RU2384932C1 - Система электропередачи и способ управления ею - Google Patents

Система электропередачи и способ управления ею Download PDF

Info

Publication number
RU2384932C1
RU2384932C1 RU2008133608/09A RU2008133608A RU2384932C1 RU 2384932 C1 RU2384932 C1 RU 2384932C1 RU 2008133608/09 A RU2008133608/09 A RU 2008133608/09A RU 2008133608 A RU2008133608 A RU 2008133608A RU 2384932 C1 RU2384932 C1 RU 2384932C1
Authority
RU
Russia
Prior art keywords
converter
zero
control
pole
voltage
Prior art date
Application number
RU2008133608/09A
Other languages
English (en)
Inventor
Ханс БЬЕРКЛУНД (SE)
Ханс БЬЕРКЛУНД
Рольф ЮНГКВИСТ (SE)
Рольф ЮНГКВИСТ
Original Assignee
Абб Текнолоджи Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Абб Текнолоджи Лтд. filed Critical Абб Текнолоджи Лтд.
Application granted granted Critical
Publication of RU2384932C1 publication Critical patent/RU2384932C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

Использование: в области электротехники. Технический результат заключается в повышении надежности. Система электропередачи содержит электрическую подстанцию-выпрямитель (2) и электрическую подстанцию-инвертор (3), каждая из которых имеет последовательное соединение, по меньшей мере, двух преобразователей (6-9). Параллельно с каждым преобразователем соединен обходной выключатель (12-15). Устройство (22-25) управления выполнено с возможностью деблокировки блокированного преобразователя путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока весь постоянный ток не потечет через этот преобразователь, и последующего управления упомянутым обходным выключателем для размыкания при нулевом токе и для останова работы упомянутого преобразователя путем управления им с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не станет нулевым, и для последующего управления преобразователем, подлежащим блокировке, путем включения обходной для него пары и последующего управления упомянутым обходным выключателем для замыкания его с целью принятия всего постоянного тока, когда напряжение между нулевой шиной (11) и полюсом (10) линии электропередачи между упомянутыми электрическими подстанциями должно быть соответственно увеличено или уменьшено. 3 н. и 11 з.п. ф-лы, 2 ил.

Description

Область техники, к которой относится изобретение,
и предшествующий уровень техники
Настоящее изобретение относится к системе электропередачи ПТВН (постоянного тока высокого напряжения), содержащей на каждом конце линии электропередачи ПТВН преобразовательную электрическую подстанцию для соединения упомянутой линии электропередачи с системой АС (переменного тока), причем каждая упомянутая электрическая подстанция содержит последовательное соединение, по меньшей мере, двух преобразователей, сторона DC (постоянного тока) которых соединена, с одной стороны, с полюсом упомянутой линии электропередачи на высоком потенциале, а с другой - с нулевой шиной на нулевом потенциале путем заземления, при этом первая из упомянутых преобразовательных электрических подстанций выполнена с возможностью работы в качестве выпрямителя, а другая - вторая - в качестве инвертора, причем каждый преобразователь имеет соединенный параллельно с ним обходной выключатель постоянного тока на пути тока, образующем обходной путь мимо упомянутого преобразователя, когда упомянутый выключатель замкнут, каждая преобразовательная электрическая подстанция содержит агрегат, выполненный с возможностью управления постоянным током посредством упомянутого полюса, а для каждого преобразователя электрической подстанции - устройство для управления этим преобразователем и током через него либо для увеличения напряжения между упомянутой нулевой шиной и упомянутым полюсом, а значит - и мощности, передаваемой между упомянутыми электрическими подстанциями, за счет запуска работы преобразователя, когда он блокирован, либо уменьшения напряжения между упомянутой нулевой шиной и упомянутым полюсом, а значит - и мощности, передаваемой между упомянутыми электрическими подстанциями, за счет останова работы преобразователя, когда он задействован, а также к способу управления такой системой электропередачи.
Изобретение не ограничивается какими-либо конкретными уровнями напряжения между упомянутой нулевой шиной и упомянутым полюсом линии электропередачи ПТВН, а является применимой, в частности, к напряжениям свыше 500 кВ, а это означает, что упомянутая линия электропередачи передает значительную мощность, и система электропередачи требует очень высокого уровня надежности. Это изобретение также не ограничивается какими-либо конкретными уровнями токов через упомянутые полюса упомянутой линии электропередачи, а упомянутые линии предпочтительно рассчитаны на токи свыше 1 кА.
Преобразователи включают в себя некоторое количество токовых вентилей в любой известной конфигурации, например в 12-импульсной мостовой конфигурации. Преобразователями могут быть коммутируемыми линией преобразователей на основе источников тока, в которых переключающие элементы, такие как тиристоры, запираются при пересечении нулевого уровня переменного тока в упомянутой системе переменного тока. Преобразователи также могут быть принудительно коммутируемыми преобразователями на основе источников напряжения, в которых упомянутые переключающие элементы являются запираемыми приборами, управляемыми в соответствии с моделью широтно-импульсной модуляции (ШИМ).
Два или более преобразователей обычно соединяют последовательно, когда напряжение, которое надлежит получить между упомянутой нулевой шиной и упомянутым полюсом, оказывается слишком высоким, чтобы можно было получить его посредством лишь одного преобразователя. Это может вызывать большие возмущения с очень серьезными последствиями для систем переменного тока, соединенных с упомянутой системой электропередачи ПТВН, если бы отказали все преобразователи преобразовательной электрической подстанции и сама эта преобразовательная электрическая подстанция, а также если мощность, передаваемая через систему, падает до нуля. Это основная причина установления упомянутого обходного пути тока для каждого преобразователя, вследствие чего неправильно работающий преобразователь можно обойти и - возможно - отсоединить для технического обслуживания, а преобразовательная электрическая подстанция при этом может работать за счет управления другими преобразователями электрической подстанции. Тогда становится важным наличие возможности остановить такой преобразователь так, чтобы не вызвать возмущений в системе электропередачи. То же самое касается процедуры запуска преобразователя такой системы для увеличения напряжения между нулевой шиной и упомянутым полюсом, а значит - и мощности, передаваемой между упомянутыми электрическими подстанциями.
Такую процедуру запуска или процедуру останова преобразователей либо для увеличения, либо для уменьшения напряжения упомянутой нулевой шиной и упомянутым полюсом, в системах электропередачи того типа, которые охарактеризованы во вводной части описания, проводили довольно резко, что приводило к значительному риску вызывания возмущений в системе электропередачи большой мощности, а также в соединенных с ней системах переменного тока. Это становится серьезным недостатком, в частности, если напряжение, а значит - и мощность, оказываются очень высокими, такими как в случае напряжения выше 600 кВ, в частности - порядка 800 кВ или выше.
Сущность изобретения
Задача настоящего изобретения состоит в том, чтобы разработать систему электропередачи того типа, которая охарактеризована в вводной части описания, и способ управления ею, которые дают возможность управлять запуском и остановом преобразователя, что минимизирует возмущение при передаче мощности упомянутой системой электропередачи.
В соответствии с изобретением эта задача решается за счет разработки такой системы электропередачи, в которой каждое устройство управления выполнено с возможностью деблокировки блокированного упомянутого преобразователя путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, и последующего управления упомянутым обходным выключателем для размыкания при, по существу, нулевом токе и для останова работы упомянутого преобразователя путем управления им с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не станет, по существу, нулевым, и для последующего управления преобразователем, подлежащим блокировке, путем включения обходной для него пары и последующего управления упомянутым обходным выключателем для замыкания с целью принятия всего постоянного тока.
Таким образом, использование угла управления упомянутыми преобразователями приводит к плавному запуску и останову упомянутого преобразователя. Управляя преобразователем таким образом, можно размыкать или замыкать обходной выключатель постоянного тока надежно и независимо от фактического режима работы системы электропередачи ПТВН. Термин «большой угол запаздывания» имеет разный смысл в зависимости от типа режима работы преобразователя, и иногда угол более 45° оказывается достаточным, чтобы считать его большим, а при режиме работы другого типа угол более 140° потребуется считать большим.
В соответствии с вариантом осуществления изобретения, каждая электрическая подстанция имеет два упомянутых преобразователя, соединенные последовательно между упомянутой нулевой шиной и упомянутым полюсом, что, например, в случае, когда оба преобразователя задействованы, означает 800 кВ между упомянутой нулевой шиной и упомянутым полюсом, и 400 кВ, когда задействован лишь один из них, и, когда постоянный ток поддерживается неизменным, лишь половина мощности передается.
В соответствии с другим вариантом осуществления изобретения каждая упомянутая электрическая подстанция имеет более двух упомянутых преобразователей, соединенных последовательно между упомянутой нулевой шиной и упомянутым полюсом, а упомянутые устройства управления каждой электрической подстанции выполнены с возможностью увеличения или уменьшения мощности, передаваемой между электрическими подстанциями, путем запуска или останова работы одного преобразователя этой преобразовательной электрической подстанции за раз. Это приводит к надежной и безопасной процедуре увеличения или уменьшения мощности, передаваемой между электрическими подстанциями.
В соответствии с еще одним вариантом осуществления изобретения упомянутый агрегат выполнен с возможностью управления постоянным током, позволяющего поддерживать его на уровне, по существу, неизменного, полного значения тока при нормальных условиях системы, независимо от того, сколько последовательно соединенных преобразователей задействовано в каждой подстанции, причем упомянутые устройства управления упомянутых преобразователей координируют, увеличивая мощность, передаваемую посредством операции запуска преобразователя, не задействованного в упомянутом последовательном соединении преобразователей для того, чтобы посредством него увеличить напряжение между нулевой шиной и полюсом за счет того, что
устройство управления, принадлежащее преобразователю, называемому запускающим преобразователем, который не задействован в упомянутом выпрямителе, выполнено с возможностью деблокировки упомянутого преобразователя путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, и последующего управления упомянутым параллельным ему обходным выключателем для размыкания при, по существу, нулевом токе, причем устройство управления, принадлежащее незадействованному преобразователю инвертора, выполнено с возможностью последующей деблокировки упомянутого преобразователя путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, и последующего размыкания параллельного ему обходного выключателя, по существу, при нулевом токе, и за счет того, что упомянутый агрегат выполнен с возможностью последующего управления упомянутым запускающим преобразователем для увеличения напряжения между нулевой шиной и полюсом до напряжения, соответствующего увеличенному количеству преобразователей, участвующих в работе. Такая система гарантирует плавную, и потому надежную, и безопасную процедуру увеличения мощности, передаваемой между преобразовательными электрическими подстанциями.
В соответствии с еще одним вариантом осуществления изобретения упомянутые устройства управления упомянутых преобразователей координированы для уменьшения мощности, передаваемой между электрическими подстанциями при протекании, по существу неизменного постоянного тока в упомянутой линии электропередачи путем уменьшения напряжения между упомянутой нулевой шиной и упомянутым полюсом за счет того, что: устройство управления, принадлежащее преобразователю в упомянутой электрической подстанции-инверторе, выполнено с возможностью управления этим преобразователем с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не окажется близким к нулю, для последующей блокировки преобразователя путем включения обходной для него пары и последующего замыкания обходного выключателя, параллельного этому преобразователю, причем устройства управления преобразователей на электрической подстанции-выпрямителе выполнены с возможностью последующей компенсации перепада напряжения между упомянутым полюсом и упомянутой нулевой шиной путем увеличения угла запаздывания, с которым происходит управление этими преобразователями, при этом устройство управления, принадлежащее преобразователю электрической подстанции-выпрямителя, выполнено с возможностью последующего управления упомянутым преобразователем с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не окажется близким к нулю, для последующего управления преобразователем, подлежащим блокировке, путем включения обходной для него пары и последующего замыкания обходного выключателя для принятия всего постоянного тока. Такая система гарантирует плавную, и потому надежную, и безопасную процедуру для уменьшения мощности, передаваемой между электрическими подстанциями системы.
В соответствии с еще одним вариантом осуществления изобретения каждый упомянутый преобразователь содержит 12 преобразовательных вентилей, расположенных в так называемой 12-импульсной конфигурации с тремя ветвями четырех преобразовательных вентиля, соединенных последовательно.
В соответствии с еще одним вариантом осуществления изобретения, упомянутые преобразователи преобразовательной электрической подстанции, работающей в качестве выпрямителя, выполнены с возможностью генерирования, когда они все задействованы, напряжения постоянного тока более 600 кВ, например 700-1000 кВ, между упомянутой нулевой шиной и упомянутым полюсом, а в соответствии с дополнительным вариантом осуществления изобретения система электропередачи рассчитана на возможность пропускания постоянного тока, превышающего 500 А, превышающего 1 кА или 2-5 кА, в упомянутом полюсе между преобразовательными электрическими подстанциями.
Изобретение также относится к способу управления системой электропередачи ПТВН, соответствующему прилагаемому независимому пункту формулы изобретения на способ. Преимущества и признаки такого способа и варианты его осуществления охарактеризованы в зависимых пунктах формулы изобретения на способ очевидны из вышеизложенного описания различных вариантов осуществления системы электропередачи в соответствии с изобретением.
Изобретение также относится к компьютерной программе и машиночитаемому носителю, соответствующему соответственным прилагаемым пунктам формулы изобретения. Легко понять, что способ, соответствующий изобретению, охарактеризованный в прилагаемой группе пунктов формулы изобретения на способ, подходит для осуществления посредством команд программы, поступающих из процессора, на который может оказывать воздействие компьютерная программа, включающая в себя шаги программы, о которых здесь упоминается.
Дополнительные преимущества, а также преимущественные признаки изобретения, очевидны из нижеследующего описания.
Краткое описание чертежей
Ниже, со ссылками на прилагаемые чертежи, будет приведено конкретное описание вариантов осуществления изобретения, приводимых в качестве примеров.
На чертежах:
фиг.1 - схематический вид, иллюстрирующий общую конструкцию системы электропередачи ПТВН в соответствии с первым вариантом осуществления изобретения, а
фиг.2 - вид системы электропередачи ПТВН, аналогичный виду на фиг.1, в соответствии со вторым вариантом осуществления изобретения.
Подробное описание вариантов осуществления изобретения
На фиг.1 показана система электропередачи ПТВН в соответствии с первым вариантом осуществления изобретения. Эта система в данном случае имеет на каждом конце линии 1 электропередачи преобразовательную электрическую подстанцию 2, 3 для соединения упомянутой линии электропередачи со схематически показанной системой 4, 5 переменного тока. Предполагается, что система 4 переменного тока является генерирующей системой в форме электростанции любого типа с генераторами электричества, и при этом предполагается, что система 5 переменного тока является потребительской системой или сетью, соединенной с потребителями электроэнергии, такими как промышленные предприятия и населенные пункты. Таким образом, первая преобразовательная электрическая подстанция 2 выполнена с возможностью работы в качестве выпрямителя, а другая, вторая преобразовательная электрическая подстанция 3 - в качестве инвертора. Каждая электрическая подстанция содержит последовательное соединение двух преобразователей 6, 7 и 8, 9, сторона постоянного тока которых соединена, с одной стороны, с полюсом 10 положительной полярности упомянутой линии электропередачи на высоком потенциале, а с другой - с нулевой шиной 11 на нулевом потенциале путем заземления. Каждый преобразователь включает в себя некоторое количество преобразовательных вентилей в любой известной конфигурации, например в 12-импульсной мостовой конфигурации. Эти вентили сформированы при помощи множества мощных полупроводниковых устройств, соединенных последовательно для совместного поддержания высокого напряжения в их блокированном состоянии.
Каждый преобразователь имеет соединенный параллельно с ним обходной выключатель 12-15 постоянного тока на пути 16-19 тока, образующий обходной путь мимо упомянутого преобразователя, когда упомянутый выключатель замкнут.
Каждая преобразовательная электрическая подстанция дополнительно содержит агрегат 20, 21, выполненный с возможностью управления постоянным током посредством упомянутого полюса 10 путем управления преобразователями электрической подстанции, когда они постоянно в работе. Каждая электрическая подстанция дополнительно содержит для каждого преобразователя отдельное устройство 22-25 управления, выполненное с возможностью управления связанным с ним преобразователем для запуска работы этого преобразователя, когда он блокирован, до тех пор, пока не достигнута работа в установившемся режиме, и для останова работы этого преобразователя, когда он задействован. То, как это делается, является ключевой позицией изобретения и будет описано сейчас.
Выключатели 12-15 разомкнуты, когда связанный с ними преобразователь работает. Теперь предположим, что работает один преобразователь каждой электрической подстанции, а именно работают преобразователи 6 и 9. Это означает, что электрическая подстанция-выпрямитель может создать лишь половину напряжения между нулевой шиной 11 и полюсом 10 по сравнению со случаем, когда на каждой электрической подстанции работают оба преобразователя. Например, в данном случае это означает, что напряжение составляет примерно 400 кВ. Тогда преобразователи 7 и 8 блокированы, а выключатели 13 и 14 замкнуты, так что весь постоянный ток течет через эти выключатели. Постоянный ток в полюсе 10 управляется управляющим агрегатом 20 таким образом, что оказывается таким же, как в случае, если бы работали все преобразователи, и тогда передаваемая мощность равна половине мощности, передаваемой в случае, когда работают все преобразователи. Управляющие агрегаты 20 и 21 управляют преобразователями 6 и 9 в этом режиме работы. Теперь предположим, что напряжение между нулевой шиной и полюсом, а также мощность, передаваемая между электрическими подстанциями 2, 3, увеличится. Тогда устройство 23 управления для преобразователя 7 предпринимает управляющее воздействие на преобразователь 7, деблокируя его путем начала управления им с большим углом запаздывания, таким как составляющий порядка 150-160°, и постепенного, т.е. медленного, уменьшения угла запаздывания то тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, в котором управление постоянным током одновременно осуществляется так, что он оказывается, по существу, равным току в полюсе. После подтверждения того, что ток в обходном выключателе 13 близок к нулю, задается порядок размыкания для этого обходного выключателя. Затем будет приложен импульс тока, который делает возможным размыкание выключателя 13. Как только ток через обходной выключатель 13 становится равным нулю, а этот обходной выключатель подтвердил выполнение указания размыкания, устройство 23 управления устанавливается в поддерживающее состояние, а управление преобразователем 7 медленно передается управляющему агрегату 20.
Следующий этап увеличения мощности, передаваемой от электрической подстанции-выпрямителя 2 к электрической подстанции-инвертору 3, осуществляется путем управления устройством 24 управления для преобразователя 8 инвертора с целью деблокировки этого преобразователя 8 путем начала управления им с большим углом запаздывания, таким как приблизительно 105°. Затем угол запаздывания постепенно медленно уменьшают примерно до 90°, а постоянным током управляют так, что он оказывается равным току в полюсе до тех пор, пока, по существу весь постоянный ток не потечет через преобразователь 8, после чего задается порядок размыкания для обходного выключателя 14, который разомкнется, по существу, при нулевом токе. Как только обходной выключатель подтвердил выполнение указания размыкания, угол запаздывания для управления преобразователем 8 затем снижается до уровня, соответствующего нормальной работе, и это означает, что он составляет 18-20°. Затем устройство 24 управления устанавливается в поддерживающее состояние, а управляющее воздействие на преобразователь 8 медленно передается управляющему агрегату 21. Агрегат 20 управления электрической подстанции-выпрямителя теперь начинает управлять ее преобразователями 6 и 7 для увеличения напряжения между нулевой шиной 11 и полюсом 10, например, от 400 кВ до 800 кВ, вследствие чего мощность, передаваемая между электрическими подстанциями, соответственно увеличивается, если ток поддерживается на том же уровне.
Например, когда необходимо отсоединить преобразователь 6 по какой-либо причине, такой как его техническое обслуживание (хотя это и не показано на чертежах, на обеих сторонах каждого преобразователя предусмотрен разъединитель), это делается следующим образом. Устройство 24 управления, принадлежащее преобразователю, скажем, преобразователю 8, электрической подстанции-инвертора, принимает управление этим преобразователем от управляющего агрегата 21 и начинает управлять этим преобразователем с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не окажется близким к нулю, после чего преобразователь 8 блокируется путем включения обходной для него пары вентилей тока. Затем осуществляется управление обходным выключателем 14 с целью его замыкания. Затем устройства 22, 23 управления преобразователей 6, 7 на электрической подстанции-выпрямителе принимают управление этим преобразователем от управляющего агрегата 20 путем компенсации падения напряжения между упомянутым полюсом и нулевой шиной, обусловленного управлением преобразователем 8 инвертора путем увеличения угла запаздывания, с которым осуществляется управление этими преобразователями 6, 7. Это происходит вплоть до достижения угла запаздывания порядка 60°. Затем устройство 22 управления для преобразователя 6 начинает управлять упомянутым преобразователем с постепенно увеличивающимся углом запаздывания до тех пор, пока он не окажется близким к нулю. Затем управление преобразователем 6 осуществляется с целью его блокировки путем включения обходной для него пары, и тогда его обходной выключатель 12 замыкается, принимая весь постоянный ток. Затем управляющие агрегаты 20 и 21 примут управление электрической подстанцией-выпрямителем и преобразователями электрической подстанции-инвертора, соответственно. Это значит, что тогда мощность, передаваемая из электрической подстанции-выпрямителя 2 в электрическую подстанцию-инвертор 3, уменьшается приблизительно на 50% путем уменьшения напряжения между нулевой шиной 11 и полюсом 10 приблизительно на 50% при одновременном поддержании постоянного тока, по существу, неизменным. Следовательно, это напряжение будет затем создаваться за счет работы преобразователя 7, а преобразователь 9 будет способствовать его поддержанию.
Эти процедуры запуска и останова преобразователей системы электропередачи ПТВН для увеличения или уменьшения мощности, передаваемой этой системой, являются весьма плавными и поэтому надежными и безопасными, минимизируя возмущения передачи мощности ПТВН.
Фиг.2 иллюстрирует систему электропередачи ПТВН в соответствии с еще одним вариантом осуществления изобретения, отличающуюся от той, которая показана на фиг.1, наличием на каждой электрической подстанции трех преобразователей 30-35 вместо двух. Соответственно, каждая электрическая подстанция имеет три устройства 40-45 управления и выключателя 50-55 постоянного тока. Другие части, идентичные тем, которые присутствуют в варианте осуществления, соответствующем фиг.1, обозначены теми же позициями. Эта система электропередачи работает так, как описано выше в соответствии с фиг.1, когда нужно увеличить или уменьшить мощность, передаваемую от электрической подстанции-выпрямителя 2 к электрической подстанции-инвертору 3, путем соответственного увеличения или уменьшения напряжения между нулевой шиной 11 и полюсом 10. Чтобы сделать эту процедуру как можно более плавной, устройства управления каждой электрической подстанции выполнены с возможностью увеличения или уменьшения мощности, передаваемой между электрическими подстанциями, путем запуска или останова работы одного преобразователя соответствующей преобразовательной подстанции за раз. Таким образом, если бы, например, работали только преобразователи 30 и 33, а мощность, передаваемая между электрическими подстанциями, подлежала увеличению, то сначала включался бы в работу только один дополнительный преобразователь каждой электрической подстанции, а когда понадобилось бы дополнительно увеличить передаваемую мощность, оставшийся преобразователь, каждой электрической подстанции выключался бы в работу. Соответствующая процедура применима и для случая уменьшения мощности, передаваемой между электрическими подстанциями.
Конечно, изобретение ни в коем случае не ограничивается вышеописанными вариантами осуществления, а многочисленные возможности их модификации в рамках основного замысла изобретения, охарактеризованного в прилагаемой формуле изобретения, будут очевидны для обычного специалиста в данной области техники.
Количество преобразователей на каждой электрической подстанции может отличаться от того, которое показано на чертежах. Помимо этого, система электропередачи может быть двухполюсной системой электропередачи, имеющей также полюс с отрицательной полярностью, соединенный с нулевой шиной посредством соответствующих преобразователей, и тогда конструкция всех компонентов для этого полюса может быть такой же, как для другого полюса, например, такой, как показанная на чертежах.

Claims (14)

1. Система электропередачи ПТВН (постоянного тока высокого напряжения), содержащая на каждом конце линии электропередачи ПТВН преобразовательную электрическую подстанцию (2, 3) для соединения упомянутой линии электропередачи с системой (4, 5) переменного тока, причем каждая упомянутая электрическая подстанция содержит последовательное соединение, по меньшей мере, двух преобразователей (6-9, 30-35), сторона постоянного тока которых соединена, с одной стороны, с полюсом (10) упомянутой линии электропередачи на высоком потенциале, а с другой - с нулевой шиной (11) на нулевом потенциале путем заземления, при этом первая (2) из упомянутых преобразовательных электрических подстанций выполнена с возможностью работы в качестве выпрямителя, а другая - вторая (3) - в качестве инвертора, причем каждый преобразователь имеет соединенный параллельно с ним обходной выключатель (12-15, 50-55) постоянного тока на пути (16-19) тока, образующем обходной путь мимо упомянутого преобразователя, когда упомянутый выключатель замкнут, каждая преобразовательная электрическая подстанция содержащая агрегат (20, 21), выполненный с возможностью управления постоянным током посредством упомянутого полюса, а для каждого преобразователя электрической подстанции устройство (22-25, 40-45) для управления этим преобразователем и током через него либо для увеличения напряжения между упомянутой нулевой шиной и упомянутым полюсом, а значит - и мощности, передаваемой между упомянутыми электрическими подстанциями, за счет запуска работы преобразователя, когда он блокирован, либо уменьшения напряжения между упомянутой нулевой шиной и упомянутым полюсом, а значит - и мощности, передаваемой между упомянутыми электрическими подстанциями, за счет останова работы преобразователя, когда он задействован, характеризующаяся тем, что каждое устройство управления выполнено с возможностью деблокировки блокированного упомянутого преобразователя (6-9, 30-35) путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, и последующего управления упомянутым обходным выключателем (12-15, 50-55) для размыкания при, по существу, нулевом токе и для останова работы упомянутого преобразователя путем управления им с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не станет, по существу, нулевым, и для последующего управления преобразователем, подлежащим блокировке, путем включения обходной для него пары и последующего управления упомянутым обходным выключателем для замыкания его с целью принятия всего постоянного тока.
2. Система электропередачи по п.1, характеризующаяся тем, что каждая упомянутая электрическая подстанция (2, 3) имеет два упомянутых преобразователя (6-9), соединенные последовательно между упомянутой нулевой шиной (11) и упомянутым полюсом (10).
3. Система электропередачи по п.1, характеризующаяся тем, что каждая упомянутая электрическая подстанция (2, 3) имеет более двух упомянутых преобразователей (30-35), соединенных последовательно между упомянутой нулевой шиной (11) и упомянутым полюсом (10), и тем, что упомянутые устройства (40-45) управления каждой электрической подстанции выполнены с возможностью увеличения или уменьшения мощности, передаваемой между электрическими подстанциями, путем запуска или останова работы одного преобразователя этой преобразовательной электрической подстанции за раз.
4. Система электропередачи по любому из предыдущих пунктов, характеризующаяся тем, что упомянутый агрегат (20, 21) выполнен с возможностью управления постоянным током, позволяющего поддерживать, по существу, неизменным, полным значением тока при нормальных условиях работы системы, независимо от того, сколько последовательно соединенных преобразователей задействовано в каждой электрической подстанции, причем упомянутые устройства (22-25, 40-45) управления упомянутых преобразователей координированы с возможностью увеличения передаваемой мощности посредством операции запуска преобразователя, не задействованного в упомянутом последовательном соединении преобразователей, для того, чтобы посредством его увеличить напряжение между нулевой шиной (11) и полюсом (10) за счет того, что устройство (22, 23, 40-42) управления, принадлежащее преобразователю, называемому запускающим преобразователем, который не задействован в упомянутом выпрямителе (2), выполнено с возможностью деблокировки упомянутого преобразователя путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, и последующего управления параллельным ему обходным выключателем (12, 13, 50-55) для размыкания при, по существу, нулевом токе, причем устройство (24, 25, 43-45) управления, принадлежащее незадействованному преобразователю инвертора (3), выполнено с возможностью последующей деблокировки упомянутого преобразователя путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, и последующего размыкания параллельного ему обходного выключателя (14, 15, 53-55), по существу, при нулевом токе, а также за счет того, что упомянутый агрегат (20) выполнен с возможностью последующего управления упомянутым запускающим преобразователем для увеличения напряжения между нулевой шиной и полюсом до напряжения, соответствующего увеличенному количеству преобразователей, участвующих в работе.
5. Система электропередачи по любому из пп.1-3, характеризующаяся тем, что упомянутые устройства (22-25, 40-45) управления упомянутых преобразователей координированы с возможностью уменьшения мощности, передаваемой между электрическими подстанциями, при протекании, по существу, неизменного постоянного тока в упомянутой линии электропередачи путем уменьшения напряжения между упомянутой нулевой шиной (11) и упомянутым полюсом (10) за счет того, что устройство управления, принадлежащее преобразователю (8, 9, 33-35) в упомянутой электрической подстанции-инверторе (3), выполнено с возможностью управления этим преобразователем с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не окажется близким к нулю, для последующей блокировки преобразователя путем включения обходной для него пары и последующего замыкания обходного выключателя (14, 15, 53-55), параллельного этому преобразователю, причем устройства управления преобразователей на электрической подстанции-выпрямителе (2) выполнены с возможностью последующей компенсации перепада напряжения между упомянутым полюсом и упомянутой нулевой шиной путем увеличения угла запаздывания, с которым происходит управление этими преобразователями, при этом устройство управления, принадлежащее преобразователю (6, 7, 30-32) электрической подстанции-выпрямителя (2), выполнено с возможностью последующего управления упомянутым преобразователем с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не окажется близким к нулю, для последующего управления преобразователем, подлежащим блокировке, путем включения обходной для него пары и последующего замыкания обходного выключателя (12, 13, 50-52) для принятия всего постоянного тока.
6. Система электропередачи по любому из пп.1-3, характеризующаяся тем, что каждый упомянутый преобразователь содержит 12 преобразовательных вентилей, расположенных в так называемой 12-импульсной конфигурации с тремя ветвями четырех преобразовательных вентилей, соединенных последовательно.
7. Система электропередачи по любому из пп.1-3, характеризующаяся тем, что упомянутые преобразователи преобразовательной электрической подстанции (2), работающей в качестве выпрямителя, выполнены с возможностью генерирования, когда они все задействованы, напряжение постоянного тока свыше 600 кВ, например, 700-1000 кВ, между упомянутой нулевой шиной и упомянутым полюсом.
8. Система электропередачи по любому из пп.1-3, характеризующаяся тем, что, она рассчитана на возможность пропускания постоянного тока, превышающего 500 А, превышающего 1 кА или 2-5 кА, в упомянутом полюсе между преобразовательными электрическими подстанциями (2, 3).
9. Способ управления системой электропередачи ПТВН, содержащей на каждом конце линии электропередачи ПТВН преобразовательную электрическую подстанцию (2, 3) для соединения упомянутой линии электропередачи с системой (4, 5) переменного тока, причем каждая упомянутая электрическая подстанция содержит последовательное соединение, по меньшей мере, двух преобразователей (6-9, 30-35), сторона постоянного тока которых соединена, с одной стороны, с полюсом (10) упомянутой линии электропередачи на высоком потенциале, а с другой - с нулевой шиной (11) на нулевом потенциале путем заземления, при этом первая (2) из упомянутых преобразовательных электрических подстанций выполнена с возможностью работы в качестве выпрямителя, а другая - вторая (3) - в качестве инвертора, причем каждый преобразователь имеет соединенный параллельно с ним обходной выключатель (12, 13, 50-55) постоянного тока на пути тока, образующем обходной путь мимо упомянутого преобразователя, когда упомянутый выключатель замкнут, при этом упомянутый способ включает в себя следующие этапы изменения мощности передаваемой между упомянутыми электрическими подстанциями:
а) управляют постоянным током через упомянутый полюс с поддержанием его, по существу, неизменным, полным значением тока при нормальных условиях работы системы,
б) увеличивают напряжение между упомянутой нулевой шиной и упомянутым полюсом, а значит - и мощность, передаваемую между упомянутыми электрическими подстанциями, за счет запуска работы преобразователя, когда он блокирован, либо
в) уменьшают напряжение между упомянутой нулевой шиной и упомянутым полюсом, а значит - и мощность, передаваемую между упомянутыми электрическими подстанциями, за счет останова работы преобразователя, когда он задействован,
характеризующийся тем, что этап б) осуществляют путем деблокировки блокированного упомянутого преобразователя путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, и последующего управления упомянутым обходным выключателем, параллельным этому преобразователю, для размыкания при, по существу, нулевом токе, и тем, что на этапе в) останавливают работу упомянутого преобразователя путем управления им с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не станет, по существу, нулевым, и последующего управления преобразователем, подлежащим блокировке, путем включения обходной для него пары и последующего управления упомянутым обходным выключателем, параллельным этому преобразователю, для замыкания его с целью принятия всего постоянного тока.
10. Способ по п.9, характеризующийся тем, что его осуществляют для упомянутой системы электропередачи, в которой каждая упомянутая электрическая подстанция (2, 3) имеет два упомянутых преобразователя (6-9), соединенные последовательно между упомянутой нулевой шиной (11) и упомянутым полюсом (10).
11. Способ по п.9, характеризующийся тем, что его осуществляют в упомянутой системе электропередачи, имеющей в каждой упомянутой преобразовательной электрической подстанции (2, 3) более двух упомянутых преобразователей (30-35), соединенных последовательно между упомянутой нулевой шиной (11) и упомянутым полюсом (10), и тем, что увеличивают или уменьшают мощность, передаваемую между электрическими подстанциями, путем запуска или останова работы одного преобразователя каждой преобразовательной электрической подстанции за раз.
12. Способ по любому из пп.9-11, характеризующийся тем, что на этапе б) увеличивают мощность, передаваемую между упомянутыми преобразовательными электрическими подстанциями (2, 3), путем деблокировки преобразователя (6, 7, 30-32), называемого в данном случае запускающим преобразователем, который не задействован в упомянутом выпрямителе (2), путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, тем, что потом размыкают обходной выключатель, параллельный этому преобразователю, при, по существу, нулевом токе, тем, что потом деблокируют незадействованный преобразователь (8, 9, 33-35) инвертора (3) путем начала управления им с большим углом запаздывания и постепенного уменьшения угла запаздывания до тех пор, пока, по существу, весь постоянный ток не потечет через этот преобразователь, тем, что потом размыкают обходной выключатель, параллельный этому преобразователю, по существу, при нулевом токе, и тем, что потом управляют упомянутым запускающим преобразователем для увеличения напряжения между нулевой шиной и полюсом до напряжения, соответствующего увеличенному количеству преобразователей, участвующих в работе.
13. Способ по любому из пп.9-11, характеризующийся тем, что на этапе в) уменьшают мощность, передаваемую между электрическими подстанциями, за счет управления преобразователем (8, 9, 33-35) на упомянутой электрической подстанции-инверторе (3) с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не окажется близким к нулю, тем, что потом блокируют этот преобразователь путем включения обходной для него пары, тем, что потом замыкают обходной выключатель, параллельный этому преобразователю, тем, что потом управляют преобразователями (6, 7, 30-32) электрической подстанции-выпрямителя (2) для компенсации падения напряжения между упомянутым полюсом и нулевой шиной путем увеличения угла запаздывания, с которым происходит управление этими преобразователями, тем, что потом управляют преобразователем электрической подстанции-выпрямителя с постепенно увеличивающимся углом запаздывания до тех пор, пока напряжение на этом преобразователе не окажется близким к нулю, тем, что потом блокируют этот преобразователь путем включения обходной для него пары, и тем, что замыкают обходной выключатель, параллельный преобразователю, упомянутому последним, для приема всего постоянного тока.
14. Машиночитаемый носитель, имеющий записанную на нем компьютерную программу, причем упомянутая компьютерная программа предназначена для осуществления этапов по любому из пп.9-13 под управлением компьютера.
RU2008133608/09A 2006-01-18 2006-06-15 Система электропередачи и способ управления ею RU2384932C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75956506P 2006-01-18 2006-01-18
US60/759,565 2006-01-18

Publications (1)

Publication Number Publication Date
RU2384932C1 true RU2384932C1 (ru) 2010-03-20

Family

ID=38287896

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008133608/09A RU2384932C1 (ru) 2006-01-18 2006-06-15 Система электропередачи и способ управления ею

Country Status (7)

Country Link
US (1) US8300435B2 (ru)
EP (1) EP1974454A4 (ru)
CN (1) CN101297469B (ru)
BR (1) BRPI0621419B1 (ru)
RU (1) RU2384932C1 (ru)
WO (1) WO2007084041A1 (ru)
ZA (1) ZA200805668B (ru)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006031662A1 (de) * 2006-07-08 2008-01-10 Semikron Elektronik Gmbh & Co. Kg Stromrichterschaltungsanordnung für eine Hochvoltgleichspannungsverbindung
DK2294684T3 (da) * 2008-06-09 2013-12-02 Abb Technology Ag Anlæg til overførelse af elektrisk energi
FR2944136B1 (fr) * 2009-04-03 2011-06-10 Areva T & D Sa Chambre de coupure de courant a contact mobile a soufflage d'arc realise integralement par l'interieur de celui-ci, interrupteur by pass hvdc et sous station de conversion hvdc comprenant une telle chambre.
FR2944135B1 (fr) 2009-04-03 2011-06-10 Areva T & D Sa Chambre de coupure de courant a contact mobile et buse de soufflage mobile manoeuvres independamment, interrupteur by pass hvdc et sous station de conversion hvdc comprenant une telle chambre.
CN101902041A (zh) * 2010-04-30 2010-12-01 北京网联直流工程技术有限公司 400kV+400kV+200kV串联型±1000kV直流换流器接线方案
CN101882792B (zh) * 2010-06-30 2012-08-22 国家电网公司 一种用于特高压直流输电的接线方法及特高压换流站
US20130170255A1 (en) * 2010-09-21 2013-07-04 Abb Technology Ag Apparatus for controlling the electric power transmission in a hvdc power transmission system
US9197068B2 (en) 2010-09-30 2015-11-24 Abb Research Ltd. Coordinated control of multi-terminal HVDC systems
CN103181070B (zh) * 2010-10-28 2016-06-29 Abb技术有限公司 直流电力系统中的电压控制
GB2486408A (en) * 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
WO2012075610A1 (zh) * 2010-12-09 2012-06-14 国家电网公司 级联换流站和级联多端高压直流输电系统
US9450412B2 (en) 2010-12-22 2016-09-20 General Electric Company Method and system for control power in remote DC power systems
FR2980315B1 (fr) 2011-09-21 2016-01-29 Alstom Grid Sas Procede d'ouverture d'interrupteur de derivation de reseau a courant continu haute tension
US9331481B2 (en) 2012-08-31 2016-05-03 General Electric Company Systems and methods for power transmission with cable segment failover support
US20140146582A1 (en) * 2012-11-29 2014-05-29 General Electric Company High voltage direct current (hvdc) converter system and method of operating the same
US9099936B2 (en) * 2013-03-14 2015-08-04 General Electric Company High voltage direct current (HVDC) converter system and method of operating the same
WO2014176726A1 (en) * 2013-04-28 2014-11-06 Abb Technology Ltd. A control method for blocking/deblocking converters of a series mtdc system and controller thereof
KR101555498B1 (ko) * 2013-12-30 2015-09-24 주식회사 효성 Hvdc 제어기의 전원장치
US9602021B2 (en) 2014-03-07 2017-03-21 General Electric Company Hybrid high voltage direct current converter system and method of operating the same
US9515565B2 (en) 2014-03-07 2016-12-06 General Electric Company Hybrid high voltage direct current converter systems
DE102015207117A1 (de) * 2014-07-09 2016-01-14 Siemens Aktiengesellschaft Umrichter mit redundanter Schaltungstopologie
CN104201709B (zh) * 2014-08-15 2016-04-06 浙江大学 一种混合型直流输电系统的停运控制方法
EP3070827B1 (en) * 2015-03-16 2022-09-07 General Electric Technology GmbH Start-up of hvdc networks
EP3070799B1 (en) * 2015-03-16 2018-11-21 General Electric Technology GmbH Start-up of hvdc networks
RU2587462C1 (ru) * 2015-03-26 2016-06-20 Илья Николаевич Джус Электропередача постоянного тока
GB2536894B (en) * 2015-03-30 2021-06-23 General Electric Technology Gmbh Converters
WO2016184496A1 (en) * 2015-05-18 2016-11-24 Abb Technology Ltd Change of current return path in a bipole power transmission system
CN105372585B (zh) * 2015-11-18 2018-02-23 中国西电电气股份有限公司 一种柔性直流输电工程电压源换流器阀短路电流试验装置
CN109155598B (zh) * 2016-10-31 2021-04-27 Abb电网瑞士股份公司 Hvdc换流器系统及其控制方法和使用该系统的hvdc系统
CN107732954B (zh) * 2017-11-22 2020-06-09 南京南瑞继保电气有限公司 一种电压源换流器单元在线投入控制方法及装置
JP6831037B2 (ja) * 2017-08-03 2021-02-17 アー・ベー・ベー・パワー・グリッズ・スウィツァーランド・アクチェンゲゼルシャフトAbb Power Grids Switzerland Ag Dcシステムにおいて電圧源変換器を制御すること
CN107546762B (zh) * 2017-09-30 2019-12-27 南方电网科学研究院有限责任公司 一种柔性直流输电系统的链路延时控制方法及装置
EP3467986B1 (en) * 2017-10-06 2022-07-13 General Electric Technology GmbH Converter scheme
WO2019101306A1 (de) * 2017-11-22 2019-05-31 Siemens Aktiengesellschaft Energieübertragung über eine bipolare hochspannungs-gleichstrom-übertragungsstrecke
CN111656637B (zh) * 2018-01-30 2021-07-16 Abb电网瑞士股份公司 中性装置、换流站和直流电力传输系统
CN108683207B (zh) * 2018-05-28 2021-10-01 南京南瑞继保电气有限公司 一种混合直流换流器阀组在线投入电路和投入方法及装置
CN109494971B (zh) * 2018-10-11 2021-04-13 特变电工新疆新能源股份有限公司 一种柔性直流输电系统直流母线短接情况下的启动策略
CN111817332B (zh) * 2020-05-26 2021-12-14 南方电网科学研究院有限责任公司 一种直流输电系统功率协调控制的方法、装置及存储介质
CN114696360B (zh) * 2022-04-08 2024-09-24 国网浙江省电力有限公司电力科学研究院 一种低频输电系统停运方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1488085B2 (de) * 1963-01-30 1970-12-17 Allmänna Svenska Elektriska AB, Västeras (Schweden)j Übertragungsanlage für hochgespannten Gleichstrom
SE339509B (ru) * 1970-02-19 1971-10-11 Asea Ab
SE380947B (sv) * 1974-04-05 1975-11-17 Asea Ab Stromriktaranordning omfattande atminstone tva stromriktare
DE2712232C2 (de) * 1977-03-19 1982-12-16 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zur Außerbetriebnahme eines Pols einer HGÜ-Station
JPS54106832A (en) 1978-02-10 1979-08-22 Hitachi Ltd Operation control method for a/d converter
SU764036A1 (ru) 1978-02-22 1980-09-15 Научно-Исследовательский Институт Постоянного Тока Преобразовательна подстанци электропередачи посто нного тока
DE3023698A1 (de) * 1980-06-25 1982-01-14 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zur inbetriebnahme einer von mehreren in reihe geschalteten stromrichtergruppen einer hochspannungs-gleichstrom-uebertragungsanlage
CA1233198A (en) * 1984-03-01 1988-02-23 Helmut Neupauer Method and apparatus to operate a high-voltage dc transmission system (hvdc) with automatic control of the converters
US4638416A (en) * 1984-03-01 1987-01-20 Siemens Aktiengesellschaft Method and apparatus for high-voltage D.C. transmission with a bypass circuit for malfunctions
JPS62213520A (ja) * 1986-03-14 1987-09-19 株式会社東芝 系統連系用電力変換装置
SE463953B (sv) 1989-06-19 1991-02-11 Asea Brown Boveri Anlaeggning foer avtappning av elektrisk kraft fraan en hoegspaend likstroemstransmissionslinje
SE515140C2 (sv) * 1995-02-10 2001-06-18 Abb Ab Anläggning för överföring av elektrisk effekt med hjälp av högspänd likström
SE504522C2 (sv) * 1995-07-06 1997-02-24 Asea Brown Boveri Kraftöverföring med högspänd likström innefattande fler än två strömriktarstationer
DE69920424T2 (de) * 1999-07-01 2006-02-23 Abb Ab Verfahren zur Steuerung eines Wirkleistungsflusses in einem Hochspannungsgleichstrom-Übertragungssystem
US7633770B2 (en) * 2006-12-08 2009-12-15 General Electric Company Collection and transmission system

Also Published As

Publication number Publication date
BRPI0621419B1 (pt) 2018-02-06
US20090219737A1 (en) 2009-09-03
ZA200805668B (en) 2009-04-29
EP1974454A1 (en) 2008-10-01
EP1974454A4 (en) 2017-03-01
CN101297469B (zh) 2011-05-11
WO2007084041A1 (en) 2007-07-26
US8300435B2 (en) 2012-10-30
BRPI0621419A2 (pt) 2011-12-06
CN101297469A (zh) 2008-10-29

Similar Documents

Publication Publication Date Title
RU2384932C1 (ru) Система электропередачи и способ управления ею
US10326355B2 (en) Power conversion device
KR102253974B1 (ko) 하이브리드 직류 컨버터 밸브 그룹 온라인 투입 회로, 투입 방법 및 장치
US10651755B2 (en) Standby and charging of modular multilevel converters
EP2472714B1 (en) Power conversion system and method
EP3373435B1 (en) Power conversion device
US20090168468A1 (en) Converter Station
US20150162782A1 (en) Method and system for a dual conversion uninterruptible power supply
KR102467807B1 (ko) Dc 전력 스위칭 어셈블리 및 방법
KR102467712B1 (ko) 전력 공급 시스템 및 방법
EP3531523A1 (en) Fault handling
EP1974431A2 (en) A converter station
WO2019007542A1 (en) ECO-FREE ECONOMY-FREE POWER SUPPLY SYSTEM
CN109155598B (zh) Hvdc换流器系统及其控制方法和使用该系统的hvdc系统
CN107925248B (zh) 电气组件
Elserougi et al. HVDC shunt tap based on series-input parallel-output DC-AC multi-module VSCs with DC voltages balancing
EP3681030B1 (en) Power conversion device
US20220271536A1 (en) Device for connecting two alternating voltage networks and method for operating the device
US20240171072A1 (en) Dc/dc converter device for a wind turbine, an electric drive system, or an industrial dc supply network and operating method
Huang et al. Pole-to-pole fault protection of hybrid-MMC-based MVDC distribution systems
CN111373623A (zh) 经由双极的高压直流电传输路径的能量传输
Qi et al. Modeling, Simulation, and Protection of Grid Forming Inverter-based Ring Configuration Datacenter
EP3913781A1 (en) Modular multilevel converters
Zhao et al. Operating Characteristics and Control Strategy of HVDC Transmission with Controllable Line-Commutated Converter
CN114759553A (zh) 一种背靠背换流系统及换流器单侧退出方法

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20180326

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180616