых могут регулироваться различные параметры настройки или характеристики рабочих аппаратов. К типовым рабочим аппаратам зерноуборочного комбайна относятся, например, молотильный аппарат, обычно содержащий подбарабанье и один или несколько молотильных барабанов, а также очистное устройство, расположенное за молотильным аппаратом и обычно содержащее вентилятор и несколько решет. Кроме того, каждая самоходная уборочная машина оснащена соответствующим приводным агрегатом для привода перемещения машины. Различные убираемые культуры и условия уборки, такие как влажность, высота растительности, свойства грунта и другие, вызывают необходимость настройки отдельных рабочих аппаратов или их параметров по возможности наиболее точно в соответствии с индивидуальными выполняемыми процессами для получения оптимального общего рабочего результата.
Изготовителями сельхозмашин предлагаются для операторов множество вспомогательных средств, таких как, например, проведение курсов обучения, предоставление таблиц, по которым оператор может подобрать величины настройки для различных ситуаций уборки, или электронных вспомогательных средств, таких как электронные бортовые информационные системы, из которых можно выбирать оптимальные комбинации настройки для самых различных ситуаций уборки. Однако несмотря на это оператору, как и прежде, довольно трудно отрегулировать машину таким образом, чтобы добиться оптимальной работы в соответствии с желаемыми предварительно заданными параметрами. Это относится, прежде всего, к неопытным и/или необученным операторам, особенно в начале сезона уборки. В результате во многих случаях уборочная машина или ее рабочие аппараты не настраиваются оптимальным образом на конкретный процесс уборки, что приводит к неполному использованию производительности машины, получению низких результатов работы или даже к большим потерям убираемой культуры.
Для решения этой проблемы все большее распространение получает автоматизация процессов регулировки, в особенности процессов оптимизации и/или контроля работы уборочной машины и/или ее рабочих аппаратов. Так, например, в патентном документе ФРГ №10147733 А1 раскрыт автоматический способ оптимизации молотильного аппарата и очистного устройства уборочной сельхозмашины. При этом в каждом процессе настройки подвергается изменению только один параметр регулировки уборочной машины при прежней настройке всех остальных параметров и неизменных условиях уборки. После этого на основе сравнения рабочих результатов выбирается именно та величина настройки данного параметра, которая приводит к наилучшему результату. При этом величины рабочих результатов могут быть записаны, и на их основе может быть выведена зависимость между измененным параметром настройки и полученным рабочим результатом. На основе этой зависимости далее может выбираться оптимальный параметр настройки. Благодаря данному способу также и неопытные операторы относительно быстро узнают, когда и насколько изменяемый параметр регулировки оказывает влияние на рабочий результат, и могут производить соответствующую регулировку. В принципе, регулировка может осуществляться также автоматически.
В патентном документе ФРГ №10253081 А1 описано устройство управления, с помощью которого может производиться автоматическая регулировка и контроль скорости движения уборочной машины.
При автоматизации таких процессов может возникать проблема коллизии между выбранными процессами регулировки. Так, например, для оптимизации регулировки молотильного аппарата или очистного устройства необходимо такое регулирование скорости, чтобы расход убранной массы через машину был постоянным. Однако при этом не предусмотрена активизация регулирования скорости движения, которая может быть настроена на постоянную скорость или на регулирование по потерям. Кроме того, коллизия возникает при одновременной оптимизации молотильного аппарата и очистного устройства, так как при настройке молотильного аппарата изменяются исходные параметры для очистного устройства, и с другой стороны, оптимизация очистного устройства требует, по меньшей мере, кратковременных изменений настройки молотильного аппарата.
Чем более полно автоматизированы отдельные частичные процессы в уборочной машине, тем труднее оператору принимать решение, какие процессы могут осуществляться одновременно, и если могут, то в каких режимах.
В патентном документе ЕР №1277388 А1 описана система управления с обучающейся системой нечеткой логики, которая обладает способностью заучивать рабочие условия и запоминать их. С помощью такой системы предполагается устранение коллизий между различными подсистемами в уборочной машине, то есть ситуаций, когда различные автоматизированные частичные процессы настройки различных рабочих аппаратов уборочной машины проводятся без учета взаимных влияний и приводят к ошибочной настройке. Однако описанная система управления чрезвычайно сложна и требует значительных вычислительных объемов и скоростей, пока что не обеспечиваемых в уборочных машинах.
Раскрытие изобретения
Задача, на решение которой направлено настоящее изобретение, заключается в создании способа и устройства управления уборочной сельхозмашиной, которые простым и экономичным образом обеспечивают устранение коллизий различных процессов регулирования в уборочной машине.
В соответствии с изобретением решение поставленной задачи достигается за счет способа по пункту 1 формулы изобретения, устройства по пункту 12 и уборочной машины по пункту 15 формулы изобретения.
В соответствии с изобретением в способе, как уже было описано выше, на основе выбранных получаемых управляющих команд, которые могут, например, вводиться оператором, в ходе нескольких отдельных процессов регулирования настраиваются и/или контролируются различные аппараты уборочной машины. При этом посредством устройства координации процессов (называемым далее для краткости координатором процессов) определяют режим первого процесса регулирования с учетом действительного режима второго процесса регулирования.
В контексте данного изобретения под понятием «режим» понимается, активизирован ли процесс вообще, и если он активизирован, то каким образом протекает. Таким образом, понятие «изменение режима» в контексте данного изобретения имеет место либо тогда, когда, например, изменяется вид параметра, по которому производится регулирование, а вместе с тем, изменяется в функциональном отношении и весь процесс, либо когда процесс активизируется или выключается. В противоположность этому изменения режима не происходит, если просто изменяется величина параметра для того, чтобы, например, учесть параметры настройки другого аппарата или процесса. Примером является процесс регулирования скорости движения, в котором, например, в одном режиме регулирование может быть направлено на получение заданной постоянной скорости движения, то есть регулирование производится по первому параметру. Во втором режиме регулирование может быть направлено на получение постоянного расхода потока убранной массы через машину, то есть регулирование производится по второму параметру. В этом случае изменение режима заключается, например, в переключении с первого режима на второй, то есть будет учитываться уже не первый параметр (заданная постоянная скорость), а второй параметр (заданный постоянный расход). Переключением режима было бы также полное прекращение регулирования скорости движения. Простое изменение заданной скорости или заданного расхода не считается изменением режима, хотя в рамках способа по изобретению не исключается, что в ходе процесса с учетом других процессов регулирования дополнительно производится адаптация величин параметров.
С помощью способа управления по изобретению можно очень простым образом избежать коллизии между различными процессами регулирования.
Устройство управления по изобретению содержит кроме интерфейса для получения управляющих команд и при необходимости дополнительных вводимых параметров регулирования интерфейсы управляющих сигналов, например, в виде нескольких выходов управляющих сигналов для настройки различных аппаратов уборочной машины, а также несколько устройств управления процессом, выполненных таким образом, что они на основе получаемых управляющих команд в ходе отдельных выбранных процессов регулирования подают сигналы управления через интерфейсы управляющих сигналов на различные аппараты уборочной машины для их настройки и/или контроля. Кроме того, это устройство управления содержит связанный с устройствами управления процессом координатор процессов, выполненный таким образом, что он определяет режим первого процесса регулирования с учетом действительного режима второго процесса регулирования и передает на устройства управления процессом соответствующие сигналы задания режима.
Такое устройство управления в одном из вариантов осуществления может быть выполнено, например, в виде программируемого микропроцессора, причем в особенности отдельные устройства управления процессом и координатор процессов могут быть осуществлены в этом процессоре в виде программного обеспечения. При этом устройство управления в соответствии с изобретением можно также выполнить на основе уже имеющегося в уборочной машине программируемого устройства управления путем соответствующего оснащения его устройствами в виде модулей программного обеспечения при условии, что это устройство управления имеет соответствующий интерфейс для получения управляющих команд и интерфейсы управляющих сигналов для настройки различных аппаратов уборочной машины. При этом необходимые компоненты программного обеспечения или все необходимые программные кодирующие средства могут быть загружены в качестве компьютерного программного продукта в рамках обновления, например, из памяти непосредственно в память программируемого устройства управления.
Координатор процессов предпочтительно имеет главенство над отдельными устройствами управления процессов в качестве центрального модуля. Однако, в принципе, возможно также выполнение координатора процессов в качестве компонента устройства управления процессом. В этом случае устройство управления процессом, в котором выполнен координатор процессов, воздействует на другие устройства управления процессом как мастер-устройство управления процессом. В данном решении координатор процессов определяет режимы как своего, так и «посторонних» устройств управления процессом.
Предпочтительные примеры осуществления и дополнительные решения по развитию изобретения изложены в зависимых пунктах, при этом устройство управления может быть модифицировано для осуществления способа в соответствии с зависимыми пунктами и наоборот.
Различные частично конкурирующие процессы регулирования предпочтительно являются процессами оптимизации очистки, оптимизации молотильного аппарата и/или регулирования скорости движения машины.
В одном таком процессе регулирования скорости движения машины скорость может регулироваться в так называемом режиме «ТЕМРОМАТ», т.е. в зависимости от заданной величины постоянной скорости. В другом режиме регулирования, а именно в режиме регулирования по расходу, скорость может регулироваться для получения постоянной величины расхода убранной массы. В третьем режиме регулирования, а именно в режиме регулирования по потерям, скорость может регулироваться для получения постоянной величины потерь убранной массы.
Предпочтительно, выбранная управляющая команда для установки выбранного режима первого процесса регулирования, например процесса регулирования скорости движения, вначале передается на координатор процессов. Затем этот координатор процессов определяет режим первого процесса регулирования на основе управляющей команды и с учетом режима второго процесса регулирования, например процесса оптимизации очистки или молотильного аппарата, например, на основе соответствующих данных статуса (состояния). Для этого интерфейс для получения управляющих команд предпочтительно связан с координатором процессов таким образом, что получаемые интерфейсом управляющие команды вначале передаются на координатор процессов.
Для получения требуемых данных о действительном режиме первого процесса регулирования координатор процессов предпочтительно снабжен соответствующим входом данных статуса процесса.
Предпочтительно при изменении режима второго процесса регулирования первый процесс регулирования может автоматически переключаться координатором процессов на другой режим.
В предпочтительном варианте, например, при активизации процесса оптимизации очистки или молотильного аппарата процесс регулирования скорости движения переключают на режим регулирования расхода убранной массы в том случае, если процесс регулирования скорости движения до этого был активизирован в другом режиме, например в режиме постоянной скорости или регулирования по потерям.
В особенно предпочтительном примере осуществления величина параметра, установленная в ходе первого или второго процесса регулирования, передается на координатор процессов, который предоставляет эти величины параметров по потребности для использования во втором процессе регулирования или в первом процессе регулирования. Это означает, что величина параметра из первого процесса регулирования используется во втором процессе регулирования и наоборот. За счет этого устраняется повторяемость, когда знания, полученные в одном процессе регулирования, должны вновь добываться с затратами времени в ходе второго процесса регулирования. Так, например, в ходе процесса регулирования скорости движения, когда он установлен на режим выдерживания постоянного расхода, определяются такие величины, как средние высоты слоя убранной массы. Эти величины параметров могут выгодно использоваться, например, в ходе процесса оптимизации очистки. Предпочтительно координатор процессов может принимать, хранить эти величины параметров и решать, когда и как долго такая величина параметра сохраняет свою действенность. Как только активизируется процесс регулирования, который мог бы использовать данные величины параметров, они предоставляются в распоряжение соответствующему процессу регулирования. Таким образом, с помощью координатора процессов можно управлять отдельными процессами регулирования таким образом, что они оптимальным образом согласуются друг с другом.
Перечень чертежей
Далее со ссылками на прилагаемые чертежи будет подробно описан пример осуществления изобретения. На чертежах:
фиг.1 схематично изображает зерноуборочный комбайн в разрезе,
фиг.2 изображает блок-схему устройства управления для данного примера осуществления.
Осуществление изобретения
В примере осуществления по фиг.1 изобретение показано применительно к зерноуборочному комбайну 1, оснащенному молотильным аппаратом 4 так называемого тангенциального типа или поперечного потока и расположенным за ним сепарирующим устройством в виде соломотряса 9, в данном случае клавишного соломотряса с несколькими ступенчатыми клавишами. Под соломотрясом 9 находится очистное устройство 10, состоящее из нескольких решет 12, 13, расположенных друг над другом, и вентилятора 11.
Далее будет описан рабочий процесс зерноуборочного комбайна 1.
Вначале убираемая масса с помощью мотовила жатвенного стола укладывается на жатвенное устройство 2 и срезается режущими ножами. Затем убранная масса транспортируется приемным шнеком и наклонным питателем в приемном канале 3 к входу молотильного аппарата 4. В приемном канале 3 находится устройство SD измерения расхода (датчик расхода), которое измеряет высоту слоя, а следовательно, и расход потока убранной массы.
На входе молотильного аппарата 4 расположены подающий барабан или барабан 5 предварительного разгона и далее молотильный барабан 6, ось которого ориентирована поперечно направлению потока убранной массы или продольной оси зерноуборочного комбайна. Под молотильным барабаном 6 расположено фасонное подбарабанье 8 соответствующей формы. Поступающая из приемного канала 3 убранная масса захватывается барабаном 5 предварительного разгона и затем протягивается дальше через молотильный зазор между молотильным барабаном 6 и подбарабаньем 8. При этом убранная масса обмолачивается молотильными билами молотильного барабана 6, то есть она подвергается ударам и измельчению, так что смесь зерна с половой падает вниз через подбарабанье 8 и затем по сборному и направляющему поддону 14 подается в очистное устройство 10 для отделения зерна от примесей, то есть частиц колосьев и половы.
От молотильного аппарата 4 обмолоченный поток убранной массы направляется отклоняющим барабаном 7 на клавишный соломотряс 9, на котором производится сепарация зерна, еще оставшегося в потоке убранной массы, а также соломенной трухи и половы. Затем зерно, соломенная труха и полова поступают по следующему сборному и транспортирующему поддону 15 также в очистное устройство 10, в котором зерно отделяется от соломенной трухи и половы.
Очистка зерна от не содержащих зерна фракций в очистном устройстве 10 осуществляется следующим образом. Отверстия (отверстия, ячейки, щели) в решетах 12, 13 продуваются ветровым воздушным потоком, создаваемым вентилятором 11. Этот ветровой поток разрыхляет убранную массу, направляемую по решетам 12, 13, и обеспечивает отделение более легких частиц половы и соломенной трухи, в то время как более тяжелое зерно падает через отверстия решет. При этом верхнее решето 12 и нижнее решето 13 расположены частично друг над другом, так что убранная масса на различных ступенях подвергается очистке различной степени тонкости.
Зерно, прошедшее через оба решета 12, 13 очистного устройства 10, падает на первый сборный и направляющий поддон 16 и направляется к зерновому транспортирующему шнеку. Далее оно подается элеватором 18 в зерновой бункер 20 зерноуборочного комбайна 1 и может оттуда по мере потребности перегружаться на транспортное средство с помощью разгрузочного конвейера 23 бункера. Масса выхода продукта может измеряться с помощью устройства SE измерения массы выходного продукта (датчика массы выходного продукта), которое находится в элеваторе 18 или на его выходе и измеряет общую массу, например, на основе измерения веса транспортируемой массы или посредством оптических и/или емкостных и других измерений.
Частицы, которые падают через отверстия только на заднем конце верхнего решета 12, являются, как правило, более тяжелыми частицами, то есть частицами, которые содержат зерно, но не полностью отделились от других фракций убранной массы. Эти частицы падают за нижним решетом 13 на второй сборный и направляющий поддон 17, расположенный ниже и несколько позади первого сборного и направляющего поддона 16, и направляются возвратным элеватором 19 обратно к молотильному аппарату 4 в качестве так называемой массы схода с решета или массы возврата на обработку.
Фракции, не прошедшие через верхнее решето 12, выбрасываются как потери. Равным образом солома с определенным процентом зерновых потерь следует по клавишному соломотрясу 9 к заднему концу 24 комбайна 1 и выбрасывается наружу.
Для измерения потерь очистки непосредственно под задним концом верхнего решета 12 расположено устройство SV измерения потерь (датчик потерь), которое обычно выполнено в виде датчика ударов. Сигнал, воспринимаемый этим датчиком SV потерь, служит мерой того, какое количество фракций падает вниз непосредственно за верхним решетом 12. Из этого можно относительно достоверно оценить общие потери.
Объем массы возврата может быть измерен с помощью устройства SU объема возврата (датчика объема возврата), которое находится в возвратном элеваторе 19 и измеряет транспортируемую массу возврата, также, например, на основе измерения веса транспортируемой массы или посредством оптических и/или емкостных и других измерений.
Содержание зерна в объеме возврата, то есть возврат зерна, измеряется устройством SK измерения возврата зерна (датчиком возврата зерна), которое расположено на втором сборном и направляющем поддоне 17 за нижним решетом 13. Предпочтительно этот датчик также является датчиком ударов, а его выходной сигнал служит мерой зерна, падающего за нижним решетом 13 в массу возврата.
Посредством устройства SG может определяться действительная скорость движения зерноуборочного комбайна 1.
Все эти измерительные устройства SD, SE, SV, SU, SK, SG связаны с устройством 25 управления. Кроме того, к устройству 25 управления подсоединен операторский терминал 22, с помощью которого водитель может обслуживать или программировать устройство 25 управления.
В целях наглядности на фиг.1 не показаны связи между отдельными измерительными устройствами SD, SE, SV, SU, SK, SG и операторским терминалом 22 и устройством 25 управления, а также само устройство 25 управления. Вместо этого на фиг.2 показана подробная блок-схема устройства.
Как видно на этой схеме, операторский терминал 22 содержит кроме прочих элементов три операторских выключателя 26, 27, 28. Первый выключатель служит для установки процесса оптимизации молотильного аппарата. Второй выключатель служит для установки процесса оптимизации очистки. Третий выключатель представляет собой переключатель 28, с помощью которого может включаться процесс регулирования скорости, или так называемый «регулятор хода». С помощью этих выключателей 26, 27, 28 оператор может вводить управляющие команды SBD, SBR, SBG, чтобы включать соответствующие процессы регулирования в выбранных режимах. Эти управляющие команды SBD, SBR, SBG передаются на устройство 25 управления через интерфейсы 29.
Очевидно, что вместо упрощенно представленного операторского терминала 22 с тремя различными выключателями 26, 27, 28 этот операторский терминал 22 может быть выполнен другим образом. Так, например, он может быть значительно расширен и содержать дополнительные выключатели или другие элементы управления для настройки других компонентов, а также устройства для представления оператору самых различных данных. В частности, возможно выполнение всех выключателей или других элементов управления в виде клавиатуры.
Возможен также вариант осуществления, в котором вместо отдельных частичных интерфейсов 29 для получения управляющих команд SBD, SBR, SBG от отдельных выключателей 26, 27, 28 между операторским терминалом 22 и устройством 25 управления имеется общий интерфейс передачи данных, через который принимаются все данные, управляющие команды и другая информация.
Как показано на фиг.2, устройство 25 управления содержит также шесть различных выходов 41, 42, 43, 44, 45, 46 управляющих сигналов, с помощью которых управляются различные аппараты уборочной машины. Первые два выхода 41, 42 управляющих сигналов связаны с приводом 35 молотильного барабана и устройством 36 регулировки молотильного зазора. Следующие выходы 43, 44, 45 управляющих сигналов связаны с приводом 37 вентилятора, устройством 38 регулировки верхнего решета и устройством 39 регулировки нижнего решета очистного устройства 10. Выход 46 управляющих сигналов связан с приводным агрегатом 40 уборочной машины для регулирования скорости движения. Через выходы 41, 42, 43, 44, 45, 46 управляющих сигналов эти управляющие сигналы передаются на соответствующие компоненты 35, 36, 37, 38, 39, 40 в качестве заданных величин. Посредством непредставленных датчиков устройство 25 управления может проверять, действительно ли достигнуты желаемые заданные величины.
Само устройство 25 управления в данном примере осуществления выполнено в виде программируемого микропроцессора, в котором представленные отдельные компоненты имеют вид модулей. К этим компонентам относятся координатор 30 процессов, устройство 31 управления процессом для выполнения процесса оптимизации молотильного аппарата устройство 32 управления процессом для выполнения процесса оптимизации очистки и устройство 33 управления процессом для выполнения процесса регулирования скорости движения.
На фиг.2 показаны только те компоненты устройства 25 управления, которые необходимы для последующего пояснения изобретения. Очевидно, что такое устройство 25 управления может осуществлять управление также и другими, непоказанными, рабочими аппаратами, например устройством регулировки высоты срезания растительности. Кроме того, данное устройство управления может входить в состав общего устройства управления зерноуборочного комбайна 1 вместе с устройствами управления другими рабочими аппаратами в виде модулей. Устройство 25 управления может также содержать дополнительные входы для измеренных величин и выходы для параметров регулирования. В частности, зерноуборочный комбайн 1 может быть оснащен дополнительными датчиками в зерновом бункере или на выходе зернового элеватора, например детекторами поврежденного зерна, с помощью которых могут определяться поврежденные или расколотые зерна, а измеренные величины могут передаваться на устройство управления.
Как уже было упомянуто, в показанном на фиг.2 устройстве 25 управления имеется устройство 31 управления процессом оптимизации молотильного аппарата. Процесс оптимизации молотильного аппарата имеет всего два режима, а именно «активный» и «пассивный» режимы. Это означает, что данный процесс может активизироваться или отключаться, например, посредством передачи сигнала BV задания режима от координатора 30 процесса на устройство 31 управления процессом оптимизации молотильного аппарата. Однако в данном примере осуществления, как правило, сигналом BV задания режима только активизируется процесс оптимизации молотильного аппарата, а дальше процесс выключается автоматически по его окончании, то есть когда найдены оптимальные параметры регулировки молотильного аппарата. В этом случае соответствующий сигнал SI статуса подается на вход 47 сигнала статуса координатора 30 процессов.
Подобным же образом выполнено устройство 32 управления процессом оптимизации очистки. Оно также активизируется сигналом BV задания режима, в результате чего устанавливается «активный» режим. Когда оптимальные величины регулировки очистного устройства найдены, процесс оптимизации очистки заканчивается и выключается автоматически. Затем соответствующий сигнал SI статуса подается на вход 48 сигнала статуса координатора 30 процессов.
Третье устройство 33 управления процессом является регулятором хода. Кроме «пассивного» режима здесь имеются три активных режима, представленных отдельными блоками. Посредством сигнала BV задания режима от координатора 30 процессов либо включается соответствующий режим, либо выключается регулятор хода 33. Одним из режимов является режим постоянной скорости, при котором скорость регулируется на заданную постоянную величину. Второй режим предусматривает процесс регулирования по расходу, при котором скорость движения регулируется таким образом, чтобы величина расхода убранной массы была постоянной. Третий режим предусматривает процесс регулирования по потерям, при котором скорость движения регулируется таким образом, чтобы величина потерь убранной массы была постоянной. Она может контролироваться, например, с помощью датчика SV потерь.
Здесь соответствующий сигнал SI статуса, содержащий информацию о действительном режиме регулятора хода, подается на вход 49 сигнала статуса координатора 30 процессов.
Далее будут описаны возможные алгоритмы процессов внутри устройства 25 управления или внутри координатора 30 процессов. Их целью является управление отдельными устройствами 31, 32, 33 управления процессом на основе вводимых управляющих команд SBD, SBR, SBG с помощью сигналов BV задания режима таким образом, чтобы устранить коллизии между различными процессами регулирования.
В отношении процесса регулирования скорости движения управляющая команда SBG поступает на регулятор 33 хода от переключателя 28, с помощью которого могут задаваться три различных активных режима. На первом шаге I процесса в устройстве 25 управления эта управляющая команда SBG вызывает цикл опроса, в ходе которого постоянно запрашивается, была ли изменена управляющая команда SBG. Если ответ положителен, то эта управляющая команда SBG передается на координатор 30 процессов. В нем в ходе дальнейшего цикла опроса на шаге II вначале выясняется, активны ли процессы оптимизации молотильного аппарата или очистки. Если эти процессы активны, следует выдержка времени до окончания этих процессов. Это означает, что в данном случае изменение режима регулятора 33 хода временно блокировано.
В том случае, если процессы оптимизации молотильного аппарата и очистки не активизированы, на шаге III на основе управляющей команды SBG устанавливается режим регулятора 33 хода и на него передается соответствующий сигнал BV задания режима. На вход 49 сигнала статуса координатора 30 процессов от регулятора 33 хода постоянно передается информация статуса, так что координатор информирован о действительном режиме.
В принципе, возможен также вариант, при котором в координаторе 30 процессов ведется книга типа журнала, в котором записаны сигналы BV задания режима, так что на основе сигналов, выдаваемых координатором 30 процессов, и без того ясно, в каком режиме находится каждое из устройств 31, 32, 33 управления процессом. Однако передача сигнала SI статуса имеет то преимущество, что если, например, устройства 31, 32, 33 управления процессом управляются непосредственно, в обход координатора 30 процессов, например, в случае экстренного выключения, координатор 30 процессов информируется об этом.
На основе сигналов SI статуса устройств 31 и 32 управления процессами оптимизации молотильного аппарата и очистки на шаге IV вначале проверяется, не был ли изменен режим процесса оптимизации молотильного аппарата и очистки. Этот опрос производится постоянно в циклической форме. Если выясняется, что оптимизация обмолота или очистки была изменена, то на основе операций регулирования на шаге III вновь устанавливается режим регулятора 33 хода. Так, например, при активизации процесса оптимизации молотильного аппарата или очистки регулятор 33 хода автоматически устанавливается на режим «регулирование по расходу». Когда соответствующий процесс оптимизации заканчивается, это изменение режима процесса оптимизации молотильного аппарата или очистки вновь распознается автоматически. Затем регулятор 33 хода снова устанавливается обратно на предыдущий режим.
Управляющая команда SBR, поступающая от выключателя 27 для предварительного выбора режима процесса оптимизации очистки, также вначале блокируется в координаторе 30 процессов. На шаге V вначале выясняется, активизирован ли процесс оптимизации молотильного аппарата. Если он не активизирован, процесс оптимизации очистки, в принципе, может быть активизирован. В этом случае далее на шаге VI вначале проверяется, активизирован ли регулятор 33 хода. Если да, то на шаге VII проверяется режим регулятора 33 хода, а затем на шаге VIII регулятор 33 хода переключается на режим «регулирование по расходу», если он уже не находится в этом режиме. Если в противоположность этому на шаге VI устанавливается, что регулятор 33 хода не активизирован, то на шаге IX на операторском терминале высвечивается указатель, с помощью которого водителю задается диапазон скоростей, так как водитель должен регулировать скорость движения вручную для выполнения процесса оптимизации очистки. Однако осуществляется ли этот процесс и каким образом, в конечном счете зависит от конкретного вида процесса оптимизации очистки. Далее производится активизация процесса оптимизации очистки путем выдачи сигнала режима на устройство 32 управления процессом.
В качестве примера такой процесс оптимизации очистки может осуществляться таким путем, что при по возможности постоянном расходе потока убранной массы отдельные параметры очистного устройства, например настройка верхнего решета, настройка нижнего решета или число оборотов вентилятора, регулируются в широком диапазоне, а затем устанавливаются зависимости потерь, возврата зерна и объемного возврата от отдельных параметров. Далее на основе этих измеренных величин могут вырабатываться математические функции и с их помощью определяться оптимальные величины для отдельных параметров настройки.
Когда процесс оптимизации очистки закончен, это передается в виде сигнала SI статуса на вход 49 сигнала статуса координатора 30 процессов. Тогда на шаге X, например, обеспечивается перевод регулятора 33 хода обратно на прежний режим, если он был переключен ранее на шаге VIII. В альтернативном варианте на этом шаге Х может выключаться активизированный на шаге IX указатель, с помощью которого водителю была задана скорость движения, соответствующая оптимизации очистки. На шаге XI процесс оптимизации очистки полностью заканчивается.
Аналогичным образом осуществляется координация процесса оптимизации молотильного аппарата. Если устройство 25 управления получает через интерфейс 29 соответствующую управляющую команду SBD от выключателя 26, на шаге XII вначале проверяется, активизирован ли процесс оптимизации очистки. Если он не активизирован, процесс оптимизации молотильного аппарата может быть активизирован. В этом случае также далее на шаге XIII вначале проверяется, активизирован ли регулятор 33 хода. Если да, то на шаге XIV запрашивается режим регулятора 33 хода и при необходимости на шаге XV регулятор 33 хода переключается на режим «регулирование по расходу». Если регулятор 33 хода не активизирован, то на шаге XVI высвечивается указатель водителю, какую скорость движения он должен выдерживать во время процесса оптимизации молотильного аппарата. Только после этого на устройство 31 управления процессом передается сигнал BV задания режима для активизации процесса оптимизации молотильного аппарата. Таким же образом по окончании процесса оптимизации молотильного аппарата на вход 47 сигнала статуса координатора 30 процессов подается сигнал SI статуса. Далее на шаге XVII обеспечивается либо установка прежнего режима регулятора 33 хода, либо выключение указателя заданной скорости движения для водителя. На шаге XVIII процесс оптимизации молотильного аппарата полностью заканчивается.
Очевидно, что вместо отдельных входов 47, 48, 49 для отдельных устройств 31, 32, 33 управления процессом координатор 30 процессов может быть снабжен центральным входом статусной информации, через который устройства 31, 32, 33 управления процессом передают свои сигналы SI статуса. Таким же образом вместо множества выходов 41, 42, 43, 44, 45, 46 сигналов управления координатор 30 процессов может иметь в качестве интерфейса сигналов управления один общий выход, через который сигналы управления могут подаваться на различные аппараты уборочной машины. Этот интерфейс сигналов управления вместе с входом сигналов статуса и/или интерфейсом для получения команд управления может также быть объединен в общий интерфейс. Такой общий интерфейс может быть реализован, например, с помощью шины передачи данных в уборочной машине.
Данный относительно простой пример осуществления показывает, каким образом с помощью координатора 30 процессов можно без больших затрат технических средств обеспечить проведение различных процессов регулирования в отдельных устройствах 31, 32, 33 уборочной машины 1 без коллизий между отдельными процессами. С помощью координатора 30 процессов можно даже проводить комплексы отдельных процессов.
По соображениям безопасности система выполнена таким образом, что водитель машины в ходе уборки может в любой момент вручную изменять отдельные или все параметры.
В заключение следует еще раз отметить, что показанный на чертежах зерноуборочный комбайн, процесс регулирования и конкретный способ представляют только пример осуществления, который может изменяться и модифицироваться специалистом в данной области в пределах объема защиты изобретения. Так, например, способ или соответствующее устройство по изобретению могут использоваться также для регулировки других рабочих аппаратов в зерноуборочных комбайнах других типов или в любой другой уборочной машине, например в полевом измельчителе.

Claims (16)

1. Способ управления уборочной сельхозмашиной (1), при котором на основе выбранных получаемых управляющих команд (SBD, SBR, SBG) в ходе нескольких отдельных процессов регулирования настраивают и/или контролируют различные аппараты (35, 36, 37, 38, 39, 40) уборочной машины (1), при этом посредством координатора (30) процессов определяют режим первого процесса регулирования с учетом действительного режима второго процесса регулирования.
2. Способ по п.1, отличающийся тем, что для установки выбранного режима первого процесса регулирования выбранную управляющую команду (SBD, SBR, SBG) вначале передают на координатор (30) процессов, который на основе управляющей команды (SBD, SBR, SBG) и с учетом режима второго процесса регулирования определяет режим первого процесса регулирования.
3. Способ по п.1 или 2, отличающийся тем, что при изменении режима второго процесса регулирования первый процесс регулирования автоматически переключается координатором (30) процессов в другой режим.
4. Способ по п.1 или 2, отличающийся тем, что величину параметра, определенную в ходе первого процесса регулирования или второго процесса регулирования, передают на координатор процессов, который предоставляет величины параметров по потребности для использования во втором процессе регулирования или в первом процессе регулирования.
5. Способ по п.1, отличающийся тем, что по меньшей мере один из процессов регулирования охватывает процесс оптимизации очистки.
6. Способ по п.1, отличающийся тем, что по меньшей мере один из процессов регулирования охватывает процесс оптимизации молотильного аппарата.
7. Способ по п.1, отличающийся тем, что по меньшей мере один из процессов регулирования охватывает процесс регулирования скорости движения.
8. Способ по п.7, отличающийся тем, что в процессе регулирования скорости движения скорость регулируют в режиме постоянной скорости в зависимости от заданной величины постоянной скорости.
9. Способ по п.7 или 8, отличающийся тем, что в процессе регулирования скорости движения скорость регулируют в режиме регулирования по расходу в зависимости от заданной величины расхода убранной массы.
10. Способ по п.7 или 8, отличающийся тем, что в процессе регулирования скорости движения скорость регулируют в режиме регулирования по потерям в зависимости от заданной величины потерь убранной массы.
11. Способ по любому из пп.5-8, отличающийся тем, что при активизации процесса оптимизации очистки или процесса оптимизации молотильного аппарата процесс регулирования скорости движения переключают в режим регулирования по расходу.
12. Устройство (25) управления уборочной сельхозмашиной (1), содержащее
интерфейс (29) для получения управляющих команд (SBD, SBR, SBG), интерфейсы (41, 42, 43, 44, 45, 46) управляющих сигналов для настройки различных аппаратов (35, 36, 37, 38, 39, 40) уборочной машины (1), несколько устройств (31, 32, 33) управления процессом, которые на основе полученных управляющих команд (SBD, SBR, SBG) в ходе отдельных выбранных процессов регулирования подают сигналы управления через интерфейсы (41, 42, 43, 44, 45, 46) управляющих сигналов на различные аппараты уборочной машины (1) для их настройки и/или контроля, и связанный с устройствами (31, 32, 33) управления процессом координатор (30) процессов, выполненный с возможностью определения режима первого процесса регулирования с учетом действительного режима второго процесса регулирования и передачи на устройства (31, 32, 33) управления процессом соответствующих сигналов (BV) задания режима.
13. Устройство (25) управления по п.12, отличающееся тем, что интерфейс (29) связан с координатором (30) процессов таким образом, что получаемые интерфейсом (29) управляющие команды (SBD, SBR, SBG) вначале поступают на координатор (30) процессов.
14. Устройство по п.12 или 13, отличающееся тем, что координатор (30) процессов содержит вход (47, 48, 49) статуса процесса для приема данных (SI) статуса о действительном режиме процесса регулирования.
15. Уборочная машина (1), в особенности зерноуборочный комбайн, оснащенная устройством (25) управления, заявленным в любом из пп.12-14.
16. Компьютерный программный продукт, который может загружаться непосредственно в запоминающее устройство программируемого устройства (25) управления уборочной машины (1), содержащий программные средства для выполнения всех шагов способа по любому из пп.1-11 при выполнении программного продукта в устройстве (25) управления.
RU2006119152/21A 2005-06-06 2006-06-01 Способ и устройство управления уборочной сельхозмашиной RU2402191C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005026159A DE102005026159A1 (de) 2005-06-06 2005-06-06 Verfahren zur Steuerung einer Erntemaschine
DE102005026159.0 2005-06-06

Publications (2)

Publication Number Publication Date
RU2006119152A RU2006119152A (ru) 2007-12-27
RU2402191C2 true RU2402191C2 (ru) 2010-10-27

Family

ID=36940352

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006119152/21A RU2402191C2 (ru) 2005-06-06 2006-06-01 Способ и устройство управления уборочной сельхозмашиной

Country Status (5)

Country Link
US (1) US7630809B2 (ru)
EP (1) EP1731017B2 (ru)
AT (1) ATE408335T1 (ru)
DE (2) DE102005026159A1 (ru)
RU (1) RU2402191C2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566052C1 (ru) * 2014-09-18 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный технический университет" Способ настройки рабочих органов самоходного зерноуборочного комбайна
RU2591133C1 (ru) * 2015-04-16 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Волгоградский государственный аграрный университет (ФГБОУ ВПО Волгоградский ГАУ) Автоматическая система контроля и управления настройками рабочих органов молотильно-сепарирующего устройства
RU2612444C2 (ru) * 2012-07-16 2017-03-09 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Система помощи водителю для сельскохозяйственной рабочей машины
RU2622701C2 (ru) * 2012-07-16 2017-06-19 КЛАСС Зельбстфаренде Эрнтемашинен ГмбХ Рабочая сельскохозяйственная машина с по меньшей мере одним устройством управления и регулирования
RU2638189C2 (ru) * 2013-02-14 2017-12-12 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Самоходная уборочная машина и способ управления самоходной уборочной машиной
RU2687608C2 (ru) * 2013-08-12 2019-05-15 Дир Энд Компани Система помощи водителю
RU2727648C2 (ru) * 2015-08-17 2020-07-22 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Сельскохозяйственная уборочная машина

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572180B2 (en) * 2007-02-13 2009-08-11 Cnh America Llc Distribution leveling for an agricultural combine
GB0714942D0 (en) * 2007-08-01 2007-09-12 Cnh Belgium Nv A biomass cleaner improvements in corp harvesting machine and related methods
DE102007046678A1 (de) * 2007-09-27 2009-04-09 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliches Arbeitsfahrzeug
DE102007055074A1 (de) * 2007-11-16 2009-05-20 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende landwirtschaftliche Arbeitsmaschine
DE102008027906A1 (de) * 2008-06-12 2009-12-17 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
DE102008057461A1 (de) * 2008-11-14 2010-05-20 Claas Selbstfahrende Erntemaschinen Gmbh Anzeigeeinheit
DE102009027245A1 (de) * 2009-06-26 2010-12-30 Deere & Company, Moline Steueranordnung zur Kontrolle des Überladens landwirtschaftlichen Ernteguts von einer Erntemaschine auf ein Transportfahrzeug
US9119348B2 (en) 2010-03-29 2015-09-01 Deere & Company Tractor-implement control system and method
FR2958911B1 (fr) * 2010-04-19 2012-04-27 Snecma Procede et systeme de surveillance du niveau d'huile contenue dans un reservoir d'un moteur d'aeronef
DE102010017676A1 (de) * 2010-07-01 2012-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Fahrerassistenzsystem für landwirtschaftliche Arbeitsmaschine
DE102010017687A1 (de) * 2010-07-01 2012-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Einstellung zumindest eines Arbeitsorganes einer selbstfahrenden Erntemaschine
US10318138B2 (en) 2011-03-11 2019-06-11 Intelligent Agricultural Solutions Llc Harvesting machine capable of automatic adjustment
US10321624B2 (en) 2011-03-11 2019-06-18 Intelligent Agriculture Solutions LLC Air seeder manifold system
US9631964B2 (en) 2011-03-11 2017-04-25 Intelligent Agricultural Solutions, Llc Acoustic material flow sensor
US9629308B2 (en) * 2011-03-11 2017-04-25 Intelligent Agricultural Solutions, Llc Harvesting machine capable of automatic adjustment
US8930039B2 (en) * 2012-06-11 2015-01-06 Cnh Industrial America Llc Combine performance evaluation tool
US9078397B2 (en) * 2012-11-16 2015-07-14 Cnh Industrial America Llc System for conveying agricultural material in a harvester
DE102013107169A1 (de) * 2013-07-08 2015-01-08 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
US9699970B2 (en) 2013-09-19 2017-07-11 Cnh Industrial America Llc Combine side-shake cleaning control system
RU2538823C1 (ru) * 2013-10-17 2015-01-10 Государственное научное учреждение Всероссийский научно-исследовательский институт механизации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИМ Россельхозакадемии) Полевая машина для уборки зерновых культур с селекционных делянок
US10085379B2 (en) 2014-09-12 2018-10-02 Appareo Systems, Llc Grain quality sensor
AU2015314684B2 (en) 2014-09-12 2020-09-03 Appareo Systems, Llc Non-image-based grain quality sensor
CN104737721B (zh) * 2015-03-04 2016-08-31 江苏大学 一种联合收获机自适应清选控制装置及其自适应清选方法
DE102015004174A1 (de) 2015-04-02 2016-10-06 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
DE102015004343A1 (de) 2015-04-02 2016-10-06 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
DE102015004344A1 (de) 2015-04-02 2016-10-06 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
US10729065B2 (en) * 2015-09-10 2020-08-04 Deere & Company Augmented crop loss sensing
US10234837B2 (en) * 2015-09-28 2019-03-19 Deere & Company Adaptive performance targets for controlling a mobile machine
US20170112061A1 (en) * 2015-10-27 2017-04-27 Cnh Industrial America Llc Graphical yield monitor static (previous) data display on in-cab display
EP3537868B1 (en) * 2016-11-10 2021-01-06 CNH Industrial Belgium NV Closed loop control of tailings processor aggressiveness
DE102017125590A1 (de) * 2017-11-02 2019-05-02 Kalverkamp Innovation Gmbh Verfahren zum Ernten von Druschfrüchten sowie dafür vorgesehene Vorrichtung für eine Erntemaschine
JP6837422B2 (ja) * 2017-12-18 2021-03-03 株式会社クボタ コンバイン
DE102018111077A1 (de) 2018-05-08 2019-11-14 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher sowie Verfahren zum Betreiben eines Mähdreschers
DE102018111076A1 (de) 2018-05-08 2019-11-14 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher
US11818982B2 (en) 2018-09-18 2023-11-21 Deere & Company Grain quality control system and method
EP3714674B1 (en) * 2019-03-28 2023-09-06 CNH Industrial Belgium NV Straw walker load monitoring
US11375662B2 (en) * 2019-06-12 2022-07-05 Cnh Industrial America Llc Apparatus and method for monitoring grain content within a tailings system of an agricultural harvester
DE102019122114A1 (de) * 2019-08-16 2021-02-18 Claas Tractor Sas Landwirtschaftliche Zugmaschine

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442068A (en) * 1966-08-15 1969-05-06 Case Co J I Auto-ground speed control for self-propelled combine
US3563013A (en) * 1968-07-22 1971-02-16 Massey Ferguson Inc Automatic combine control
US4112479A (en) * 1973-12-07 1978-09-05 White Robert I Synchronizing control system
US3999359A (en) * 1975-05-20 1976-12-28 Harrington Manufacturing Company Tobacco harvester having a hydraulic control system for automatically and continuously controlling the speed of a leaf defoliator assembly in relation to the harvester ground speed
US3952829A (en) * 1975-05-22 1976-04-27 Dana Corporation Vehicle speed control circuit
US4130980A (en) * 1977-01-06 1978-12-26 International Harvester Company Combine automatic travel control system
GB2098446B (en) * 1981-05-20 1985-06-12 Sperry Naamloze Venootschap Combine harvesters
US4487002A (en) * 1981-07-17 1984-12-11 Gary W. Krutz Automatic ground speed controller
US4458471A (en) * 1981-12-31 1984-07-10 Allis-Chalmers Corp. Combine speed control
DE3375057D1 (en) * 1983-04-15 1988-02-11 New Holland Nv Combine harvester
US4663714A (en) * 1984-10-18 1987-05-05 J. I. Case Company Synchronized mid-mounted clutch for variable power train
US4727710A (en) * 1986-05-30 1988-03-01 Deutz-Allis Corporation Automatic vehicle ground speed control convertible to manual operation
GB8814936D0 (en) * 1988-06-23 1988-07-27 Ford New Holland Nv Combine ground speed control system
US5228360A (en) * 1991-07-26 1993-07-20 The Toro Company Cruise/speed control system for hydrostatic drive
DE4133976A1 (de) * 1991-10-14 1993-04-15 Claas Ohg Koernerstrommessvorrichtung, insbesondere fuer erntemaschinen
CA2126868C (en) * 1992-01-03 1998-12-22 Dana R. Lonn Electronic control for turf maintenance vehicle
AU658066B2 (en) * 1992-09-10 1995-03-30 Deere & Company Neural network based control system
DE4419421C2 (de) * 1994-06-03 1996-03-28 Claas Ohg Verteilvorrichtung für Häcksler
DE19725028A1 (de) * 1997-06-13 1998-12-17 Claas Selbstfahr Erntemasch Sensor für Erntemaschinen
DE19918550A1 (de) * 1999-04-23 2000-10-26 Deere & Co Antriebseinrichtung der Förder- und/oder Gutbearbeitungsvorrichtung einer Erntemaschine
DE19934882B4 (de) * 1999-07-24 2004-05-19 Deere & Company, Moline Meßeinrichtung
DE10017985A1 (de) 2000-04-11 2001-10-18 Deere & Co Schleifvorrichtung
US6682416B2 (en) * 2000-12-23 2004-01-27 Claas Selbstfahrende Erntemaschinen Gmbh Automatic adjustment of a transfer device on an agricultural harvesting machine
DE10064860A1 (de) * 2000-12-23 2002-06-27 Claas Selbstfahr Erntemasch Einrichtung zur Optimierung der Überladung von Erntegut an landwirtschaftlichen Fahrzeugen
GB0101557D0 (en) * 2001-01-22 2001-03-07 Ford New Holland Nv Drive mechanism for a front attachment of an agricultural harvesting machine and corresponding front attachment
US6553300B2 (en) * 2001-07-16 2003-04-22 Deere & Company Harvester with intelligent hybrid control system
DE10147733A1 (de) * 2001-09-27 2003-04-10 Claas Selbstfahr Erntemasch Verfahren und Vorrichtung zur Ermittlung einer Erntemaschineneinstellung
US6592453B2 (en) * 2001-09-27 2003-07-15 Deere & Company Harvester feedrate control with tilt compensation
GB0217297D0 (en) * 2002-07-26 2002-09-04 Cnh Belgium Nv Methods of optimising stochastic processing parameters in crop harvesting machines
DE10253081A1 (de) 2002-11-13 2004-05-27 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung der Fahrgeschwindigkeit einer Erntemaschine
DE10306726A1 (de) * 2003-02-17 2004-09-30 Claas Selbstfahrende Erntemaschinen Gmbh Methode zur Optimierung von einstellbaren Parametern
DE10327758A1 (de) * 2003-06-18 2005-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung eines Dreschwerks eines Mähdreschers
EP1516522B2 (de) * 2003-09-19 2023-03-29 CLAAS Selbstfahrende Erntemaschinen GmbH Verfahren und Vorrichtung zur Ermittlung der Überkehrerntegutmenge
DE10348090A1 (de) * 2003-10-16 2005-05-19 Deere & Company, Moline Landwirtschaftliche Arbeitsmaschine
DE10360597A1 (de) * 2003-12-19 2005-07-28 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zur Regelung von Arbeitsorganen eines Mähdreschers
US7395769B2 (en) * 2004-10-21 2008-07-08 Jensen Layton W Individual row rate control of farm implements to adjust the volume of crop inputs across wide implements in irregularly shaped or contour areas of chemical application, planting or seeding
DE102004059543A1 (de) * 2004-12-09 2006-06-29 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
DE102005014278A1 (de) * 2005-03-24 2006-10-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Ermittlung eines Ziel-Einstellwerts

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612444C2 (ru) * 2012-07-16 2017-03-09 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Система помощи водителю для сельскохозяйственной рабочей машины
RU2622701C2 (ru) * 2012-07-16 2017-06-19 КЛАСС Зельбстфаренде Эрнтемашинен ГмбХ Рабочая сельскохозяйственная машина с по меньшей мере одним устройством управления и регулирования
RU2638189C2 (ru) * 2013-02-14 2017-12-12 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Самоходная уборочная машина и способ управления самоходной уборочной машиной
RU2687608C2 (ru) * 2013-08-12 2019-05-15 Дир Энд Компани Система помощи водителю
RU2566052C1 (ru) * 2014-09-18 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный технический университет" Способ настройки рабочих органов самоходного зерноуборочного комбайна
RU2591133C1 (ru) * 2015-04-16 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Волгоградский государственный аграрный университет (ФГБОУ ВПО Волгоградский ГАУ) Автоматическая система контроля и управления настройками рабочих органов молотильно-сепарирующего устройства
RU2727648C2 (ru) * 2015-08-17 2020-07-22 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Сельскохозяйственная уборочная машина

Also Published As

Publication number Publication date
DE102005026159A1 (de) 2007-01-25
ATE408335T1 (de) 2008-10-15
US20060272307A1 (en) 2006-12-07
EP1731017B1 (de) 2008-09-17
RU2006119152A (ru) 2007-12-27
EP1731017A1 (de) 2006-12-13
US7630809B2 (en) 2009-12-08
EP1731017B2 (de) 2013-06-05
DE502006001577D1 (de) 2008-10-30

Similar Documents

Publication Publication Date Title
RU2402191C2 (ru) Способ и устройство управления уборочной сельхозмашиной
US6863604B2 (en) Method and apparatus for determining optimal adjustments of work units in an agricultural harvesting machine
CN110447379B (zh) 联合收割机和用于运行联合收割机的方法
EP2781975B1 (en) Harvester with fuzzy control system for detecting steady crop processing state
RU2482654C2 (ru) Способ управления рабочей сельхозмашиной
EP1371278B1 (en) Harvester with control system considering operator feedback
US7630808B2 (en) Method for computing a target setting value
RU2758094C2 (ru) Способ работы зерноуборочного комбайна и зерноуборочный комбайн
CA2383201C (en) Harvester with intelligent hybrid control system
US7670218B2 (en) Process and device for controlling working parts of a combine harvester
EP2781147B1 (en) Operating state detection system for work machine with fusion considering sensor value reliability
RU2349074C2 (ru) Способ регулирования молотильного аппарата зерноуборочного комбайна и зерноуборочный комбайн
US20040186597A1 (en) Method of optimizing adjustable parameters
AU2009251126A1 (en) Driver assistance system for agricultural harvesting machine
CN105705002A (zh) 联合收割机的侧震动清理控制系统
CN104221587B (zh) 综合考虑传感器值可靠性的、用于作业机械的操作状态检测系统
CN112969363B (zh) 用于农用收割机的控制器
RU2796063C2 (ru) Зерноуборочный комбайн
US20230099523A1 (en) Agricultural production machine with characteristic diagram control
US20230099971A1 (en) Driver assistance system of a harvesting machine with draper
US20230099974A1 (en) Harvesting machine with draper
US20240065155A1 (en) Agricultural production machine with driver assistance system
US20230397533A1 (en) Combine harvester with driver assistance system

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20151224