RU2382068C1 - Способ получения базовой основы трансформаторного масла - Google Patents

Способ получения базовой основы трансформаторного масла Download PDF

Info

Publication number
RU2382068C1
RU2382068C1 RU2008127639/04A RU2008127639A RU2382068C1 RU 2382068 C1 RU2382068 C1 RU 2382068C1 RU 2008127639/04 A RU2008127639/04 A RU 2008127639/04A RU 2008127639 A RU2008127639 A RU 2008127639A RU 2382068 C1 RU2382068 C1 RU 2382068C1
Authority
RU
Russia
Prior art keywords
catalyst
oxide
base
isodeparaffinization
dehydrogenation
Prior art date
Application number
RU2008127639/04A
Other languages
English (en)
Inventor
Анна Николаевна Логинова (RU)
Анна Николаевна Логинова
Сергей Васильевич Лысенко (RU)
Сергей Васильевич Лысенко
Александр Владимирович Иванов (RU)
Александр Владимирович Иванов
Вадим Владимирович Фадеев (RU)
Вадим Владимирович Фадеев
Марианна Валерьевна Китова (RU)
Марианна Валерьевна Китова
Анатолий Иванович Ёлшин (RU)
Анатолий Иванович Ёлшин
Сергей Геннадьевич Кращук (RU)
Сергей Геннадьевич Кращук
Игорь Евгеньевич Кузора (RU)
Игорь Евгеньевич Кузора
Игорь Владимирович Павлов (RU)
Игорь Владимирович Павлов
Леонид Александрович Поняев (RU)
Леонид Александрович Поняев
Жанна Юрьевна Гусакова (RU)
Жанна Юрьевна Гусакова
Original Assignee
Общество с ограниченной ответственностью "Объединенный центр исследований и разработок"
Открытое акционерное общество "Ангарская нефтехимическая компания"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенный центр исследований и разработок", Открытое акционерное общество "Ангарская нефтехимическая компания" filed Critical Общество с ограниченной ответственностью "Объединенный центр исследований и разработок"
Priority to RU2008127639/04A priority Critical patent/RU2382068C1/ru
Application granted granted Critical
Publication of RU2382068C1 publication Critical patent/RU2382068C1/ru

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к области нефтепереработки, а именно к способу получения базовой основы трансформаторного (электроизоляционного) масла. Нефтяную прямогонную фракцию, выкипающую выше 310°С, подвергают каталитическому гидрокрекингу, а затем каталитической изодепарафинизации, совмещенной с дегидрированием, при послойной загрузке катализатора изодепарафинизации (верхний слой) и катализатора дегидрирования (нижний слой), взятых в соотношении 5-12:1. Каталитический гидрокрекинг осуществляют при температуре 340-420°С, под давлением 15-30 МПа, при объемной скорости подачи сырья 0,5-1,0 ч-1 и при отношении водородсодержащего газа к сырью 500-1500:1 нм33. Каталитическую изодепарафинизацию, совмещенную с дегидрированием, осуществляют при температуре 220-300°С, под давлением водорода 2,5-4,5 МПа, при объемной скорости подачи сырья через слой катализатора изодепарафинизации 0,5-2 ч-1, объемной скорости подачи сырья через слой катализатора дегидрирования 5-12 ч-1, при отношении водородсодержащего газа к сырью 500-1500:1 нм33. Способ позволяет увеличить выход базовой основы трансформаторного масла при сохранении качественных характеристик и улучшении электроизоляционных свойств трансформаторного масла. 6 з.п. ф-лы, 3 табл.

Description

Область техники, к которой относится изобретение
Изобретение относится к области нефтепереработки, а именно к способу получения базовой основы трансформаторного (электроизоляционного) масла, применяемой в композиции с антиокислительными и иными присадками в трансформаторах и других типах маслонаполненного оборудования.
Уровень техники
Основными характеристиками трансформаторного масла являются низкая температура застывания, хорошая термоокислительная стабильность и низкие диэлектрические потери. Для достижения указанных характеристик при высоком выходе целевого продукта большое значение имеет технология производства базовой основы масла.
В настоящее время для получения базовой основы трансформаторного масла наибольшее распространение получила трехступенчатая схема, включающая процессы гидроочистки (гидрооблагораживания), а в некоторых случаях гидрокрекинга, депарафинизации и гидродоочистки.
Известен способ получения базовой основы электроизоляционного масла для трансформаторов в процессе, включающем стадию гидроочистки масляной фракции 286 - конец кипения (к.к.) арабской нефти на катализаторах, содержащих сульфиды никеля и вольфрама на оксиде алюминия, при давлении 18 МПа, температуре 370°С и объемной скорости 0,6 ч-1, стадию депарафинизации метилэтилкетоном и толуолом (60:40) и стадию доочистки на глине (патент GB №1255897). Общий выход продукта составляет 68 мас.% при температуре застывания -35°С. Недостатком может быть отмечена относительно высокая температура застывания (требуемая стандартом МЭК 60296-2003 температура застывания не должна превышать минус 45°С).
Известен процесс получения базовой основы трансформаторного масла из вакуумного газойля кувейтских и иранских нефтей (фракция 235-438°С) (патент GB №1449515). Процесс включает стадию каталитической гидроочистки на катализаторе, содержащем оксиды кобальта и молибдена на алюмосиликате, при давлении 13,8 МПа, температуре 375°С и объемной скорости 1,0 ч-1, с последующей дистилляцией фракции 250-к.к., стадию каталитической депарафинизации на катализаторе, содержащем 0,56 мас.% платины, нанесенной на декатионированный морденит, при давлении 3,5 МПа, температуре 320°С и объемной скорости 1,0 ч-1, с последующей стадией разгонки с выделением фракции 250-к.к. Показано, что дополнительная стадия гидродоочистки может быть необязательна. Температура застывания полученного продукта была ниже -57°С, однако данные по выходу целевого продукта не представлены.
Известен способ получения базовой основы трансформаторного масла из прямогонной нефтяной фракции 275-430°С или рафинатов селективной очистки (RU 2123028). Процесс включает стадию гидроочистки при давлении 3,8 МПа, температуре 380°С и объемной скорости 0,7 ч-1 на катализаторе, содержащем оксид никеля, оксид молибдена, оксид фосфора, оксид редкоземельных элементов, оксид циркония и оксид алюминия, стадию каталитической депарафинизации при 4,5 МПа и 330°С и объемной скорости 0,68 ч-1 на катализаторе, содержащем оксид молибдена, оксид бора, оксид алюминия и высококремнистый цеолит, и стадию гидрирования при 4,8 МПа и 250°С на катализаторе, содержащем платину, алюмосиликат и оксид алюминия. Выход целевого продукта составляет 42,8 мас.% при температуре застывания -46°С. Использование рафината селективной очистки в качестве сырья позволяет повысить выход базовой основы трансформаторного масла до 43,4 мас.%. К недостаткам процесса можно отнести относительно низкий выход целевой фракции.
Известен способ получения низкозастывающей базовой основы трансформаторного масла из легкого вакуумного газойля (фракция 246-430°С) (US 4057489). На первой стадии проводят гидрооблагораживание при давлении до 7-10,5 МПа, температурах 376-390°С и объемной скорости 1,5-1,75 ч-1 на катализаторах, содержащих оксиды никеля, вольфрама и алюминия. На второй стадии проводят депарафинизацию при давлении 6,0 МПа, температуре 302°С и объемной скорости 1,0 ч-1 на катализаторах, содержащих 0,5% титана и 1,0% палладия, нанесенных на Н-морденит (900 Н Zeolon). На третьей стадии проводят контактную доочистку на глинах. Выход продукта с температурой застывания минус 62-минус 45°С, полученного по данной схеме, составлял 76,8-78,0 об.%. Недостатком указанного способа следует считать необходимость дополнительной очистки на глине для придания базовой основе необходимой стабильности к окислению.
Известен способ получения электроизоляционного масла, описанный в авторском свидетельстве SU 1815994. Согласно заявленному способу прямогонная нефтяная фракция 270-430°С подвергается обработке, включающей стадию гидроочистки на катализаторе, содержащем оксид кобальта, оксид молибдена и оксид алюминия, стадию депарафинизации на катализаторе, содержащем оксид молибдена, оксид бора, оксид алюминия и высококремнеземный цеолит, и стадию гидрирования на катализаторе, содержащем сульфид никеля, сульфид вольфрама и оксид алюминия. Процесс проводится при давлении водорода 23 МПа, температуре в зоне катализаторов гидроочистки и депарафинизации 360°С и 340°С в зоне катализатора гидрирования, объемной скорости подачи сырья 0,6 ч-1. Из полученного продукта перегонкой выделяется целевая фракция с температурой застывания -48°С, температурой вспышки 138°С, термоокислительной стабильностью по МЭК 194 ч и тангенсом диэлектрических потерь 0,06. Выход продукта на используемое сырье составляет 59,2 мас.%. Недостатком данного способа можно считать относительно низкий выход целевого продукта.
Известен способ получения базовой основы трансформаторного масла из прямогонной нефтяной фракции 250-420°С (патент RU №2064002 - прототип). Процесс включает стадию гидроочистки при давлении 4,5 МПа и температуре 375°С на катализаторе, содержащем оксид никеля, оксид молибдена, оксид фосфора, оксид редкоземельных элементов и оксид алюминия, стадию каталитической депарафинизации при давлении 4,7 МПа и температурах 360-390°С на катализаторе, содержащем оксид молибдена, оксид бора, оксид алюминия и высококремнистый цеолит, и стадию гидрирования при давлении 4,8 МПа и температурах 260-280°С на катализаторе, содержащем платину и алюмосиликат. Полученный продукт подвергают ректификации с выделением фракции 270-к.к. Выход целевого продукта составляет 41,7 мас.% при температуре застывания -46°С. Недостаткам данного способа является относительно низкий выход целевой фракции, а также необходимость циклического проведения процесса с периодами 500-1000 часов.
Раскрытие изобретения
Задача, решаемая заявленным изобретением, состоит в создании высокоэффективного способа производства базовой основы трансформаторного масла.
Технический результат заключается в увеличении выхода базовой основы трансформаторного масла при сохранении качественных характеристик, соответствующих стандартам МЭК и ГОСТ, а также в улучшении электроизоляционных свойств трансформаторного масла.
Технический результат достигается тем, что нефтяную прямогонную фракцию, выкипающую выше 310°С, подвергают каталитическому гидрокрекингу, а затем каталитической изодепарафинизации, совмещенной с догидрированием, при послойной загрузке катализатора изодепарафинизации (верхний слой) и катализатора догидрирования (нижний слой), взятых в соотношении 5-12:1. Каталитический гидрокрекинг осуществляют при температуре 340-420°С, под давлением 15-30 МПа, при объемной скорости подачи сырья 0,5-1,0 ч-1 и при отношении водородсодержащего газа к сырью 500-1500:1 нм33. Каталитическую изодепарафинизацию, совмещенную с догидрированием, осуществляют при температуре 220-300°С, под давлением водорода 2,5-4,5 МПа, при объемной скорости подачи сырья через слой катализатора изодепарафинизации 0,5-2 ч-1, объемной скорости подачи сырья через слой катализатора догидрирования 5-12 ч-1 при отношении водородсодержащего газа к сырью 500-1500:1 нм33.
В частном случае катализатор гидрокрекинга содержит (мас.%):
Оксид никеля - 15-20;
Оксид молибдена - 30-40;
Оксид кремния - 5-10;
Оксид алюминия - остальное до 100.
В частном случае катализатор изодепарафинизации содержит (мас.%):
Платина - 0,15-0,5;
Оксид вольфрама - 1,8-4,0;
Цеолит структуры MFI - 10-50;
Оксид алюминия - остальное до 100.
Катализатор изодепарафинизации может дополнительно содержать 0,2-0,4 мас.% оксида цинка, или 0,2-1,0 мас.% оксида индия, или 0,2-0,4 мас.% лантана.
В частном случае катализатор догидрирования содержит (мас.%):
Оксид никеля - 4,0-8,0;
Оксид молибдена - 12,0-22,0;
Оксид вольфрама - 1,8-4,0;
Оксид алюминия - остальное до 100.
Предложенный способ получения трансформаторного масла позволяет повысить выход продукта на исходное сырье с 59,2% по прототипу до 68,8%. При этом температура стадии депарафинизации понижается с 360°С по прототипу до 230-255°С. Полученная базовая основа трансформаторного масла имеет температуру застывания ниже -60°С (-48°С по прототипу) и термоокислительную стабильность (индукционный период окисления) по МЭК свыше 290 ч при 192 по прототипу.
Осуществление изобретения
На первой стадии исходная нефтяная фракция (вакуумный газойль) подвергается гидрокрекингу.
Процесс осуществляется при температурах 340-420°С, давлении 15-30 МПа, объемной скорости подачи сырья 0,5-1,0 ч-1 и циркуляции водородсодержащего газа (ВСГ) 500-1500:1 нм33. Продукты подвергаются дистилляции с выделением фракции 280°С-к.к.
Полученная фракция направляется на стадию изодепарафинизации и догидрирования на катализаторах, загруженных послойно в один реактор в соотношении 5-12:1.
Процесс осуществляется при температурах 220-300°С, давлении 2,5-4,5 МПа, объемной скорости подачи сырья через слой катализатора изодепарафинизации 0,5-2,0 ч-1, через слой катализатора догидрирования 5-12 ч-1 и отношении водородсодержащего газа к сырью 500-1500:1 нм33. Из полученного гидрогенизата дистилляцией выделяют целевую фракцию базовой основы трансформаторного масла.
Для иллюстрации предлагаемого способа приведены следующие примеры.
Пример 1.
Прямогонную нефтяную фракцию (вакуумный газойль), выкипающую при температуре выше 310°С, с характеристиками, приведенными в таблице 1, на первой стадии подвергают гидрокрекингу на катализаторе, содержащем (мас.%):
Оксид никеля - 20,0;
Оксид молибдена - 40,0;
Оксид кремния - 10,0;
Оксид алюминия - остальное до 100.
Процесс осуществляется при температуре 340°С, давлении водорода 15 МПа, объемной скорости подачи сырья 0,5 ч-1, соотношении циркуляционный ВСГ:сырье 500:1 нм33. Из полученного продукта дистилляцией выделяют целевую фракцию 280-к.к. с характеристиками, представленными в Таблице 2. Выход целевой фракции на этой стадии составляет 72,0 мас.%.
Таблица 1
Физико-химические свойства исходного сырья
Наименование показателя Значение показателя
Плотность при 20°С, г/см3 0,885
Вязкость кинематическая при 50°С, мм2 8,7
Показатель преломления при 50°С 1,4960
Температура застывания,°С 12
Цвет, ед. ЦНТ
Массовая доля ароматических углеводородов, % 23
Фракционный состав:
- 5% выкипает при температуре, °С 310
- 98% выкипает при температуре, °С 415
Таблица 2
Физико-химические свойства фракции 280-к.к.
Наименование показателя Значение показателя по
примерам
1 2 3
Плотность при 20°С, г/см3 0,849 0,845 0,844
Вязкость кинематическая при 50°С, мм2 7,0 6,4 6,3
Показатель преломления при 50°С 1,4634 1,4620 1,4618
Температура застывания,°С 14 13 13
Температура вспышки в закрытом тигле,°С 151 150 150
Массовая доля ароматических углеводородов, % <1,5 <1,5 <1,5
Фракционный состав:
- температура начала кипения, °С 270 270 270
- 5% выкипает при температуре, °С 302 300 300
- 98% выкипает при температуре, °С 400 395 394
- температура конца кипения, °С 420 410 410
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,5;
оксид вольфрама - 1,8;
цеолит структуры MFI марки ZSM-5 - 10;
оксид алюминия - остальное до 100
и на катализаторе догидрирования, содержащем (мас.%):
оксид никеля - 4,0;
оксид молибдена - 12,0;
оксид вольфрама - 4,0;
оксид алюминия - остальное до 100.
Соотношение катализаторов изодепарафинизации и догидрирования составляет 5:1. Процесс осуществляется при температуре 300°С, давлении водорода 4,5 МПа, объемной скорости подачи сырья через слой катализатора изодепарафинизации составляет 2,0 ч-1, объемной скорости подачи сырья через слой катализатора догидрирования - 10,0 ч-1, соотношении циркуляционный ВСГ:сырье - 1500:1 нм33.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 94,8 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 68,3 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 2.
Оксид никеля - 17,5;
Оксид молибдена - 35,0;
Оксид кремния - 7,5;
Оксид алюминия - остальное до 100.
Процесс осуществляется при температуре 360°С, давлении водорода 25 МПа, объемной скорости подачи сырья 0,6 ч-1, соотношении циркуляционный ВСГ:сырье 1000:1 нм33. Из полученного продукта дистилляцией выделяют целевую фракцию 280-к.к. с характеристиками, представленными в Таблице 2. Выход целевой фракции на этой стадии составляет 72,0 мас.%.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,3;
оксид вольфрама - 3,0;
цеолит структуры MFI марки ZSM-5 - 40;
оксид алюминия - остальное до 100
и на катализаторе догидрирования, содержащем (мас.%):
оксид никеля - 6,0;
оксид молибдена - 18,0;
оксид вольфрама - 3,0;
оксид алюминия - остальное до 100.
Соотношение катализаторов изомеризации и догидрирования составляет 12:1.
Процесс осуществляется при температуре 240°С, давлении водорода 3,5 МПа, объемной скорости подачи сырья через слой катализатора изодепарафинизации составляет 1,0 ч-1, объемной скорости подачи сырья через слой катализатора догидрирования - 12,0 ч-1, соотношении циркуляционный ВСГ:сырье - 1000:1 нм33.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 94,5 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 68,0 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 3.
Прямогонную нефтяную фракцию (вакуумный газойль), выкипающую при температуре выше 310°С, с характеристиками, приведенными в Таблице 1, на первой стадии подвергают гидрокрекингу на катализаторе, содержащем (мас.%):
Оксид никеля - 15,0;
Оксид молибдена - 30,0;
Оксид кремния - 5,0;
Оксид алюминия - остальное до 100.
Процесс осуществляется при температуре 420°С, давлении водорода 30 МПа, объемной скорости подачи сырья 1,0 ч-1, соотношении циркуляционный ВСГ:сырье 1500:1 нм33. Из полученного продукта дистилляцией выделяют целевую фракцию 280-к.к. с характеристиками, представленными в Таблице 2. Выход целевой фракции на этой стадии составляет 68,5 мас.%.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,15;
оксид вольфрама - 4,0;
цеолит структуры MFI марки ZSM-5 - 50;
оксид алюминия - остальное до 100
и на катализаторе догидрирования, содержащем (мас.%):
оксид никеля - 8,0;
оксид молибдена - 22,0;
оксид вольфрама - 1,8;
оксид алюминия - остальное до 100.
Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Процесс осуществляется при температуре 220°С, давлении водорода 2,5 МПа, объемной скорости подачи сырья через слой катализатора изодепарафинизации составляет 0,5 ч-1, объемной скорости подачи сырья через слой катализатора догидрирования - 5,0 ч-1, соотношении циркуляционный ВСГ: сырье - 1000:1 нм33.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 94,0 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 64,4 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 4.
Процесс проводят по примеру 2.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина -0,15;
оксид цинка - 0,4;
оксид вольфрама - 4,0;
цеолит структуры MFI марки ZSM-5 - 50;
оксид алюминия - остальное до 100
и на катализаторе догидрирования по примеру 2. Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Совмещенный процесс изодепарафинизации и догидрирования осуществляется по примеру 2.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 95,0 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 68,4 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 5.
Процесс проводят по примеру 2.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,3;
оксид цинка - 0,3;
оксид вольфрама - 3,0;
цеолит структуры MFI марки ZSM-5 - 40;
оксид алюминия - остальное до 100
и на катализаторе догидрирования по примеру 2.
Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Совмещенный процесс изодепарафинизации и догидрирования осуществляется по примеру 2.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 94,8 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 68,3 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 6.
Процесс проводят по примеру 2.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,5;
оксид цинка - 0,2;
оксид вольфрама - 1,8;
цеолит структуры MFI марки ZSM-5 - 10;
оксид алюминия - остальное до 100
и на катализаторе догидрирования по примеру 2. Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Совмещенный процесс изодепарафинизации и догидрирования осуществляется по примеру 2.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 95,5 мас.%.
Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 68,8 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 7.
Процесс проводят по примеру 2.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,15;
оксид индия - 1,0;
оксид вольфрама - 4,0;
цеолит структуры MFI марки ZSM-5 - 50;
оксид алюминия - остальное до 100
и на катализаторе догидрирования по примеру 2. Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Совмещенный процесс изодепарафинизации и догидрирования осуществляется по примеру 2.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 94,0 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 67,7 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 8.
Процесс проводят по примеру 2.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,3;
оксид индия - 0,6;
оксид вольфрама - 3,0;
цеолит структуры MFI марки ZSM-5 - 40;
оксид алюминия - остальное до 100
и на катализаторе догидрирования по примеру 2. Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Совмещенный процесс изодепарафинизации и догидрирования осуществляется по примеру 2.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 94,0 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 67,7 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 9.
Процесс проводят по примеру 2.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,5;
оксид индия - 0,2;
оксид вольфрама - 1,8;
цеолит структуры MFI марки ZSM-5 - 10;
оксид алюминия - остальное до 100
и на катализаторе догидрирования по примеру 2. Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Совмещенный процесс изодепарафинизации и догидрирования осуществляется по примеру 2.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 94,7 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 68,2 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 10.
Процесс проводят по примеру 2.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,15;
лантан - 0,4;
оксид вольфрама - 4,0;
цеолит структуры MFI марки ZSM-5 - 50;
оксид алюминия - остальное до 100
и на катализаторе догидрирования по примеру 2. Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Совмещенный процесс изодепарафинизации и догидрирования осуществляется по примеру 2.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 93,7 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 67,5 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 11.
Процесс проводят по примеру 2.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,3;
лантан - 0,3;
оксид вольфрама - 3,0;
цеолит структуры MFI марки ZSM-5 - 40;
оксид алюминия - остальное до 100
и на катализаторе догидрирования по примеру 2.
Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Совмещенный процесс изодепарафинизации и догидрирования осуществляется по примеру 2.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 94,5 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 68,0 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3.
Пример 12.
Процесс проводят по примеру 2.
На второй стадии полученную фракцию 280-к.к. подвергают изодепарафинизации, совмещенной с догидрированием, на катализаторе изодепарафинизации, содержащем (мас.%):
платина - 0,5;
лантан - 0,2;
оксид вольфрама - 1,8;
цеолит структуры MFI марки ZSM-5 - 10;
оксид алюминия - остальное до 100
и на катализаторе догидрирования по примеру 2.
Соотношение катализаторов изомеризации и догидрирования составляет 10:1.
Совмещенный процесс изодепарафинизации и догидрирования осуществляется по примеру 2.
Полученный продукт подвергают дистилляции и выделяют целевую базовую основу трансформаторного масла. Выход продукта на второй стадии составляет 95,5 мас.%. Общий выход базовой основы трансформаторного масла, полученный по двухстадийному процессу, составляет 68,8 мас.%.
Выход и физико-химические свойства полученной базовой основы трансформаторного масла приведены в Таблице 3. Для сравнения в Таблице 3 приведены данные, полученные по прототипу.
Промышленная применимость
Предложенный способ получения базовой основы трансформаторного масла применим при получении трансформаторных масел на нефтеперерабатывающих предприятиях.
Таблица 3
Выход и физико-химические свойства полученной базовой основы трансформаторного масла
Наименование показателя Значение показателей по примерам
1 2 3 4 5 6 7 8 9 10 11 12 По прототипу
Выход на стадии каталитического гидрокрекинга, мас.% 72,0 72,0 68,5 72,0 72,0 72,0 72,0 72,0 72,0 72,0 72,0 72,0 75,5*
Выход на стадии изодепарафинизаии, совмещенной с догидрированием, мас.% 94,8 94,5 94,0 95,0 94,8 95,5 94,0 94,0 94,7 93,7 94,5 95,5 78,4
Общий выход на сырье, мас.% 68,3 68,0 64,4 68,4 68,3 68,8 67,7 67,7 68,2 67,5 68,0 68,8 59,2
Температура застывания, °С -58 -60 -65 -55 -60 -60 -55 -62 -56 -52 -64 -65 -48
Температура вспышки в закрытом тигле, °С 138 136 135 138 136 136 138 137 138 138 135 135 135
Вязкость кинематическая, мм2/с при 50°С 7,08 7,00 7,02 7,16 7,09 7,06 7,12 7,05 7,10 7,15 7,05 7,03
Напряжение пробоя, кВ 82 79 80 77 80 79 78 80 78 80 82 85
Тангенс угла диэлектрических потерь при 90°С 0,09 0,10 0,10 0,12 0,10 0,11 0,11 0,10 0,12 0,10 0,09 0,08
Примечание: *Выход на стадии глубокого гидрооблагораживания
я

Claims (7)

1. Способ получения базовой основы трансформаторного масла, заключающийся в том, что нефтяную прямогонную фракцию, выкипающую выше 310°С, подвергают каталитическому гидрокрекингу, а затем каталитической изодепарафинизации, совмещенной с дегидрированием при послойной загрузке катализатора изодепарафинизации (верхний слой) и катализатора дегидрирования (нижний слой), взятых в соотношении 5-12:1, при этом каталитический гидрокрекинг осуществляют при температуре 340-420°С под давлением 15-30 МПа при объемной скорости подачи сырья 0,5-1,0 ч-1 и при отношении водородсодержащего газа к сырью 500-1500:1 нм33, а каталитическую изодепарафинизацию, совмещенную с дегидрированием, - при температуре 220-300°С под давлением водорода 2,5-4,5 МПа при объемной скорости подачи сырья через слой катализатора изодепарафинизации 0,5-2 ч-1 объемной скорости подачи сырья через слой катализатора дегидрирования 5-12 ч-1 при отношение водородсодержащего газа к сырью 500-1500:1 нм33.
2. Способ по п.1, отличающийся тем, каталитический гидрокрекинг осуществляют на катализаторе, содержащем, мас.%:
Оксид никеля 15-20 Оксид молибдена 30-40 Оксид кремния 5-10 Оксид алюминия остальное до 100
3. Способ по п.1, отличающийся тем, что изодепарафинизацию осуществляют на катализаторе, содержащем, мас.%:
Платина 0,15-0,5 Оксид вольфрама 1,8-4,0 Цеолит структуры MFI 10-50 Оксид алюминия остальное до 100
4. Способ по п.3, отличающийся тем, что катализатор дополнительно содержит 0,2-0,4 мас.% оксида цинка.
5. Способ по п.3, отличающийся тем, что катализатор дополнительно содержит 0,2-1,0 мас.% оксида индия.
6. Способ по п.3, отличающийся тем, что катализатор дополнительно содержит 0,2-0,4 мас.% лантана.
7. Способ по п.1, отличающийся тем, что дегидрирование осуществляют на катализаторе, содержащем, мас.%:
Оксид никеля 4,0-8,0 Оксид молибдена 12,0-22,0 Оксид вольфрама 1,8-4,0 Оксид алюминия остальное до 100
RU2008127639/04A 2008-07-09 2008-07-09 Способ получения базовой основы трансформаторного масла RU2382068C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008127639/04A RU2382068C1 (ru) 2008-07-09 2008-07-09 Способ получения базовой основы трансформаторного масла

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008127639/04A RU2382068C1 (ru) 2008-07-09 2008-07-09 Способ получения базовой основы трансформаторного масла

Publications (1)

Publication Number Publication Date
RU2382068C1 true RU2382068C1 (ru) 2010-02-20

Family

ID=42127023

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008127639/04A RU2382068C1 (ru) 2008-07-09 2008-07-09 Способ получения базовой основы трансформаторного масла

Country Status (1)

Country Link
RU (1) RU2382068C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781062C1 (ru) * 2021-08-11 2022-10-04 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ получения базового масла

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781062C1 (ru) * 2021-08-11 2022-10-04 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ получения базового масла

Similar Documents

Publication Publication Date Title
US9719034B2 (en) Co-production of lubricants and distillate fuels
AU2009333803B2 (en) Integrated hydrocracking and dewaxing of hydrocarbons
JP5692545B2 (ja) 高品質のナフテン系ベースオイルの製造方法
KR101706793B1 (ko) 윤활제 기제 오일 제조를 위한 사우어 서비스 가수소가공
EP2486108A1 (en) Integrated hydrocracking and dewaxing of hydrocarbons
AU2011276525A1 (en) Integrated hydrocracking and dewaxing of hydrocarbons
KR20140032336A (ko) 저 혼탁점 및 고 점도 지수를 갖는 윤활 기유의 제조 방법
RU2383582C2 (ru) Способ получения смазочного базового масла
US20180105761A1 (en) Lubricant basestock production with enhanced aromatic saturation
EA031082B1 (ru) Способ конверсии парафинового сырья
JP2004516360A (ja) 燃料の水素化分解プロセスでの塔底フラクションからのスピンドル油、軽質機械油及び中質機械油基油グレードの製造方法
JP4496647B2 (ja) 非常に高品質の基油および場合によっては中間留分の適応性のある(フレキシブルな)製造方法
EP3397723B1 (en) Lubricant base stock production from disadvantaged feeds
RU2382068C1 (ru) Способ получения базовой основы трансформаторного масла
CN104560172B (zh) 一种安定性优良的橡胶填充油生产方法
JP6038708B2 (ja) 石油製品の製造方法
US20150315493A1 (en) Process for the production of white oils meeting the cfr standard from waste oils
KR20120114321A (ko) 접촉 탈왁스 방법
US20230265350A1 (en) Process and system for base oil production using bimetallic ssz-91 catalyst
RU2561918C2 (ru) Способ получения низкозастывающих термостабильных углеводородных фракций
WO2021230985A1 (en) Wax and lube base stock products using shape selective membrane separation
EP1644465B1 (en) Process to prepare a lubricating base oil
EP0431448B1 (en) Catalytic process for manufacture of low pour lubricating oils
US20230348798A1 (en) Process and system for base oil production
KR20150090169A (ko) 수소처리 및 탈왁스화 방법