RU2393236C1 - Способ производства толстолистового проката - Google Patents

Способ производства толстолистового проката Download PDF

Info

Publication number
RU2393236C1
RU2393236C1 RU2009122201/02A RU2009122201A RU2393236C1 RU 2393236 C1 RU2393236 C1 RU 2393236C1 RU 2009122201/02 A RU2009122201/02 A RU 2009122201/02A RU 2009122201 A RU2009122201 A RU 2009122201A RU 2393236 C1 RU2393236 C1 RU 2393236C1
Authority
RU
Russia
Prior art keywords
temperature
steel
sec
iron
cooling
Prior art date
Application number
RU2009122201/02A
Other languages
English (en)
Inventor
Валерий Васильевич Рыбин (RU)
Валерий Васильевич Рыбин
Виктор Андреевич Малышевский (RU)
Виктор Андреевич Малышевский
Елена Игоревна Хлусова (RU)
Елена Игоревна Хлусова
Виктор Валерьевич Орлов (RU)
Виктор Валерьевич Орлов
Николай Викторович Малахов (RU)
Николай Викторович Малахов
Original Assignee
Открытое акционерное общество "Северсталь" (ОАО "Северсталь")
Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Северсталь" (ОАО "Северсталь"), Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") filed Critical Открытое акционерное общество "Северсталь" (ОАО "Северсталь")
Priority to RU2009122201/02A priority Critical patent/RU2393236C1/ru
Application granted granted Critical
Publication of RU2393236C1 publication Critical patent/RU2393236C1/ru

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, в частности к производству проката ответственного назначения. Для получения проката ответственного назначения с повышенными показателями прочности, при одновременном повышении хладостойкости и низкотемпературной вязкости в зоне термического влияния при сварке проката в способе производства толстолистового проката, включающем выплавку стали, разливку, нагрев и термодеформационную прокатку заготовки и ускоренное охлаждение готового проката, выплавляют сталь следующего химического состава, мас.%: углерод 0,03-0,20, марганец 0,50-2,10, кремний 0,10-0,50, ниобий 0,01-0,15, алюминий 0,01-0,10, титан 0,005-0,05, азот 0,002-0,012, сера 0,0005-0,010, фосфор 0,003-0,050, железо - остальное. Термодеформационную прокатку заканчивают в интервале температур от (Аrз+30°С) до (Аrз-30°С), последующее ускоренное охлаждение осуществляют в два этапа: на первом этапе со скоростью 10-30 град/с до температуры 650-550°С, затем после паузы 3-10 с на втором этапе со скоростью 5-20 град/с до температуры 550-450°С. Последующее охлаждение на воздухе до 100°С осуществляют замедленно со скоростью 0,1-0,01 град/с. Сталь дополнительно содержит один или несколько элементов из ряда, мас.%: V 0,01-0,15, Mo 0,05-0,50, Ni 0,01-0,80, Cr 0,01-0,80, Cu = 0,01-0,80, при углеродном эквиваленте, Сэкв = 0,32-0,46, рассчитанном по формуле: СЭ=C+Mn/6+(Cr+Mo+Nb+V+Ti)/5+(Ni+Cu)/15. 1 з.п. ф-лы, 3 табл.

Description

Изобретение относится к металлургии, в частности к производству проката ответственного назначения методом термомеханической обработки.
Известен способ производства листового проката из низколегированной стали, включающей нагрев выше Ar3 прокатку, подстуживание, прокатку в интервале Ar3-Ar1 с частными обжатиями 14-30% за проход и суммарной степенью деформации 59-83% и последующее охлаждение на воздухе (авторское свидетельство СССР № 1611952, кл. C21D 8/00, 1980). Недостатком известного способа является низкая хладостойкость металла после обработки.
Известен способ производства листового проката из стали следующего химического состава, мас.%:
Углерод 0,05-0,15
Марганец 1,2-2,0
Кремний 0,2-0,6
Ниобий 0,01-0,10
Титан 0,005-0,03
Алюминий 0,01-0,10
Хром 0,03-0,50
Никель 0,03-0,50
Медь 0,03-0,50
Азот 0,005-0,020,
Железо остальное
с использованием метода термомеханической обработки (патент РФ 2062795, кл. C21D 9/46, 8/02, 1995 - прототип), заключающийся в получении заготовки, ее аустенитизации, деформации с суммарной степенью обжатий 50-80% до толщины 14 мм, охлаждении от температуры конца деформации 760-900°С со скоростью 10-60 град/с до температуры 300-20°С, в повторном нагреве до температуры 590-740°С с выдержкой 0,2-3,0 мин/мм и окончательным охлаждением на воздухе (RU 2201972, C21D 8/02, опубл. 10.04.2003).
Недостатками способа являются низкая хладостойкость при температурах до -60°С и недостаточная свариваемость, обеспечение свойств в толщинах только до 14 мм.
Наиболее близким по технологии изготовления является способ производства проката, включающий выплавку стали, внепечную обработку, непрерывную разливку, аустенизацию, предварительную и окончательную деформации, охлаждение проката, отличающийся тем, что выплавляют сталь следующего химического состава при соотношении ингредиентов, мас.%:
Углерод 0,02-0,10
Марганец 0,6-1,6
Кремний 0,1-0,4
Ниобий 0,02-0,12
Хром 0,1-0,3
Никель 0,1-0,3
Медь 0,1-0,3
Алюминий 0,01-0,1
Титан 0,005-0,05
Кальций 0,0001-0,01
Сера 0,0005-0,006
Фосфор 0,002-0,025
Железо остальное
при соотношении Cr+Ni+Cu≤0,6. Окончательную деформацию осуществляют в непрерывном режиме в интервале температур 980-730°С с суммарной степенью обжатия 65-80%, частными обжатиями 10-12% и скоростью деформации 10-2-10-1, а охлаждение подката в паузах между частными обжатиями производят со скоростью 5-30 град /с. Кроме того, после завершения окончательной деформации проводят ускоренное охлаждение проката со скоростью 5-30 град/с до температуры 650-500°С и далее охлаждают на воздухе до температуры окружающей среды, а после охлаждения проката до температуры 650-500°С производят его охлаждение со скоростью 5-10 град/ч до температуры окружающей среды (RU 2255987, опубл. 2004.07.19, C21D 8/02, C21D 1/02).
Основными недостатками известных способов производства являются недостаточная прочность, неудовлетворительные показатели текучести, ударной вязкости, хладостойкости получаемого проката, а также свариваемости.
Техническим результатом данного изобретения является получение проката ответственного назначения с повышенными показателями прочности, при одновременном повышении хладостойкости и низкотемпературной вязкости в зоне термического влияния при сварке проката.
Указанный технический результат достигается тем, что для производства толстолистового проката, включающего выплавку стали, разливку, нагрев и термомеханическую прокатку заготовки и ускоренное охлаждение готового проката, выплавляют сталь следующего состава, мас.%:
Углерод 0,03-0,20
Марганец 0,50-2,10
кремний 0,10-0,50
ниобий 0,01-0,15
алюминий 0,01-0,10
титан 0,005-0,05
азот 0,002-0,012
сера 0,0005-0,010
фосфор 0,003-0,050
железо - остальное
Термодеформационную прокатку заканчивают в интервале температур от (Arз + 30°С) до (Arз - 30°С), последующее ускоренное охлаждение осуществляют в два этапа: на первом этапе со скоростью 10-30 град /с до температуры 650-550°С, затем после паузы 3-10 с на втором этапе со скоростью 5-20°С до температуры 550-450 град/с . Последующее охлаждение до 100°С осуществляется замедленно со скоростью 0,1-0,01 град /с. При этом допускается введение хотя бы одного или нескольких элементов из ряда следующих ингредиентов (%): V = 0,01-0,15; Mo = 0,05-0,50; Ni = 0,01-0,80; Cr = 0,01-0,80; Cu = 0,01-0,80 при углеродном эквиваленте 0,32-0,46, определяемом по формуле:
СЭ=C+Mn/6+(Cr+Mo+Nb+V+Ti)/5+(Ni+Cu)/15.
Выбранные пределы содержания углерода (0,03-0,20)%, марганца (0,50-2,10)%, кремния (0,10-0,50)%, ниобия (0,01-0,15)%, алюминия (0,01-0,10)%, титана (0,005-0,05)%, азота, серы и фосфора должны в сочетании с режимами термомеханической обработки обеспечить достижение высоких значений временного сопротивления, предела текучести и относительного удлинения при хорошей свариваемости. Заявленные содержания кремния и алюминия должны обеспечить необходимую чистоту стали по кислороду и неметаллическим включениям. Содержание титана в заявленных пределах обеспечивает связывание азота в стойкие нитриды, а выбранные пределы содержаний серы и фосфора - получение высоких значений ударной вязкости при отрицательных температурах. Кроме того, ниобий, образуя карбонитриды, способствует повышению прочностных характеристик и хладостойкости стали, благодаря дисперсионному упрочнению и измельчению зерна. Заявленные режимы предварительной и окончательной прокатки способствуют формированию феррито-бейнитной структуры и на их основе - повышенных показателей прочности, текучести, хладостойкости и свариваемости.
Температурные режимы окончания термодеформационной прокатки в интервале от (Arз+30°С) до (Arз-30°С) и скоростные режимы ускоренного последеформационного охлаждения в области температур перлитного и бейнитного превращений обусловлены задачей получения в прокате однородной мелкозернистой феррито-бейнитной структуры, что позволяет одновременно повысить прочность, ударную вязкость и хладостойкость проката.
Пример осуществления способа.
Сталь выплавляли в кислородном конвертере. После выпуска металла производили его обработку в ковше и разливали на МНЛЗ. При внепечной обработке металла в ковше проводили окончательное раскисление, рафинирование, продувку нейтральным газом и модифицирующую обработку кальцием. В результате выплавки и внепечной обработки получили сталь следующего химического состава, мас.%: С = 0,06; Mn = 1,80; Si = 0,25; Nb = 0,06; V = 0,06; Ti = 0,022; Mo = 0,15; Cu = 0,20; Cr = 0,1; Ni = 0,3; Al = 0,05; N = 0,010; S = 0,003; P = 0,011; Fe - остальное.
Прокатку на лист производили на одноклетьевом реверсивном стане “5000”. Термодеформационную прокатку заканчивали при температуре 770°С, затем заготовку ускоренно охлаждали со скоростью 25 град /с до температуры 600°С, делали паузу 7 с, затем ускоренно охлаждали со скоростью 18 град /с до температуры 480°С и охлаждали на воздухе до температуры 100°С со скоростью 0,1 град /с.
Состав стали, технологические режимы прокатки и комплекс полученных свойств указаны в таблицах 1, 2, 3.
Таблица 1
Химический состав экспериментальных плавок
Вариант плавки C Mn Si Nb Al Ti N S P V Mo Ni Cr Cu
1 0,06 1,80 0,25 0,06 0,05 0,022 0,010 0,003 0,011 0,06 0,15 0,3 0,1 0,20
2 0,10 1.50 0,15 0,35 0,02 0.014 0,008 0,004 0,008 0,08 0,05 0,10 0,09 0,12
3 0,04 1,90 0.30 0.07 0,035 0,010 0,009 0,002 0,010 0,45 0,27 0,23 0,18 0,21
4∗ 0,15 1.7 0,1 - - 0,3 - 0,06 0,03 0,06 0,03 0,01 0,008 0,020
∗ - сравнительный вариант
Таблица 2
Технологические режимы прокатки и охлаждения
Вариант плав ки Температура окончания термодеформационной прокатки, °C Скорость охлаждения на первом этапе, град /c Температура окончания охлаждения на первом этапе, °C Скорость охлаждения на втором этапе, град /c Температура окончания охлаждения на втором этапе, °C Скорость дополнительного охлаждения после чистовой прокатки град /с
1 770 25 600 18 480 0,1
2 750 30 550 8 450 0,02
3 730 20 620 12 470 0,05
Таблица 3
Механические свойства экспериментальных сталей
Вариант плавки σт, Н/мм2 σв, Н/мм2 Ударная вязкость KCV, Дж/см2 при -20 °C Хладостойкость основного металла Т80 °C Низкотемпературная вязкость ОШЗ, Дж/см2 -20
1 550 660 315 -65 85
2 530 620 285 -45 75
3 610 710 290 -70 85
4∗ - 630 - -25 75 при 0°С
∗ - сравнительный вариант

Claims (2)

1. Способ производства толстолистового проката, включающий выплавку стали, разливку, нагрев и термодеформационную прокатку заготовки, ускоренное охлаждение готового проката, отличающийся тем, что выплавляют сталь следующего химического состава, мас.%:
углерод 0,03-0,20 марганец 0,50-2,10 кремний 0,10-0,50 ниобий 0,01-0,15 алюминий 0,01-0,10 титан 0,005-0,05 азот 0,002-0,012 сера 0,0005-0,010 фосфор 0,003-0,050 железо остальное

термодеформационную прокатку заканчивают в интервале температур от Аrз+30°С до Аrз-30°С, ускоренное охлаждение осуществляют в два этапа, на первом этапе со скоростью 10-30 град/с до температуры 650-550°С, затем после паузы 3-10 с на втором этапе со скоростью 5-20 град/с до температуры 550-450°С, а последующее охлаждение до 100°С осуществляют замедленно со скоростью 0,1-0,01 град/с.
2. Способ по п.1, отличающийся тем, что сталь дополнительно содержит один или несколько элементов из ряда следующих ингредиентов, мас.%:
V - 0,01-0,15; Mo - 0,05-0,50; Ni - 0,01-0,80; Cr - 0,01-0,80; Cu - 0,01-0,80 при углеродном эквиваленте 0,32-0,46, определяемом по формуле
СЭ=С+Mn/6+(Cr+Mo+Nb+V+Ti)/5+(Ni+Cu)/15.
RU2009122201/02A 2009-06-09 2009-06-09 Способ производства толстолистового проката RU2393236C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009122201/02A RU2393236C1 (ru) 2009-06-09 2009-06-09 Способ производства толстолистового проката

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009122201/02A RU2393236C1 (ru) 2009-06-09 2009-06-09 Способ производства толстолистового проката

Publications (1)

Publication Number Publication Date
RU2393236C1 true RU2393236C1 (ru) 2010-06-27

Family

ID=42683619

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009122201/02A RU2393236C1 (ru) 2009-06-09 2009-06-09 Способ производства толстолистового проката

Country Status (1)

Country Link
RU (1) RU2393236C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343371A (zh) * 2011-07-08 2012-02-08 南阳汉冶特钢有限公司 60~100mm保性能厚钢板轧后冷却方法
RU2532791C1 (ru) * 2010-09-03 2014-11-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Высокопрочный стальной лист, имеющий высокое сопротивление разрушению и hic
RU2709071C1 (ru) * 2019-09-30 2019-12-13 Акционерное общество "Выксунский металлургический завод" (АО "ВМЗ") Способ производства толстолистового проката с повышенной деформационной способностью (варианты)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532791C1 (ru) * 2010-09-03 2014-11-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Высокопрочный стальной лист, имеющий высокое сопротивление разрушению и hic
CN102343371A (zh) * 2011-07-08 2012-02-08 南阳汉冶特钢有限公司 60~100mm保性能厚钢板轧后冷却方法
RU2709071C1 (ru) * 2019-09-30 2019-12-13 Акционерное общество "Выксунский металлургический завод" (АО "ВМЗ") Способ производства толстолистового проката с повышенной деформационной способностью (варианты)

Similar Documents

Publication Publication Date Title
JP6502499B2 (ja) 降伏強度900〜1000MPa級調質高強度鋼及びその製造方法
US11319607B2 (en) High-strength high-tenacity steel plate with tensile strength of 800 MPa and production method therefor
JP4751137B2 (ja) 線状加熱による曲げ加工が容易な鋼板の製造方法
CN106544590B (zh) 1000MPa级高韧性高性能均匀性易焊接特厚钢板及其制造方法
CN110073024B (zh) 弯曲加工性优异的超高强度钢板及其制造方法
CN101460647A (zh) 高强度钢板及其制造方法
JP2005126733A (ja) 高温加工性にすぐれた熱間プレス用鋼板及び自動車用部材
US8668784B2 (en) Steel for welded structure and producing method thereof
EP1375694B1 (en) Hot-rolled steel strip and method for manufacturing the same
CN103526111A (zh) 屈服强度900MPa级热轧板带钢及其制备方法
US8920713B2 (en) Steel for welded structure and producing method thereof
RU2397254C1 (ru) Способ производства штрипса для труб магистральных трубопроводов
CN102839330B (zh) 800MPa级高强度大线能量焊接用厚板
JP5194572B2 (ja) 耐溶接割れ性が優れた高張力鋼材の製造方法
KR20130046941A (ko) 고강도 강판 및 그 제조 방법
CN103014545A (zh) 一种屈服强度900MPa级高强度钢板及其制造方法
JP2007262477A (ja) 低降伏比高強度厚鋼板およびその製造方法
JP2008075107A (ja) 高強度・高靭性鋼の製造方法
JP2014037596A (ja) 熱間成形鋼板部材およびその製造方法ならびに熱間成形用鋼板
JP3247908B2 (ja) 延性と耐遅れ破壊特性に優れた高強度熱延鋼板およびその製造方法
RU2393236C1 (ru) Способ производства толстолистового проката
CN113802060A (zh) 一种低成本工程结构用钢板及其制造方法
JP3879440B2 (ja) 高強度冷延鋼板の製造方法
CN111051555B (zh) 钢板及其制造方法
RU2385350C1 (ru) Способ производства штрипса для труб магистральных трубопроводов