RU2392686C1 - Составная мишень для распыления и способ ее получения - Google Patents
Составная мишень для распыления и способ ее получения Download PDFInfo
- Publication number
- RU2392686C1 RU2392686C1 RU2009127339/28A RU2009127339A RU2392686C1 RU 2392686 C1 RU2392686 C1 RU 2392686C1 RU 2009127339/28 A RU2009127339/28 A RU 2009127339/28A RU 2009127339 A RU2009127339 A RU 2009127339A RU 2392686 C1 RU2392686 C1 RU 2392686C1
- Authority
- RU
- Russia
- Prior art keywords
- vanadium
- rhenium
- molybdenum
- disk
- cylindrical inserts
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000005507 spraying Methods 0.000 title abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 24
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 22
- 239000011733 molybdenum Substances 0.000 claims abstract description 22
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 22
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims abstract description 22
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 14
- 238000007670 refining Methods 0.000 claims abstract description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract 8
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 16
- 239000010408 film Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- ZXEYZECDXFPJRJ-UHFFFAOYSA-N $l^{3}-silane;platinum Chemical compound [SiH3].[Pt] ZXEYZECDXFPJRJ-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910021339 platinum silicide Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000004857 zone melting Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- KMOLVYMJNWKIHM-UHFFFAOYSA-N [Mo].[V].[Re] Chemical compound [Mo].[V].[Re] KMOLVYMJNWKIHM-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000637 aluminium metallisation Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- WUJISAYEUPRJOG-UHFFFAOYSA-N molybdenum vanadium Chemical compound [V].[Mo] WUJISAYEUPRJOG-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000012771 pancakes Nutrition 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Способ производства составной мишени для магнетронного распыления включает глубокое вакуумное рафинирование многократным переплавом компонентов, изготовление диска, в котором в распыляемой зоне по двум концентрическим окружностям сверлят отверстия и прессовой посадкой крепят в них цилиндрические вставки, производят получение поликристаллического плоского слитка молибдена, изготавливают из него диск с отверстиями, в котором крепят цилиндрические вставки из монокристаллов ванадия и рения. Составная мишень для магнетронного распыления получена вышеуказанным способом и состоит из литого диска и литых цилиндрических вставок, расположенных в распыляемой зоне диска по двум концентрическим окружностям в шахматном порядке, диск выполнен из поликристаллического молибдена и содержит литые цилиндрические вставки из монокристаллического ванадия и рения. В составной мишени соотношение площадей на поверхности мишени, занимаемых ванадием, рением, молибденом таково, что в результате распыления получаются пленки состава 12-50 м.% ванадия, 3,5-27 м.% рения, остальное молибден. Технический результат - повышение качества и надежности контактно-барьерных пленок в интегральных схемах. 2 н. и 1 з.п. ф-лы, 1 табл.
Description
Изобретение относится к металлургии высокочистых металлов, конкретно - к производству распыляемых металлических мишеней для микроэлектроники. В технологии производства сверхбольших интегральных схем (СБИС) на кремнии различные сплавы используют в качестве диффузионных барьерных слоев между кремниевой подложкой и металлизацией из алюминиевых сплавов. В частности, тонкопленочные барьеры изготавливают путем распыления составных мишеней, что часто обусловлено трудностью или невозможностью получения сплавов непосредственным сплавлением компонентов. Поэтому использование составных мишеней, состоящих из нескольких компонентов высокой чистоты и позволяющих получать пленки заданного химического состава, представляет прекрасную альтернативу традиционным способам выплавки сплавов.
Из уровня техники известен способ производства вольфрам-титановых мишеней для магнетронного распыления [Патент РФ №2352684, 03.08.07], включающий глубокое вакуумное рафинирование многократным переплавом исходных металов с получением поликристаллического слитка титана и монокристалла вольфрама, изготовление из поликристаллического слитка титана диска, в котором, в распыляемой зоне, по двум концентрическим окружностям в шахматном порядке сверлят отверстия и прессовой посадкой крепят в них литые цилиндрические вставки из монокристалла вольфрама, предварительно подвергнутого шлифовке и резке на мерные длины. В соответствии с упомянутым патентом соотношение площадей на поверхности мишени, занимаемых вольфрамом и титаном, обеспечивает при магнетронном распылении получение пленок состава 35-40 ат.% титана. Этот способ получения и сами мишени прошли серьезную проверку в производстве и хорошо зарекомендовали себя. Материалы других композиций, например на основе молибдена и ванадия, также используют для создания контактно-барьерных слоев, однако при этом всегда возникают большие препятствия на пути получения сплавов для изготовления мишеней. Так, при выплавке сплава молибдена с ванадием из-за образующихся интерметаллидов возникают трудности с последующей мехобработкой. Выплавка слитка с заданным содержанием обоих компонентов часто непредсказуема из-за непредсказуемых потерь при вакуумной плавке. Еще большие трудности возникают при получении тройных сплавов.
Цель изобретения - повышение надежности и технологичности барьерных слоев за счет уменьшения механических напряжений и улучшения однородности металлизации.
Это достигается тем, что в способе производства составной мишени для магнетронного распыления, включающем глубокое вакуумное рафинирование многократным переплавом компонентов, изготовление диска, в котором, в распыляемой зоне, по двум концентрическим окружностям сверлят отверстия и прессовой посадкой крепят в них цилиндрические вставки, производится получение поликристаллического плоского слитка молибдена, изготовление из него диска с отверстиями, в котором крепят цилиндрические вставки из монокристаллов ванадия и рения.
Это достигается тем, что в составной мишени для магнетронного распыления, характеризующейся тем, что она получена способом по п.1 и состоит из литого диска и литых цилиндрических вставок, расположенных в распыляемой зоне диска по двум концентрическим окружностям в шахматном порядке, диск выполнен из поликристаллического молибдена и содержит литые цилиндрические вставки из монокристаллического ванадия и рения.
Это достигается тем, что мишень имеет соотношение площадей на поверхности, занимаемых ванадием, рением, молибденом, и при магнетронном распылении обеспечивает получение пленок состава 12-50 м.% ванадия, 3,5-27 м.% рения, остальное молибден.
Способ осуществляется следующим образом. Производится глубокое вакуумное рафинирование всех трех компонентов - молибдена, ванадия и рения. Молибден переплавляют в электронно-лучевой установке в горизонтальном кристаллизаторе с получением плоского поликристаллического слитка в виде «блина», который подвергают мехобработке с получением диска. В молибденовом диске выполняют отверстия определенного диаметра для размещения монокристаллических вставок ванадия и рения. Исходные ванадий и рений подвергают электронно-лучевой зонной плавке с получением монокристаллов ванадия и рения, которые подвергают шлифовке и резке на мерные длины, в результате чего получают цилиндрические вставки для запрессовывания в отверстия, выполненные в молибденовом диске. Соотношение между количеством монокристаллических вставок ванадия и рения зависит от заданных содержаний молибдена, ванадия и рения в напыляемой пленке. Вставки ванадия и рения в молибденовом диске размещают равномерно по зоне распыления.
ПРИМЕР РЕАЛИЗАЦИИ СПОСОБА
Реализацию способа получения составной мишени при нанесении ванадий-рений-молибденовых пленок с заданным соотношением компонентов проводили с целью определения оптимальных режимов распыления и оптимального соотношения элементов в диффузионных контактно-барьерных слоях, когда наблюдается наименьшая взаимная растворимость на границе с алюминиевой металлизацией, достигается высокая термостойкость слоя в сочетании с низким удельным электросопротивлением, высокой адгезией и оптимальными механическими свойствами барьерного слоя. Основу мишени, представляющую собой диск диаметром 190 мм и толщиной 25 мм, изготавливали из поликристаллического слитка высокочистого молибдена, выплавленного в вакууме в горизонтальном водоохлаждаемом медном кристаллизаторе в электронно-лучевой установке JOK. Монокристаллы ванадия и рения диаметром 11,5 мм произвольной кристаллографической ориентировки рафинировали и выращивали в вакуумной установке для электронно-лучевой зонной плавки «Зона», оснащенной специальной электронной пушкой с защищенным кольцевым катодом. Перед проведением электроискровой резки монокристаллов ванадия и рения на мерные длины с получением вставок проводили шлифование монокристаллических прутков до диаметра 11 мм. Далее вставки запрессовывали в отверстия в молибденовом диске, причем количество вставок из обоих металлов подбиралось в зависимости от заданного соотношения всех трех металлов в финишной пленке. Осаждение пленок проводили на установке магнетронного распыления с малогабаритным магнетронным источником с электромагнитом «Оратория-5» и водоохлаждаемой составной мишенью диаметром 190 мм. Испытания проводили на сплавах с одинаковым соотношением базовых компонентов (молибдена и ванадия) и различным содержанием рения, зависящим от заданного содержания трех компонентов в пленке. Распыление вели в аргоне при следующих режимах: рабочее давление аргона 5·10-1 Па, ток разряда от 3,5-8,5 А, напряжение на аноде 400 В, ток электромагнита 260 А, магнитная индукция 0,12 Тл. Затем в том же вакуумном цикле электронно-лучевым испарением наносили алюминий. Рисунок токопроводящих элементов с контактно-барьерными слоями из сплава толщиной 0,12 мкм на тестовых образцах, выполненных из кремниевых пластин типа КЭФ-0,2 с окисленной поверхностью и контактными окнами в окисле, получали методом фотолитографии при использовании фоторезиста типа ФП-РН-7. Травление двухслойной пленки (Mo-V-Re)/Al проводили в промышленной установке плазмохимического травления в смеси элегаза с кислородом при давлении 600 Па и мощности ВЧ-разряда 300 Вт. Величину остаточных напряжений в пленке сплава, косвенно свидетельствующую о несоответствии температурных коэффициентов линейного расширения пленки и подложки при прочих равных условиях, контролировали с помощью рентгеноструктурного анализа на дифрактометре ДРОН-2.
Тестовые образцы содержали р-n-переходы на глубине 0,18 мкм от поверхности. Отжиг проводили в аргоне при температуре 525±5°С в течение 30 мин. Ток утечки р-n-перехода позволял судить о стабильности барьерных свойств анализируемого слоя. Аналогично изготавливали и испытывали образцы с контактно-барьерными слоями из двойного сплава молибден-ванадий. Ряд тестовых структур создавали с предварительным нанесением слоя платины толщиной 0,05 мкм и термообработкой при 400°С в течение 12 мин в аргоне для формирования в контактных окнах силицида платины. Ускоренные испытания проводили под токовой нагрузкой при температуре кристаллов кремния 185°С. Результаты испытаний приведены в Таблице 1.
Таблица 1 | ||||
Результаты испытаний тестовых структур | ||||
№ п/п | Состав материала, м.% | Остаточные механические напряжения в пленке сплава, ГПа | Время безотказной работы контактов под нагрузкой при плотности тока 3·103 А/см2, час | Изменение обратного тока р-n-перехода под контактом после испытания в течение 32 ч, % |
1 | V 12; Re 3,5; Мо - ост | <0,8 | 172 | <10 |
2 | V 50; Re 14; Мо - ост | <0,7 | 240 | <10 |
3 | V 14; Re 18; Мо - ост | <0,4 | 252 | <8 |
4* | V 32; Re 27; Мо - ост | <0,5 | 228 | <10 |
5 | V 16; Re 3,4; Мо - ост | ~1,2 | 76 | 25 |
6 | V 51;Re 13; Mo - ост | ~1,0 | 108 | 20 |
7 | V 25; Мо - ост | ~1,1 | 68 | 40-50 |
8 | V 60; Мо - ост | ~1,0 | 64 | 52-65 |
9 | V 11,5; Re 4,5; Мо - ост | ~1,2 | 85 | 25 |
10 | V 6; Re 28; Мо - ост | ~1,1 | 112 | 18 |
*Тестовые структуры с подслоем силицида платины в контактных окнах |
Как следует из результатов испытаний, приведенных в таблице 1, наилучшие данные характерны для тройных сплавов, состав которых соответствует предложенному материалу.
Claims (3)
1. Способ производства составной мишени для магнетронного распыления, включающий глубокое вакуумное рафинирование многократным переплавом компонентов, изготовление диска, в котором в распыляемой зоне по двум концентрическим окружностям сверлят отверстия и прессовой посадкой крепят в них цилиндрические вставки, отличающийся тем, что производится получение поликристаллического плоского слитка молибдена, изготовление из него диска с отверстиями, в котором крепят цилиндрические вставки из монокристаллов ванадия и рения.
2. Составная мишень для магнетронного распыления, характеризующаяся тем, что она получена способом по п.1 и состоит из литого диска и литых цилиндрических вставок, расположенных в распыляемой зоне диска по двум концентрическим окружностям в шахматном порядке, отличающаяся тем, что диск выполнен из поликристаллического молибдена и содержит литые цилиндрические вставки из монокристаллического ванадия и рения.
3. Мишень по п.2, отличающаяся тем, что соотношение площадей на поверхности мишени, занимаемых ванадием, рением и молибденом, при магнетронном распылении обеспечивает получение пленок состава 12-50 м.% ванадия, 3,5-27 м.% рения, остальное молибден.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009127339/28A RU2392686C1 (ru) | 2009-07-17 | 2009-07-17 | Составная мишень для распыления и способ ее получения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009127339/28A RU2392686C1 (ru) | 2009-07-17 | 2009-07-17 | Составная мишень для распыления и способ ее получения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2392686C1 true RU2392686C1 (ru) | 2010-06-20 |
Family
ID=42682915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009127339/28A RU2392686C1 (ru) | 2009-07-17 | 2009-07-17 | Составная мишень для распыления и способ ее получения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2392686C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2454481C2 (ru) * | 2010-06-03 | 2012-06-27 | Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) | Способ получения составной мишени для распыления из сплава вольфрам-титан-кремний |
RU2454482C2 (ru) * | 2010-06-03 | 2012-06-27 | Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) | Способ получения составной мишени для распыления из сплава вольфрам-титан-рений |
RU2695716C1 (ru) * | 2017-06-14 | 2019-07-25 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" | Составная мишень для магнетронного распыления |
RU2808293C1 (ru) * | 2023-07-31 | 2023-11-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбТЭТУ "ЛЭТИ") | Распыляемый узел магнетрона для осаждения композиционных многокомпонентных пленок Ni0.60Co0.3Fe0.1 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4915810A (en) * | 1988-04-25 | 1990-04-10 | Unisys Corporation | Target source for ion beam sputter deposition |
RU2087563C1 (ru) * | 1995-09-13 | 1997-08-20 | Владлен Александрович Чернов | Способ электронно-лучевого переплава кускового металлического материала и устройство для его осуществления |
JP2000297365A (ja) * | 1999-04-14 | 2000-10-24 | Agency Of Ind Science & Technol | AlTi系合金スパッタリングターゲット及び耐摩耗性AlTi系合金硬質皮膜並びに同皮膜の形成方法 |
US6868896B2 (en) * | 2002-09-20 | 2005-03-22 | Edward Scott Jackson | Method and apparatus for melting titanium using a combination of plasma torches and direct arc electrodes |
RU2262151C1 (ru) * | 2003-12-29 | 2005-10-10 | Марийский государственный технический университет | Мишень для ионно-плазменного нанесения пленочных покрытий сложного состава и способ ее изготовления |
RU2352684C1 (ru) * | 2007-08-03 | 2009-04-20 | Вадим Георгиевич Глебовский | Вольфрам-титановая мишень для магнетронного распыления и способ ее получения |
-
2009
- 2009-07-17 RU RU2009127339/28A patent/RU2392686C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4915810A (en) * | 1988-04-25 | 1990-04-10 | Unisys Corporation | Target source for ion beam sputter deposition |
RU2087563C1 (ru) * | 1995-09-13 | 1997-08-20 | Владлен Александрович Чернов | Способ электронно-лучевого переплава кускового металлического материала и устройство для его осуществления |
JP2000297365A (ja) * | 1999-04-14 | 2000-10-24 | Agency Of Ind Science & Technol | AlTi系合金スパッタリングターゲット及び耐摩耗性AlTi系合金硬質皮膜並びに同皮膜の形成方法 |
US6868896B2 (en) * | 2002-09-20 | 2005-03-22 | Edward Scott Jackson | Method and apparatus for melting titanium using a combination of plasma torches and direct arc electrodes |
RU2262151C1 (ru) * | 2003-12-29 | 2005-10-10 | Марийский государственный технический университет | Мишень для ионно-плазменного нанесения пленочных покрытий сложного состава и способ ее изготовления |
RU2352684C1 (ru) * | 2007-08-03 | 2009-04-20 | Вадим Георгиевич Глебовский | Вольфрам-титановая мишень для магнетронного распыления и способ ее получения |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2454481C2 (ru) * | 2010-06-03 | 2012-06-27 | Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) | Способ получения составной мишени для распыления из сплава вольфрам-титан-кремний |
RU2454482C2 (ru) * | 2010-06-03 | 2012-06-27 | Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) | Способ получения составной мишени для распыления из сплава вольфрам-титан-рений |
RU2695716C1 (ru) * | 2017-06-14 | 2019-07-25 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" | Составная мишень для магнетронного распыления |
RU2808293C1 (ru) * | 2023-07-31 | 2023-11-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбТЭТУ "ЛЭТИ") | Распыляемый узел магнетрона для осаждения композиционных многокомпонентных пленок Ni0.60Co0.3Fe0.1 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0735152B1 (en) | Molybdenum-tungsten material for wiring, molybdenum-tungsten target for wiring, process for producing the same, and molybdenum-tungsten wiring thin film | |
US20080121137A1 (en) | Coating material based on a copper-indium-gallium alloy, in particular for the production of sputter targets, tubular cathodes and the like | |
CN107083534A (zh) | 含钼靶材 | |
JPH05295531A (ja) | Ti−W系スパッタリングターゲットおよびその製造方法 | |
JP2015061943A (ja) | 高純度銅マンガン合金スパッタリングターゲット | |
JP2010502841A (ja) | 非常に小さな結晶粒径と高エレクトロマイグレーション抵抗とを有する銅スパッタリングターゲットおよびそれを製造する方法 | |
JP4415303B2 (ja) | 薄膜形成用スパッタリングターゲット | |
TW201131001A (en) | Silver alloy target for forming reflecting electrode film of organic el element, and its manufacturing method | |
JP2006509109A (ja) | 高純度ニッケル/バナジウムスパッタリング部品;およびスパッタリング部品の製造方法 | |
JP2011523978A (ja) | モリブデン−ニオブ合金、かかる合金を含有するスパッタリングターゲット、かかるターゲットの製造方法、それから製造される薄膜、およびその使用 | |
RU2392686C1 (ru) | Составная мишень для распыления и способ ее получения | |
US20070281457A1 (en) | Copper layer and a method for manufacturing said copper layer | |
RU2454481C2 (ru) | Способ получения составной мишени для распыления из сплава вольфрам-титан-кремний | |
WO2000004203A1 (fr) | Cible de pulverisation cathodique et piece pour appareil de formation de couches minces | |
US20180305805A1 (en) | Ti-Ta ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR | |
CN101994085A (zh) | 高热稳定性铜-难熔金属非晶薄膜及其制备方法 | |
KR20120089835A (ko) | 스퍼터링 타겟, 반도체 장치 및 반도체 장치의 제조 방법 | |
JPH05214519A (ja) | チタンスパッタリングターゲット | |
JP2018172716A (ja) | タングステンターゲット | |
US11837449B2 (en) | Ti-Nb alloy sputtering target and production method thereof | |
JP6091911B2 (ja) | Cu−Mn合金スパッタリングターゲット材、Cu−Mn合金スパッタリングターゲット材の製造方法、および半導体素子 | |
JP4686008B2 (ja) | スパッタリングターゲットとそれを用いたCu膜および電子デバイス | |
RU2454482C2 (ru) | Способ получения составной мишени для распыления из сплава вольфрам-титан-рений | |
RU2392685C1 (ru) | Распыляемые мишени из высокочистых сплавов на основе переходных металлов и способ их производства | |
JP2013133491A (ja) | スパッタリング用銅ターゲット材及びスパッタリング用銅ターゲット材の製造方法 |