RU2379058C1 - Способ аэрозольной дезинфекции закрытых помещений - Google Patents

Способ аэрозольной дезинфекции закрытых помещений Download PDF

Info

Publication number
RU2379058C1
RU2379058C1 RU2008125415/15A RU2008125415A RU2379058C1 RU 2379058 C1 RU2379058 C1 RU 2379058C1 RU 2008125415/15 A RU2008125415/15 A RU 2008125415/15A RU 2008125415 A RU2008125415 A RU 2008125415A RU 2379058 C1 RU2379058 C1 RU 2379058C1
Authority
RU
Russia
Prior art keywords
aerosol
air
chamber
disinfection
disinfectant
Prior art date
Application number
RU2008125415/15A
Other languages
English (en)
Inventor
Евгений Николаевич Свентицкий (RU)
Евгений Николаевич Свентицкий
Валерий Михайлович Глушенко (RU)
Валерий Михайлович Глушенко
Юрий Николаевич Толпаров (RU)
Юрий Николаевич Толпаров
Татьяна Степановна Егорова (RU)
Татьяна Степановна Егорова
Елена Владимировна Черняева (RU)
Елена Владимировна Черняева
Надежда Владимировна Конторина (RU)
Надежда Владимировна Конторина
Виктор Леонидович Искрицкий (RU)
Виктор Леонидович Искрицкий
Евгения Исааковна РАЙНИНА (US)
Евгения Исааковна Райнина
Original Assignee
Федеральное государственное унитарное предприятие Государственный научно-исследовательский институт особо чистых биопрепаратов Федерального медико-биологического агентства
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие Государственный научно-исследовательский институт особо чистых биопрепаратов Федерального медико-биологического агентства filed Critical Федеральное государственное унитарное предприятие Государственный научно-исследовательский институт особо чистых биопрепаратов Федерального медико-биологического агентства
Priority to RU2008125415/15A priority Critical patent/RU2379058C1/ru
Priority to CA3011313A priority patent/CA3011313C/en
Priority to MX2010014162A priority patent/MX2010014162A/es
Priority to CN200980123622.0A priority patent/CN102065907B/zh
Priority to US12/999,888 priority patent/US20110135757A1/en
Priority to EP09771096.6A priority patent/EP2303340B1/en
Priority to ES09771096.6T priority patent/ES2500642T3/es
Priority to PCT/US2009/048765 priority patent/WO2009158565A2/en
Priority to CA2727115A priority patent/CA2727115C/en
Application granted granted Critical
Publication of RU2379058C1 publication Critical patent/RU2379058C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • A61L2/035Electrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/62Arrangements for supporting spraying apparatus, e.g. suction cups
    • B05B15/628Arrangements for supporting spraying apparatus, e.g. suction cups of variable length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/65Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits
    • B05B15/656Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits whereby the flow conduit length is changeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow

Abstract

Изобретение относится к области дезинфекции материалов и помещений и может быть использовано в сельском хозяйстве, медицине, ветеринарии, текстильной и строительной индустрии, а также смежных отраслях производства. Способ дезинфекции заключается в распылении дезинфицирующего средства, в качестве которого используют смесь воздуха и электроактивированного раствора в весовом соотношении (3-10):1 с размером капель электроактивированного раствора менее 10 мкм, полученную с помощью вихревых эжекторных распылителей с последующим сепарированием крупнодисперсных частиц. Изобретение позволяет существенно повысить качество проводимой дезинфекции, использовать при аэрозолировании электроактивированный раствор, хранящийся длительное время в жидком виде, без понижения активности аэрозоля, а также образовывать активный в течение, по крайней мере, 4 часов аэрозоль, пригодный для обработки различных материалов. 2 з.п. ф-лы, 3 ил., 14 табл.

Description

Заявляемая группа изобретений относится к области биотехнологии, а именно к способам дезинфекции жилых и производственных помещений, средств транспорта, хранилищ, контейнеров и иных объектов от бактериальных, вирусных и грибковых контаминаций, а также дезинфекции находящихся в них воздуха, приборов, устройств, материалов и иных объектов, включая тканные и иные трудно обеззараживаемые волокнистые материалы, а также к устройствам и иной технике, применяемым для этой цели, и может использоваться в сельском хозяйстве, медицине, здравоохранении, ветеринарии, транспорте, пищевой, текстильной и строительной индустрии, а также смежных отраслях производства.
Повсеместная потребность в дезинфекции как в производственных условиях, так и в быту требует разработки способов дезинфекции, не только достаточно дешевых, эффективных, простых и доступных, но, что очень важно, не наносящих вреда окружающей среде, не требующих сложных способов защиты персонала, осуществляющего дезинфекцию, эвакуации людей и животных из дезинфицируемых помещений, а также не повреждающих электронные приборы и обрабатываемые материалы и не создающих больших объемов отходов и сточных вод.
Для борьбы с заражением воздуха помещений и находящихся в помещении поверхностей микроорганизмами используют растворы и аэрозоли, содержащие традиционные биоцидные вещества (хлорная известь, формальдегид, щелочной глутаровый альдегид, соли ди- и трихлоризациануровой кислот, четвертичных аммониевых оснований, надуксусной кислоты, перекись водорода, фенольные, крезольные, иодоформные растворы, пары антисептиков и др.) (GB 1476730; DE 2820409).
Однако указанные препараты малоэффективны в низких концентрациях. Существенным недостатком химических методов воздействия является загрязнение обрабатываемых объектов токсичными веществами, медленно деградирующими во внешней среде и вредными для всех форм белковой жизни - от бактерий до человека.
Более перспективными в отношении безопасности окружающей среды являются способы дезинфекции, в которых в качестве дезинфектанта используется водный раствор NaCl, обработанный в электролитической камере, разделенной пористой перегородкой (диафрагмой) на катодную и анодную камеры - так называемом диафрагменном электролизере (Электрохимическая активация. Очистка воды и получение полезных растворов. // Бахир В.М., Задорожний Ю.Г., Леонов Б.И. и др. ВНИИИМТ, 2001, 175 с.; RU 1341743, RU 1437400, RU 1534772, RU 1677891, RU 2157793, Б.И.Леонов, В.И.Прилуцкий, В.М.Бахир. Физико-химические аспекты биологического действия электрохимически активированной воды.- М.: ВНИИИМТ, 1999. 244 с.). По этому методу повышают электропроводность пресной воды путем внесения 0,01-1 мас.% поваренной соли, пропускают полученный раствор, обладающий повышенной электропроводностью, через анодную камеру диафрагменного электролизера. Полученный в анодной камере активированный водный препарат, получивший наименование анолит, используют в качестве дезинфицирующего раствора, вводя его в контакт с микроорганизмами, расположенными вне диафрагменного электролизера.
Однако при обработке растворами анолита путем обмывания, орошения или протирки труднодоступных поверхностей и обширных помещений происходит значительный расход дезинфектанта, что увеличивает себестоимость дезинфекции и может вызвать порчу ценного оборудования. К тому же, применяемый способ имеет существенные ограничения в отношении объектов дезинфекции. В частности, использование анолита в виде жидкости не позволяет производить дезинфекцию воздуха и электронных приборов, а также не перспективно для дезинфекции волокнистых материалов, например воздушных фильтров, т.к. при их обильном смачивании происходит нарушение структуры материала и ухудшение потребительских свойств и внешнего вида обрабатываемых изделий.
В настоящее время технология дезинфекции с использованием анолита постоянно совершенствуется. Так, предлагается проводить дезинфекцию составом, содержащим анолит с различными добавками, такими как перекись водорода, угольная кислота, карбамид, различные кислоты, их аммонийные соли или смеси данных веществ (US 3975246, СН 605421, RU 2100286, WO 9825855, EP 0885849, RU 2220109).
Недостатком способов дезинфекции с использованием анолита или композиций на его основе является то, что дезинфекция проводится путем нанесения большого количества жидкости на поверхность и они непригодны для одновременной дезинфекции воздушных объемов больших помещений и находящихся в нем объектов. При этом наличие в составе дезинфектанта кислот или иных агрессивных веществ вносит ограничения в круг материалов, которые можно обрабатывать с помощью данной композиции, в частности малопригодны для обработки волокнистых материалов.
Более перспективным является осуществление дезинфекции помещений композициями на основе анолита в виде аэрозоля.
Известен способ (RU 2218183) дезинфекции помещений, включающий последовательную обработку объектов аэрозолями анолита и католита, причем распыление полученных растворов производят в режиме массовой концентрации аэрозоля в пределах 5,0-700 мг/м3 с дисперсностью аэрозоля в пределах 2-100 мкм, причем температура аэрозоля должна быть выше температуры обрабатываемого объекта, при этом скорость частиц аэрозоля должна быть не менее 100 м/с, концентрация оксидантов в растворе должна находиться в пределах 200-600 мг/л, а относительная влажность среды обрабатываемых пространств должна быть в пределах 80-90%. Распыление проводят с помощью дискового распылителя (RU 2180273) без смешивания дезинфектанта с воздухом в момент диспергирования. При этом каждый раствор должен быть использован не позднее чем через 20 минут после его получения в диафрагменном электролизере.
Недостатком способа является повышенная токсичность и коррозионное воздействие активного начала. Кроме того, появляется необходимость обеспечения температуры аэрозоля выше температуры окружающей среды и периодической (каждые 5 минут) подпитки аэрозоля для поддержания его концентрации в помещении в связи с его нестабильностью.
Известен способ дезинфекции помещений (RU 2148414), включающий заполнение помещения аэрозолем с массовой концентрацией 50-100 мг/м3 при использовании нейтрального анолита с pH 7-8,2 и значением окислительно-восстановительного потенциала от 400 до 1000 мВ. Распыление ведут механическим дроблением нейтрального анолита при вращении диска аэрозольного генератора со скоростью не менее 20000 об/мин без смешивания дезинфектанта с воздухом до достижения дисперсности аэрозоля 5-50 мкм, причем аэрозолирование ведут не позже чем через 30 мин после получения анолита. Использование нейтрального анолита является экологически более безопасным, так как он имеет нейтральные значения pH и не выделяется свободный хлор, образование которого происходит при получении аэрозолей из растворов гипохлорита натрия или кальция, однако его дезинфицирующая активность весьма ограничена. При этом в указанных условиях применения применяемый способ распыления недостаточно производителен, требует использования сложных технических устройств, а сам анолит недостаточно стабилен.
Для повышения эффективности дезинфектанта в его состав вводят различные добавки, например уксусную кислоту (RU 2251416). Однако данные добавки ограничивают круг обрабатываемых объектов и не влияют на стабильность аэрозоля.
Для аэрозолирования анолита применяют, как правило, центробежные аэрозольные генераторы, в которых диспергирование осуществляют путем подачи анолита на диск аэрозольного генератора, вращающегося со скоростью не менее 20000 об/мин или при использовании насосов высокого давления (RU 2148414, RU 2258116).
Преимуществом данных устройств является возможность минимизировать негативное воздействие воздуха при образовании активного аэрозоля.
Недостатками таких устройств являются относительно невысокая производительность мелкой фракции, механическая ненадежность, а также невозможность получить достаточно стабильный и активный в течение длительного времени аэрозоль, что, в частности, может объясняться тем, что капли дезинфектанта при попадании в обрабатываемое помещение со скоростью более 100 м/с частично деактивируются вследствие негативного воздействия кислорода в этих условиях, а также высоким содержанием в аэрозоле, генерируемом подобным образом, крупнодисперсной фракции (размер частиц аэрозоля достигает 80 мкм).
Известны применяемые для получения аэрозоля пневматические распылители, состоящие из подсоединенного к источнику подачи газа прямоструйного сопла и коаксиально установленного патрубка подачи жидкости (Kim K.V., Marshall W.R., A.I.Ch.Journal, 1971, v.17, №3, p.575-584). Данные распылители характеризуются высокой производительностью, однако они создают узкий факел большой длины, что затрудняет равномерное распределение дезинфектанта в обрабатываемом объеме. При распылении жидкостей не исключена возможность забивания распылителя случайными примесями из-за малых проходных сечений сопла.
Известна установка для аэрозолирования, состоящая из узла подачи распыляющего агента (сжатого воздуха), распылительного узла на основе эжектора и герметической емкости с распыляемым раствором, в которой размещена трубка, связывающая ее с распылительным узлом (RU 2060840, 1992). Недостатком устройства является его относительно невысокая производительность по мелкодисперсным аэрозолям.
Общим недостатком известных пневматических распылителей считается деактивация анолита при его диспергировании с помощью потока воздуха.
Известно использование форсунки для распыления анолита при дезинфекции водопроводных сооружений (RU 2258116). При этом скорость частиц анолита должна составлять не менее 100 м/с. Использование форсунки позволяет получить только сравнительно крупнодисперсный аэрозоль с размерами частиц 70-80 мкм. Дезинфекцию водопроводных цистерн проводили в течение 45 мин.
Недостатком данного способа и устройства, которые являются наиболее близкими по технической сущности к заявляемой группе изобретений, являются невозможность получить в этих условиях стабильный активный мелкодисперсный аэрозоль, который обеспечивал бы надежную дезинфекцию в течение достаточно продолжительного времени, и, следовательно, неэффективность распыляемого препарата при воздействии на более устойчивые к воздействию дезинфектанта культуры микроорганизмов, в частности споры бактерий.
Технической задачей, решаемой в рамках настоящей группы изобретений, являлось создание более эффективного и универсального способа дезинфекции воздуха и оборудования в закрытых помещениях, а также оборудования для его осуществления, которые позволяют получить высокодисперсные концентрированные аэрозоли, сохраняющие активность в течение относительно длительного периода времени (превышающего продолжительность седиментации генерированного аэрозоля), обеспечивая повышение эффективности дезинфекции, в том числе при обработке больших помещений, а также труднодоступных для частиц дезинфектанта зон и объектов, в частности фильтров и иных изделий из волокнистого материала.
Технический результат достигался введением в обрабатываемое помещение предварительно полученной смеси анолита и воздуха с размеров капель до 10 мкм при весовом соотношении воздух: анолит (3-10):1.
Использование смеси при весовом соотношения воздух: анолит менее 3:1 возможно, но приводит к увеличению размеров частиц аэрозоля и уменьшению времени его существования, использование соотношения более 10:1 значительно понижает концентрацию анолита в воздухе, что существенно уменьшает производительность генератора аэрозоля и увеличивает время обработки закрытых помещений.
Аэрозолирование осуществляется в два этапа, на первом из которых капли распыляемого вещества смешивается с турбулентным воздушным потоком, находящимся под повышенным давлением, а на втором этапе капли подвергаются дополнительной дегидратации и сепарированию, в результате чего аэрозоль обогащается фракцией с размером частиц порядка 1 мкм и менее.
Для получения смеси с оптимальными параметрами использовалась установка для аэрозолирования, в которой смешение дезинфектанта с воздухом проводилось в камере эжектора при повышенном на 0.05-0.3 МПа давлении воздуха на входе, распыление осуществлялось в связанной с внешней средой емкости с помощью эжекторов, установленных таким образом, чтобы поток аэрозоля (факел) был направлен на стенки емкости хордоидально, обеспечивая контакт распыляемого аэрозоля с внутренними стенками емкости и выделение из него крупнодисперсных капель. Установление избыточного давления менее 0.05 МПа ухудшает деконтаминационные свойства аэрозоля, что, по-видимому, связано с уменьшением количества фракции с размером частиц менее 1 мкм; увеличение давления более 0,3 МПа возможно, но нецелесообразно из-за появления конструкционных проблем при выполнении такой камеры.
В качестве распылителя используется не менее одного эжектора, содержащего внутреннюю камеру смешения, в которую подается распыляемое вещество и тангенциально относительно стенок внутренней камеры - воздух, при этом соотношение величины поперечных сечений патрубков поступающего воздуха и выходного отверстия сопла эжектора подбирается таким образом, что превышение давления воздуха в камере над атмосферным давлением составляет не менее 0,1 МПа.
При этом распылитель помещен в цилиндрическую емкость таким образом, чтобы выходящий из него поток был направлен хордоидально относительно стенок цилиндрической емкости, причем проекция центральной оси факела аэрозоля на стенки цилиндра не пересекает верхнего края стенок по крайней мере в течение одного витка, что обеспечивает вращение частиц аэрозоля в емкости не менее одного оборота.
Угол наклона распылителей и, соответственно, время пребывание капель аэрозоля в емкости подбирается экспериментально, исходя из задач, решаемых с помощью устройства. Как правило, он не превышает 20° от горизонтали. Увеличение времени пребывания аэрозоля в емкости снижает производительность устройства, одновременно понижая размер капель аэрозоля, и, наоборот, снижение времени пребывания аэрозоля в емкости повышает производительность устройства, одновременно делая аэрозоль более крупнодисперсным.
Емкость, как правило, выполняется открытой, однако при необходимости, например для транспортировки аэрозоля, может быть дополнительно снабжена диффузором с патрубком.
Наряду с анолитом, распыляющее устройство может быть использовано и для других целей, например для увлажнения воздуха, аэрозольной вакцинации, ингаляционной химиотерапии, защиты растений от вредителей и болезней.
Предлагаемая установка для аэрозолирования анолита состоит из генератора аэрозолей и линии подачи распыляющего агента. При этом генератор представляет собой цилиндрическую емкость, связанную с окружающей средой, а распылительный узел размещен внутри емкости над поверхностью раствора, причем эжекторы распылительного узла внутри емкости размещены таким образом, чтобы поток аэрозоля (факел) в емкости был направлен на ее стенки хордоидально. Количество эжекторов в распылительном узле составляет, как правило, от 1 до 6 в зависимости от объема корпуса и особенностей решаемой задачи. Для обеспечения возможности работы в различных режимах эжекторы устанавливаются с возможностью их поворота относительно горизонтальной плоскости, приводящего к изменению направления факела распыляемой жидкости. Внутри емкости над поверхностью жидкости для обеспечения дополнительной сепарации аэрозоля может быть установлена горизонтальная пластина (отражатель), а эжекторы могут быть закреплены так, что они располагаются от центральной оси сосуда на расстоянии, превышающем радиус выходного патрубка, что повышает сепарационные характеристики установки. Емкость может быть дополнительно оснащена съемной крышкой с выходным патрубком.
Проведенное авторами сопоставление аэрозолей, полученных с использованием воздуха и без него (путем ультразвукового диспергирования), показало, что распыление в присутствии воздуха позволяет получать дезинфектант, примерно в сотни раз более активный в отношении широкого круга микроорганизмов.
По-видимому, это связано с тем, что в форсунке данного генератора аэрозоля происходит смешивание жидкого дезинфектанта с потоком воздуха, имеющего низкую относительную влажность (не более 20%) после расширения его объема при изменении давления от 0,5 МПа в ресивере компрессора до давления, под которым воздух находится в форсунке.
Капли дезинфектанта, распределенные в потоке сухого воздуха, на выходе из форсунки испытывают дополнительное дегидратирование и уменьшение их размеров. За время пребывания в емкости они подвергаются дальнейшей дегидратации и уменьшению своих размеров вследствие массообмена с воздухом, поступающим из компрессора через форсунку и из окружающей среды через центральную часть емкости за счет образующегося локального перепада давления. Одновременно, благодаря хордоидальной направленности факела форсунки относительно стенки емкости генератора, наиболее крупные капли аэрозоля при круговом движении внутри емкости попадают на стенку емкости и стекают по ней, обеспечивая дополнительное повышение содержания мелкодисперсной фракции при выходе из генератора.
В ходе транспортировки аэрозоля в воздушном потоке в обрабатываемом помещении и в ходе пребывания в нем происходит дальнейшая дегидратация капель дезинфектанта, что приводит к дальнейшему уменьшению их размера и увеличению доли фракции с размером частиц менее 1 мкм, обладающей наибольшей проникающей способностью.
В результате удается повысить возможность их существования во взвешенном состоянии до 4 и более часов после диспергирования, когда в результате процессов седиментации аэрозоль с размерами более 1 мкм уже отсутствует в воздушной среде. Это существенно увеличивает надежность и эффективность дезинфекции особенно в случае продолжительной деконтаминации, требующейся при инактивации микроорганизмов, проявляющих повышенную резистентность к дезинфектантам, например спорообразующих.
В качестве дезинфектанта по заявляемому изобретению может использоваться как раствор поваренной соли после его пропускания через анодную камеру электролизной установки (далее эти растворы именуются электроактивированные растворы или ЭАР), так и этот или аналогичный раствор NaCl, пропущенный через анодную камеру диафрагменного электролизера неоднократно. В последнем случае удается добиться получения стабильной аэрозольной композиции с повышенными дезинфицирующими свойствами за счет увеличения содержания в ней оксидантов.
Свойства такого дезинфектанта превышают результаты, получаемые при использовании аэрозоля вторичного анолита с витамином С (RU 2220109), полученного с помощью традиционного оборудования, используемого для аэрозолирования анолита. Наряду с этим, возможно введение в состав композиции добавок, повышающих дезинфицирующие свойства электроактивированного раствора, например ионов двухвалентного железа.
Для пояснения существа изобретения в отношении «устройство» на фиг.1 приведена общая схема установки для аэрозолирования.
Элементы установки - схема генератора аэрозолей приведена на фиг.2, а схема эжекторного распылителя - на фиг.3.
На чертежах приведены следующие обозначения:
1 - генератор аэрозолей
2 - емкость с распыляемым материалом
3 - расходомер жидкости
4 - компрессор с двигателем
5 - редуктор давления
6 - манометр
7 - фильтр
8 - камера с обрабатываемым материалом
9 - вихревой эжекторный распылитель (ВЭР)
10 - корпус емкости
11 - отвод
12 - разводка
13 - подставка
14 - штуцер подвода распыливающего агента
15 - соединительные трубки
16 - штуцер забора распыливаемого продукта
17 - фиксирующее кольцо
18 - прокладка
19 - гайка
20 - вставка
21 - заглушка
22 - отражатель
23 - цилиндрическая камера ВЭР
24 - тангенциальный канал подачи сжатого газа
25 - выпускное сопло ВЭР
26 - патрубок подачи жидкости
Установка для аэрозолирования (фиг.1) состоит из генератора аэрозолей 1, связанных с ним линии подачи распыляемого агента, состоящей из емкости с распыляемым материалом 2, снабженной расходометром 3, и линии обеспечения распыляющего агента, в которую входят последовательно соединенные компрессор с двигателем 4, редуктор давления 5 с манометром 6, фильтр 7. В состав установки может дополнительно входить камера для размещения обрабатываемого материала 8, связанная трубопроводом для транспортировки аэрозоля с генератором 1.
Генератор аэрозолей 1 (фиг.2) состоит из вихревых эжекционных распылителей 9, расположенных внутри цилиндрического корпуса емкости 10 таким образом, чтобы поток аэрозоля (факел) в емкости был направлен на ее стенки хордоидально. Число распылителей 9 составляет от 1 до 6 в зависимости от особенностей решаемой задачи. При необходимости часть распылителей 9 демонтируется, взамен устанавливаются заглушки.
Для обеспечения возможности работы в различных режимах эжекторы устанавливаются с возможностью их поворота относительно горизонтальной плоскости, приводящего к изменению направления факела распыляемой жидкости. При этом для получения дисперсии жидкости с минимальным размером частиц распылители устанавливают, как правило, таким образом, что проекция центральной оси факела аэрозоля на стенки цилиндра не пересекает верхнего края стенок, по крайней мере, в течение одного витка, что обеспечивает круговое движение частиц аэрозоля в емкости не менее одного оборота.
Распылители 9 крепятся к отводам 11 разводки 12 с возможностью фиксированного поворота внутри корпуса 10. Отводы 11 крепятся на резьбовом соединении разводки 12, нижний конец которой ввинчивается в подставку 13 и соединяется со штуцером подвода распыливающего агента 14.
Распылители 9 соединены трубками 15 из полихлорвинила со штуцерами 16 распыляемого продукта. Трубки фиксируются с помощью кольца 17, прокладки 18 и гаек 19. С помощью вставки 20 можно изменить положение распылителей 9 по высоте корпуса 10.
На резьбовой шпильке разводки 12 горизонтально закреплена с помощью гайки 19 горизонтальная пластина - отражатель 22, высота установки которого может регулироваться передвижением по шпильке разводки 12.
При необходимости в корпус емкости 10 монтируется диффузор, который может быть разъемно связан трубопроводом с системой вентиляции при проведении работ по обеззараживанию фильтров данной системы или камерой 8, где размещен обрабатываемый аэрозолем материал.
Вихревые эжекционные распылители 9 (фиг.3) содержат цилиндрическую камеру 23 с тангенциальными каналами 24 подачи сжатого газа и с осевым выпускным соплом 25. Соосно с соплом 25 в камере 23 установлен патрубок 26 подачи жидкости. Проведенные расчеты показали, что лучшие показатели по дисперсности аэрозоля достигались при выполнении устройства, в котором отношение площади поперечного сечения выпускного сопла к суммарной площади поперечных сечений тангенциального канала выбирается равным 1-3, длина осевого выпускного сопла составляет 0,3-1,0 его диаметра, а обращенный к соплу конец патрубка установлен от выходной кромки сопла на расстоянии, выбранном равным 0,5-2,0 длины сопла.
Установка для аэрозолирования работает следующим образом.
В зависимости от решаемой задачи устанавливают необходимое количество распылителей 9 на отводах 11 разводки 12. При проведении работ с распылением препаратов в помещении или в камере 8 подсоединяют штуцер 14 к компрессору 4 посредством гибкого шланга; из емкости 2 подают дезинфектант в корпус 10, после чего подсоединяют компрессор 4 к электрической сети и включают его в работу. С помощью редуктора 5 устанавливают давление в подводящем шланге к генератору, которое регулируется манометром 6. Распыляющий воздух поступает через фильтр 7 в генератор 1 по штуцеру 14 и далее по внутреннему каналу подставки 13 через разводку 12 поступает к эжекторным распылителям 9.
Тангенциальный ввод воздуха через канал 24 в вихревой камере 23 распылителей 9 образует закрученный поток, после чего воздух выходит через сопло 25. При этом максимальные окружные скорости газа достигаются вблизи поверхности патрубка 26, а по оси камеры 23 создается разрежение до 0,03 МПа и обратный поток газа. При попадании воздуха из компрессора 4 в камеру 23 давление воздуха падает, что снижает содержание в нем воды до 15-20%.
Через трубки 15 и патрубок 26 из нижней части корпуса 10 в камеру 23 поступает с линейной скоростью подачи 0,15-0,6 м/с жидкий дезинфектант, который захватывается обратными потоками газа, вводится в зону максимальных окружных скоростей газа и дробится центробежными силами. При этом диспергированная жидкость, распределяясь в сухом воздухе, находящемся под избыточным давлением, начинает подвергаться процессу дегидратации.
Образовавшийся аэрозоль в воздушном потоке поступает в емкость 10 через сопло 25. При этом происходит дальнейшее падение давления воздуха, что приводит к его расширению и понижению относительной влажности, что в свою очередь приводит к дальнейшей дегидратации и уменьшению размеров капель жидкости. Хордальная установка распылителей обеспечивает закрутку двухфазного потока внутри корпуса 10, при этом крупные капли осаждаются на стенки емкости и отражатель 22, после чего стекают на дно емкости, а мелкие уносятся тангенциальным потоком воздуха, который делает, по крайней мере, один оборот внутри корпуса.
Тангенциальный поток создает разрежение по оси емкости 10, вызывая приток в емкость сухого воздуха из помещения, дальнейшую дегидратацию и уменьшение размера капель, что приводит к обогащению аэрозоля фракцией с размерами частиц около 1 мкм. Полученный аэрозоль поступает в помещение или через диффузор и трубопровод поступает в камеру 8, где осуществляется воздействие на обрабатываемый материал. При этом т.к. в помещение поступают капли аэрозоля, окруженные воздушной «подушкой», движущейся с той же скоростью, то «лобового столкновения» с воздухом помещения не происходит, что исключает возможную деактивацию капель анолита.
В результате удается получить аэрозоль анолита, сохраняющий свою активность, обусловленную, в основном, наличием активного хлора, перекиси водорода и свободных радикалов, на уровне жидкого раствора, и обладающий повышенной проникающей способностью за счет наличия в его составе значительного количества фракции с диаметром частиц около и менее 1 мкм.
Проведенное авторами сопоставление аэрозолей, полученных с использованием воздуха при получении дезинфектанта и без использования воздуха (путем ультразвукового диспергирования), показало, что распыление в присутствии воздуха обеспечивает в десятки раз больший дезинфицирующий эффект в отношении микроорганизмов. Получаемый по данной технологии аэрозоль получил условное обозначение АЭАР.
Практическая применимость и особенности использования заявляемой группы изобретений иллюстрируются следующими примерами.
Пример 1. Изучение воздействия ЭАР на микроорганизмы.
Исследовали воздействие аэрозолей ЭАР на образцы, контаминированные различными микроорганизмами. Бактериальная суспензия наносилась на плоские поверхности (купоны) площадью 225 см2, покрытые латексной краской. После подсушивания в комнатных условиях в течение 1 часа образец помещали в аэрозольную камеру объемом 2,8 м3, в которой затем диспергировали аэрозоль ЭАР или физиологический раствор (контроль) с помощью генератора, обеспечивающего аэрозоль со среднемедиальным диаметром dmmd=3,2 мкм при весовом соотношении воздух : подаваемая жидкость 6:1. Объем дисперганта 100 мл. Полученные результаты приведены в таблице 1.
Таблица 1
Воздействие АЭАР на деконтаминацию микроорганизмов
Начальная концентрация микроорганизмов, КОЕ/см2 Диспергант Концентрация жизнеспособных микроорганизмов после введения аэрозоля, КОЕ/см2
Продолжительность экспозиции, мин
1 5 10 15 30
Е.coli 2×106 ЭАР 1×102 0 0 0 0
Физраствор 2×106 1×106 2×106 2×106
Ac. baumannii 1×106 ЭАР 0.5×102 0 0 0
Физраствор 1×106 1×106 1×106 1×106
Вас. thur. 8×103 ЭАР 3,5×102 9 0 0 0
Физраствор 8×103 8×103 8×103
St. aureus 4×106 ЭАР 2 0 0
Физраствор 4×106 4×106 4×106
Полученные результаты показывают, что АЭАР обладает хорошими дезинфицирующими свойствами по отношению к широкому спектру микроорганизмов, включая вегетативные и споровые формы.
Пример 2. Изучение влияния природы обрабатываемой поверхности на степень деконтаминации микроорганизмов.
Исследования проводили на суточных культурах микроорганизмов Е.coli М-17, Staphillococus aureus и Bacillus thuringiensis, шт.98, выращенных на плотных питательных средах. Концентрация рабочей суспензии составляла 1×109 кл/мл при обработке поверхностей для вегетативных форм и 1×106 спор/мл для спорообразующих микроорганизмов. К полученной клеточной суспензии для определения количественных характеристик аэрозоля добавляли раствор уранина в конечной концентрации 0.01%. В качестве тест-поверхностей использовали образцы различных материалов площадью 225 см2. Перед контаминацией микроорганизмов поверхности промывали и стерилизовали.
В качестве деконтаминантов использовали аэрозоли ЭАР и водного раствора гипохлорита кальция в концентрации 1%, что обеспечивало одинаковое количество в препаратах активного хлора, равное 0.1 мас.%.
Проверку дезинфицирующей активности препаратов проводили в 3-х кратной повторности. На тестируемую поверхность с помощью крупнокапельного (100-150 мкм) распылителя равномерно наносили в стерильных условиях суспензию клеток из расчета не менее 1×106 кл/см2. Поверхности подсушивали в течение 30 минут при комнатных условиях (температура (20±2)°С, относительная влажность воздуха 50-60%). Тест-поверхности с нанесенным на них биологическим материалом помещали в аэрозольную камеру объемом 2,8 м3 и обрабатывали АЭАР в течение заданного времени.
Распыление растворов ЭАР осуществляли с помощью вихревого акустического генератора аэрозоля при диспергировании 5 мл/мин жидкости с размерами капель менее 5 мкм (массовый медианный диаметр dmmd=3,0 мкм). Для создания равномерного распределения аэрозоля в объеме камеры использовали постоянно работающий вентилятор.
Время распыления и продолжительность последующей экспозиции выбирали таким образом, чтобы на единицу поверхности образца осело заданное количество дезинфектанта. После аэрозольной обработки в течение определенного времени тест-поверхности извлекали из камеры и сразу же производили отбор проб, смывая клетки с обработанной поверхности стерильным физиологическим раствором. Таким образом, общее время воздействия дезинфектанта на бактериальные клетки включало в себя время распыления аэрозоля и время последующей экспозиции бактериальных клеток в камере.
Количественное определение жизнеспособных клеток осуществляли методом серийных разведений с последующим высевом в жидкую цветную питательную среду или на твердый питательный агар.
Полученные результаты представлены в таблице 2. В качестве контроля использовали контаминированную поверхность аналогичного материала, обработанную в аэрозольной камере аэрозолем стерильного физиологического раствора.
В ходе экспериментов проводили дополнительную систему контролей: контроль стерильности воздуха в боксе методом выдерживания открытых чашек Петри с плотной питательной средой в течение 15 минут с последующим инкубированием образцов при температуре 37±1°С в течение 24 часов и контроль стерильности физиологического раствора и дистиллированной воды методом высева пробы раствора в количестве 0,1 мл на плотную питательную среду в чашках Петри с последующим равномерным распределением раствора шпателем и инкубированием при температуре 37±1°С в течение 24 часов.
Figure 00000001
Полученные результаты показывают, что эффективность деконтаминации с использованием ВАГ зависит от особенностей обрабатываемой поверхности. При этом эффективность ЭАР превышает эффективность гипохлорита кальция, что свидетельствует о том, что наряду с активным хлором в случае ЭАР действуют и иные агенты, обладающие биоцидными свойствами, например свободные радикалы.
Пример 3. Изучение влияния размера аэрозольных частиц на дезинфекционную активность
Исследования с помощью генератора аэрозоля проводились в камере объемом
2,8 м3. Количества диспергируемых ЭАР или физраствора 50 мл, потребляемого генератором воздуха, - 300 л/мин. Весовое соотношение воздух : жидкость = 7.5:1.
Бактериальная суспензия наносилась на плоские образцы площадью 225 см2, покрытые латексной краской. После подсушивания на воздухе в течение 1 часа образцы помещали в аэрозольную камеру, в которой затем генерировали аэрозоль. Время последующей экспозиции в камере 10 минут. Полученные результаты приведены в таблице 3.
Таблица 3
Влияние размера аэрозольных частиц ЭАР на дезинфицирующую активность
Микроорганизм, начальная концентрация, КОЕ/см2 Дезинфектант Размер аэрозоля,
dmmd, мкм
Концентрация микроорганизмов после воздействия аэрозолем, КОЕ/см2
Е.coli 7,0×105 Физраствор 3,2 1,0×105
ЭАР 0
Вас. thurengiensis 1,4×105 Физраствор 1,2×105
ЭАР 1,3×102
Е.coli 7,0×105 Физраствор 39,5 1,2×105
ЭАР 4,1×102
Вас. thurengiensis 1,4×105 Физраствор 1,3×105
ЭАР 4,3×103
Как следует из приведенных данных, уменьшение размера частиц аэрозоля повышает биоцидные характеристики АЭАР.
Пример 4. Изучение влияния способа аэрозолирования на эффективность деконтаминации.
50 мл ЭАР или физраствора распылялось в течение 10 мин в камере объемом 2,8 м3 с находящимися в ней микроорганизмами, нанесенными на поверхность плоских образцов из различного материала размером 225 см2 или распыленными в воздухе в виде аэрозоля с dmmd=2,6 мкм. Распыление проводилось с помощью заявляемого генератора ВАГ, образующего аэрозоль с dmmd=3,1 мкм, при весовом соотношении потребляемый воздух : диспергируемая жидкость = 5:1 или с помощью ультразвукового генератора Omron (США), образующего аэрозоль с dmmd=2,7 мкм. Полученные результаты приведены в таблице 4.
Figure 00000002
Полученные результаты показали, что при одинаковых размерах частиц аэрозоля применение эжекторного распыления значительно эффективнее ультразвукового диспергирования, что свидетельствует о позитивном влиянии на деконтаминационную активность дезинфектанта способа диспергирования с использованием ВАГ. Наибольшие различия наблюдаются при малых временах экспозиции контамината, что свидетельствует о влиянии воздушного потока на обменные процессы аэрозоля и его свойства при диспергировании с помощью ВАГ.
Пример 5. Влияние количественного соотношения воздух/распыляемый материал на свойства аэрозоля.
Влияние условий получения аэрозоля на его деконтаминационную активность изучалось на примере воздействия ЭАР на культуру спор Вас.cereus, нанесенную на стеклянную поверхность в количестве 2×105 КОЕ/см2 при экспозиции контамината в камере объемом 2.8 м3 в течение 10 мин. Свойства аэрозоля, получаемого с помощью ВАГ, приведены в таблице 5.
Таблица 5
Влияние условий получения аэрозоля ЭАР на его свойства
Избыточное давление воздуха на входе в распылитель, МПа 0.05 0,15 0,20 0,15 0,20 0,20
Расход воздуха, л/мин 120 180 240 180 240 240
Расход анолита, мл/мин 20 29 40 50 50 104
Соотношение воздух: анолит, вес 8 8 8 10 6 3
dmmd генерируемого аэрозоля 4,5 3,8 3,3 4.2 3,5 8,1
Титр Bac. cereus, КОЕ/см2 2,3×104 5,1×103 6,1×102 4.2×103 1,5×103 2,0×104
Приведенные данные свидетельствуют, что лучшие результаты по деконтаминации достигаются при весовом соотношения воздух : распыляемый материал 8:1 и избыточном давлении 0,2 МПа. По-видимому, в этом случае достигается оптимальное сочетание количества диспергированного деконтамината и фракционно-дисперсного состава аэрозоля.
Пример 6. Зависимость получаемого аэрозоля от положения форсунки в корпусе емкости.
Были проведены опыты по аэрозолированию ЭАР с помощью ВАГ при различном расположении форсунок (количество форсунок - 2) в цилиндрической емкости. Расстояние по вертикали от центра сопла форсунки до верхнего края емкости - 50 мм. Полученные результаты приведены в таблице 6.
Figure 00000003
Из приведенных данных следует, что приближение форсунки к стенке и уменьшение угла отклонения эжектора от горизонтали вверх приводят к снижению производительности установки при одновременном снижении величины частиц продуцируемого аэрозоля за счет увеличения взаимодействия аэрозоля со стенкой емкости, а также повышение времени пребывания частиц в емкости.
Пример 7. Зависимость активности аэрозоля ЭАР от времени его нахождения в воздушном объеме.
В камере объемом 2,8 м3 диспергировали ЭАР с помощью ВАГ с dmmd=3.6 мкм и определяли с использованием микроциклона содержание аэрозоля с размерами частиц более 1 мкм. В таблице 7 приведены данные о содержании и свойствах аэрозоля ЭАР в камере в процессе его седиментации по результатам количественных измерений с использованием уранина в качестве флуоресцентной метки.
Таблица 7
Изменение массового содержания аэрозоля с размерами частиц более 1 мкм в зависимости от времени, прошедшего после диспергирования ЭАР
Масса аэрозоля в камере, отн. ед 100 75 55 40 28 18 9 4 1 <1
Время, мин 0 30 60 90 120 150 180 210 240 270
Согласно приведенным результатам через 4 часа наблюдения в камере практически отсутствует аэрозоль с размерами частиц более 1 мкм.
В вышеописанную камеру вносили 6 чашек Петри (3 открытые и 3 закрытые), в которые были помещены стеклянные купоны, содержащие споры Bac.cereus в концентрации 1×106 КОЕ/см2. В камере было распылено с помощью ВАГ 100 мл ЭАР с dmmd=3.6 мкм. Через 3 часа после введения аэрозоля оценивали содержание живых спор в открытой и закрытой чашках. Через 4 часа закрытые чашки открыли и выдерживали в камере еще 16 часов. Результаты определения степени деконтаминации спор приведены в таблице 8.
Таблица 8
Изменение уровня инактивации спор Вас.cereus в зависимости от времени нахождения аэрозоля ЭАР в камере
Время нахождения аэрозоля в камере, час Концентрация Bac.cereus, КОЕ/ см2
Открытые чашки Петри с самого начала Закрытые чашки Петри Закрытые чашки Петри, открытые в ходе эксперимента
0 1×106 1×106
3 0 1×104
4 0 2×103
20 0 0
Полученные результаты свидетельствуют о наличии в аэрозоле ЭАР фракции с размером частиц около 1 мкм, способных проникать в закрытые чашки Петри и вызывать инактивацию спор; о наличии в воздухе микрочастиц активного аэрозоля в период, когда практически все капли от 1 мкм и выше отсутствуют в камере. В отличии от аналогов заявляемый способ позволяет получить аэрозоль, проявляющий деконтаминационную активность в течение по крайней мере 4 часов после его диспергирования (в случае аналогов время пребывания активного аэрозоля составляет не более 30-40 мин).
Для подтверждения полученных результатов в камере распыляли ЭАР с помощью ВАГ с dmmd=3.6 мкм, после чего в камеру периодически вносили аэрозоль спор Вас.cereus в количестве 1×104 КОЕ/л с dmmd=2.6 мкм и проверяли уровень их инактивации через определенное время экспозиции в камере. Полученные результаты приведены в таблице 9.
Таблица 9
Изменение уровня инактивации распыленных в воздухе спор Вас.cereus в зависимости от времени нахождения аэрозоля ЭАР в камере
Экспозиция спор в камере, мин Концентрация спор, КОЕ/л
Время нахождения аэрозоля в камере до контакта со спорами, мин
0 1 60 120 180 240
12 3,7×103 0 0 0 150 2,4×103
22 3,5×103 0 0 0 0 8,7
Из приведенных данных следует, что ЭАР, диспергированный с помощью ВАГ, проявляет активность, по крайней мере, в течение 4 часов, включая время, когда седиментация аэрозоля практически завершена. После седиментации аэрозоля с размером частиц 1 мкм и более атмосфера камеры сохраняет высокие деконтаминационные свойства, проявляющиеся в зависимости от продолжительности контакта с микроорганизмами.
По-видимому, это является результатом дегидратации аэрозоля в воздушном потоке с малой относительной влажностью, имеющей место во время работы генератора ВАГ, и увеличения относительного количества мелкодисперсного аэрозоля ЭАР в ходе его пребывания в воздушной среде камеры в течение продолжительного времени.
Пример 8. Влияние продолжительности хранения ЭАР на биоцидные свойства аэрозоля, генерируемого с помощью ВАГ.
Наблюдение за свойствами жидкого ЭАР проводили в течение недели при хранении в плотно закрытой стеклянной емкости в защищенном от света месте при комнатной температуре. Изучалась деконтаминация спор Вас.cereus при контакте суспензии спор с жидким ЭАР и спор, находящихся в воздушной среде камеры, объемом 2.8 м3 в контакте с аэрозолем ЭАР. Полученные результаты приведены в таблицах 10 и 11.
Таблица 10
Изменение свойств жидкого ЭАР при хранении (объемные соотношения ЭАР и суспензии спор - 1:1), время контакта 15 мин
Образец Концентрация Вас.cereus, КОЕ/мл
Продолжительность хранения ЭАР, сутки
0 1 2 3 4 7
Вас.cereus + физраствор 5,6×107 6,3×107 4,8×107 4,7×107 8,7×107 2,8×107
Вас.cereus + ЭАР 2,9×102 1,3×102 1,8×102 2,7×102 1,1×102 1,4×102
Таблица 11
Зависимость деконтаминационной активности аэрозоля от времени хранения ЭАР. (Распыление суспензии спор в количестве
7×107 КОЕ/л с dmmd=2.8 мкм через 5 минут после распыления 30 мл ЭАР с dmmd=3.6 мкм. Время экспозиции спор 3 мин.)
Образец Концентрация Вас.cereus, КОЕ/мл
Продолжительность хранения ЭАР, сутки
0 1 4 7
Вас.cereus + физраствор 7,1×103 6,9×103 7,3×103 7,0×103
Вас.cereus + ЭАР 3,7×101 3,9×101 3,0×101 3,2×101
Из приведенных данных следует, что ЭАР в отличие от аналогов может храниться в готовом виде по крайней мере 7 дней без существенной потери активности при его аэрозолировании по заявляемому способу.
Пример 9. Аэрозольная обработка волокнистых материалов.
Исследования проводились в камере объемом 2,8 м3. Диспергирование ЭАР осуществлялось с помощью генератора аэрозоля ВАГ, потреблявшего воздух в количестве 300 л/мин при давлении 0,2 МПа и весовом соотношении воздух : ЭАР 6,5. В качестве контроля диспергировали физиологический раствор. Бактериальная суспензия наносилась на плоские образцы различной природы площадью 225 см2. После подсушивания в течение 1 часа образец помещали в аэрозольную камеру, в которую затем диспергировался ЭАР или физиологический раствор. Время экспозиции образцов - 10 мин. Полученные результаты приведены в таблице 12.
Figure 00000004
Приведенные данные свидетельствуют о высокой эффективности заявляемого способа при обработке волокнистых материалов различной природы, что является результатом высокой проникающей способности аэрозоля.
Пример 10. Исследование возможности повышения деконтаминационной возможности ЭАР.
Было рассмотрено изменение химического состава и биоцидных свойств ЭАР после дополнительного пропускания раствора через установку «Стел» с использованием стандартной технологии получения анолита. При этом ЭАР, полученный после различного количества прохождений раствора через диафрагменный электролизер, смешивался в соотношении 1:1 с суспензией спор Вас.cereus с концентрацией 1×106 КОЕ/мл. Полученные результаты приведены в таблице 13.
Таблица 13
Влияние на свойства дизенфектанта особенностей получения ЭАР
Количество обработок в электролизере установки «Стел» Содержание активного хлора, % pH Концентрация микроорганизмов, КОЕ/мл
Исходная ЭАР 0,09 6,9 200
1 доп. обработка 0,18 6,9 8,1
2 доп. обработки 0,20 6,9 0,6
Таким образом, дополнительное пропускание дезинфектанта через электролизер повышает биоцидные свойства композиции.
Пример 11. Влияние ионов Fe++ на биоцидные характеристики аэрозоля.
Опыты по деконтаминации воздуха проводили в камере объемом 2,8 м3. С помощью пневматического распылителя в течение 1 мин в камере получали бактериальный аэрозоль Е.coli M17 с концентрацией клеток 106 кл/м3 и размерами, соответствующими dmmd=2,5 мкм. Затем в камере с помощью установки ВАГ диспергировали в течение 1 мин 5 мл дезинсектанта или физиологического раствора (контроль). Отбор проб аэрозоля проводили с помощью микроциклонов в период нахождения клеток в воздушной среде камеры через определенные промежутки времени. В качестве дезинфектантов использовали ЭАР, включающий ионы двухвалентного железа. Для сравнения использовали раствор гипохлорита кальция и анолит без добавления солей железа. Все растворы содержали одинаковое количество активного хлора, равное 0.10 вес.%. Результаты испытаний по дезинфекции воздуха, зараженного Е.coli, приведены в таблице 14.
Таблица 14
Влияние природы аэрозолированного дезинфектанта на степень инактивации клеток Е.coli в зависимости от продолжительности их экспозиции в воздухе
Дезинфектант Концентрация микроорганизмов, lg КОЕ/л
Продолжительности экспозиции, мин
0 1 3 6
Физраствор 5.0 5.0 4.9 4.8
Гипохлорид 5.0 3.1 2.8 2.4
ЭАР + 1×10-5% FeSO4 5.0 0 0 0
ЭАР 5.0 1.0 0.3 0
Как следует из приведенных данных, введение в композицию ЭАР солей Fe++ повышает биоцидные характеристики ЭАР, по-видимому, за счет образования дополнительных количеств активных радикалов в соответствии с реакцией Фентона.
Как показали вышеприведенные экспериментальные данные, в результате использования заявляемой группы изобретений появляется возможность существенно повысить качество проводимой дезинфекции, использовать при аэрозолировании ЭАР, способный храниться длительное время в жидком виде без понижения активности аэрозоля, а также образовывать аэрозоль, сохраняющий деконтаминационные свойства в течение, по крайней мере, 4 часов и пригодный для обработки различных материалов, в том числе и обладающих волокнистой структурой (ткань, фильтры кондиционеров и т.п.).

Claims (3)

1. Способ аэрозольной дезинфекции закрытых помещений путем распыления электроактивированного раствора, отличающийся тем, что используют предварительно полученную смесь воздуха и электроактивированного раствора в весовом соотношении (3-10):1 с размером капель электроактивированного раствора менее 10 мкм, полученную с помощью вихревых эжекторных распылителей с последующим сепарированием крупнодисперсных частиц.
2. Способ по п.1, отличающийся тем, что в качестве электроактивированного раствора аэрозолируют раствор поваренной соли после его пропускания через анодную камеру электролизера с полупроницаемой мембраной.
3. Способ по п.1, отличающийся тем, что в качестве электроактивированного раствора аэрозолируют раствор поваренной соли после его пропускания через анодную камеру электролизера неоднократно.
RU2008125415/15A 2008-06-25 2008-06-25 Способ аэрозольной дезинфекции закрытых помещений RU2379058C1 (ru)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2008125415/15A RU2379058C1 (ru) 2008-06-25 2008-06-25 Способ аэрозольной дезинфекции закрытых помещений
CA3011313A CA3011313C (en) 2008-06-25 2009-06-26 System for disinfecting an enclosed area using a microaerosol
MX2010014162A MX2010014162A (es) 2008-06-25 2009-06-26 Metodo de descontaminacion basado en microaerosol.
CN200980123622.0A CN102065907B (zh) 2008-06-25 2009-06-26 基于微气溶胶的去污方法
US12/999,888 US20110135757A1 (en) 2008-06-25 2009-06-26 Microaerosol-based decontamination method
EP09771096.6A EP2303340B1 (en) 2008-06-25 2009-06-26 Microaerosol-based decontamination method
ES09771096.6T ES2500642T3 (es) 2008-06-25 2009-06-26 Método de descontaminación basado en microaerosol
PCT/US2009/048765 WO2009158565A2 (en) 2008-06-25 2009-06-26 Microaerosol-based decontamination method
CA2727115A CA2727115C (en) 2008-06-25 2009-06-26 Microaerosol-based decontamination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008125415/15A RU2379058C1 (ru) 2008-06-25 2008-06-25 Способ аэрозольной дезинфекции закрытых помещений

Publications (1)

Publication Number Publication Date
RU2379058C1 true RU2379058C1 (ru) 2010-01-20

Family

ID=41396023

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008125415/15A RU2379058C1 (ru) 2008-06-25 2008-06-25 Способ аэрозольной дезинфекции закрытых помещений

Country Status (8)

Country Link
US (1) US20110135757A1 (ru)
EP (1) EP2303340B1 (ru)
CN (1) CN102065907B (ru)
CA (2) CA2727115C (ru)
ES (1) ES2500642T3 (ru)
MX (1) MX2010014162A (ru)
RU (1) RU2379058C1 (ru)
WO (1) WO2009158565A2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2581225C1 (ru) * 2014-12-05 2016-04-20 Сергей Алексеевич Бахарев Способ удаления влаги и обеззараживания продуктов с использованием акустических волн
RU2636522C1 (ru) * 2016-06-09 2017-11-23 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Способ и устройство получения мелкодисперсных аэрозолей с предотвращением засорения форсунок
RU2672355C2 (ru) * 2017-03-31 2018-11-14 Валерий Васильевич Григорьев Способ двухстадийной сухой дезинфекции гетерогенной газовоздушной смесью водного раствора перекиси водорода замкнутых пространств
RU185062U1 (ru) * 2018-06-27 2018-11-20 Владимир Петрович Сизиков Устройство для аэрозольного распыления жидкости
RU2746531C1 (ru) * 2020-02-26 2021-04-15 Общество с ограниченной ответственностью "АполлО" Мобильный гигиенический центр
RU206843U1 (ru) * 2021-04-13 2021-09-29 Общество с ограниченной ответственностью "Кузбасский региональный горный центр охраны труда" (ООО "Горный-ЦОТ") Устройство для аэрозольной дезинфекции закрытых помещений

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156044B2 (en) * 2008-06-25 2015-10-13 Battelle Memorial Institute Aerosol device
SI2374762T1 (sl) * 2010-03-31 2013-05-31 Caliopa Ag Postroj in postopek za tvorjenje elektrokemično aktivirane raztopine
DE102014108798A1 (de) * 2014-06-24 2015-12-24 Krones Ag Pasteurisationssystem mit Reinigung der Prozessflüssigkeit
CN106732216B (zh) * 2017-01-12 2019-05-07 兰州大学 一种纳米材料液体气溶胶发生装置
IT201700064091A1 (it) * 2017-06-09 2018-12-09 Dropsa Spa Dispositivo e metodo di sanificazione di un ambiente
IT201700064045A1 (it) * 2017-06-09 2018-12-09 Dropsa Spa Dispositivo e metodo di sanificazione di un ambiente
CA3131351C (en) 2019-03-28 2023-10-17 Nbot Systems, Llc Gas injection systems for optimizing nanobubble formation in a disinfecting solution
CN113102131A (zh) * 2021-04-16 2021-07-13 上海兰钧新能源科技有限公司 湿式涂布喷涂装置和湿式涂布装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8300356L (sv) 1983-01-25 1984-07-26 Tetra Pak Int Sett och anordning for forangning av en vetska
DE3414268A1 (de) * 1984-04-14 1985-10-24 Kolbus Gmbh & Co Kg Verfahren und vorrichtung zum entkeimen von lebensmittelbehaeltern
EP0924460B1 (de) 1997-12-22 2003-04-23 ALSTOM (Switzerland) Ltd Zweistufige Druckzerstäuberdüse
CN2726606Y (zh) * 2004-08-16 2005-09-21 广州市诺伯乐生物科技有限公司 一种电解式强氧化混合气体消毒机
US8156608B2 (en) * 2006-02-10 2012-04-17 Tennant Company Cleaning apparatus having a functional generator for producing electrochemically activated cleaning liquid
CA2539418C (en) * 2006-03-13 2013-10-29 Queen's University At Kingston Switchable solvents and methods of use thereof
CN201022859Y (zh) * 2007-01-05 2008-02-20 王庆旺 无动力室内空气净化器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2581225C1 (ru) * 2014-12-05 2016-04-20 Сергей Алексеевич Бахарев Способ удаления влаги и обеззараживания продуктов с использованием акустических волн
RU2636522C1 (ru) * 2016-06-09 2017-11-23 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Способ и устройство получения мелкодисперсных аэрозолей с предотвращением засорения форсунок
RU2672355C2 (ru) * 2017-03-31 2018-11-14 Валерий Васильевич Григорьев Способ двухстадийной сухой дезинфекции гетерогенной газовоздушной смесью водного раствора перекиси водорода замкнутых пространств
RU185062U1 (ru) * 2018-06-27 2018-11-20 Владимир Петрович Сизиков Устройство для аэрозольного распыления жидкости
RU2746531C1 (ru) * 2020-02-26 2021-04-15 Общество с ограниченной ответственностью "АполлО" Мобильный гигиенический центр
WO2021173038A1 (ru) * 2020-02-26 2021-09-02 Общество с ограниченной ответственностью "АполлО" Мобильный гигиенический центр
RU206843U1 (ru) * 2021-04-13 2021-09-29 Общество с ограниченной ответственностью "Кузбасский региональный горный центр охраны труда" (ООО "Горный-ЦОТ") Устройство для аэрозольной дезинфекции закрытых помещений

Also Published As

Publication number Publication date
EP2303340A2 (en) 2011-04-06
CN102065907B (zh) 2015-07-29
ES2500642T3 (es) 2014-09-30
CA3011313A1 (en) 2009-12-30
CN102065907A (zh) 2011-05-18
MX2010014162A (es) 2011-02-15
WO2009158565A3 (en) 2010-03-18
CA2727115A1 (en) 2009-12-30
CA3011313C (en) 2019-05-28
EP2303340B1 (en) 2014-07-30
WO2009158565A2 (en) 2009-12-30
CA2727115C (en) 2018-08-28
US20110135757A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
RU2379058C1 (ru) Способ аэрозольной дезинфекции закрытых помещений
US8974737B2 (en) Space Disinfection
CN111514347B (zh) 一种雾化臭氧水环保消杀系统
JP2000051330A (ja) 室内殺菌、脱臭方法及び装置
US20220040348A1 (en) Method, apparatus and system for disinfecting air and/or surfaces
CN212619082U (zh) 室内环境消毒应用超声雾化消毒装置
WO2011093381A1 (ja) 環境浄化方法及び環境浄化装置
RU2406572C2 (ru) Установка для аэрозолирования
CN106942269B (zh) 一种制备消毒剂纳米颗粒的装置
RU87626U1 (ru) Устройство для аэрозолирования
CN114176075B (zh) 消毒用气溶胶制备方法、消毒方法、制备系统及消毒系统
RU2746976C1 (ru) Устройство для дезинфекции и способ ее осуществления
CN2855422Y (zh) 消毒杀菌装置
CN215235030U (zh) 一种尾气处理装置
CN217065013U (zh) 一种养殖用通风系统
CN218129370U (zh) 一种臭氧纳米气雾空气消毒机
CN212940751U (zh) 一种超声波气体消毒净化器
CN205339643U (zh) 一种用于公共交通领域内的雾化消毒装置
CN219721406U (zh) 一种汽化杀菌消毒除味系统
CN214677405U (zh) 适用于果蔬贮运微环境调控的多场耦合防腐保鲜系统
CN220707632U (zh) 相对密闭空间专用的空气灭菌净化调控装置
CN215049229U (zh) 智能物联远程控制一体化净水设备
JP2012044957A (ja) 浮遊ウイルス不活化評価方法およびその装置
WO2022031256A1 (ru) Устройство для генерации антисептического раствора на основе атомов серебра и воды
JPH01207154A (ja) 殺菌消毒剤の散布方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100626

NF4A Reinstatement of patent

Effective date: 20110420

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150626