RU2373623C2 - Устройство для регулировки хода якоря в реверсивном линейном приводе - Google Patents

Устройство для регулировки хода якоря в реверсивном линейном приводе Download PDF

Info

Publication number
RU2373623C2
RU2373623C2 RU2006130550/09A RU2006130550A RU2373623C2 RU 2373623 C2 RU2373623 C2 RU 2373623C2 RU 2006130550/09 A RU2006130550/09 A RU 2006130550/09A RU 2006130550 A RU2006130550 A RU 2006130550A RU 2373623 C2 RU2373623 C2 RU 2373623C2
Authority
RU
Russia
Prior art keywords
armature
current
wave
energy
field
Prior art date
Application number
RU2006130550/09A
Other languages
English (en)
Other versions
RU2006130550A (ru
Inventor
Йоханнес РАЙНШКЕ (DE)
Йоханнес РАЙНШКЕ
Original Assignee
Бсх Бош Унд Сименс Хаусгерете Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бсх Бош Унд Сименс Хаусгерете Гмбх filed Critical Бсх Бош Унд Сименс Хаусгерете Гмбх
Publication of RU2006130550A publication Critical patent/RU2006130550A/ru
Application granted granted Critical
Publication of RU2373623C2 publication Critical patent/RU2373623C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/04Motor parameters of linear electric motors
    • F04B2203/0401Current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Linear Motors (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Linear Motors (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Изобретение относится к электротехнике и может быть использовано для регулирования хода (Н) якоря. Технический результат состоит в повышении точности настройки хода якоря. Якорь (8) реверсивного линейного привода (2) с обмоткой возбуждения под действием магнитного поля обмотки возбуждения совершает линейное колебательное движение в осевом направлении с заданным ходом (Н). Предусмотрены средства для определения текущего положения (х) якоря, средства для измерения текущего значения тока (Iist) обмотки возбуждения и средства для задания тока (Isoll) обмотки возбуждения, так чтобы в течение каждой полуволны движения якоря (8) к нему подводилось ровно столько энергии, сколько нужно для получения амплитуды колебаний (+L1, -L2), соответствующей заданному ходу (Н) якоря. 12 з.п. ф-лы, 3 ил.

Description

Область техники
Изобретение относится к устройству для регулирования хода якоря в реверсивном линейном приводе, который имеет, по меньшей мере, одну обмотку возбуждения, обтекаемую током обмотки возбуждения, и магнитный якорь, который под действием магнитного поля обмотки возбуждения совершает линейное колебательное движение в осевом направлении с заданным ходом якоря.
Уровень техники
Подобный линейный привод известен из патентного документа JP 2002-031054 А. Такие линейные приводы используются в частности для обеспечения линейного колебательного движения поршней компрессоров. Система, состоящая из такого компрессора с линейным приводом, называется поэтому также линейным компрессором (ср. вышеупомянутый документ JP-A). В соответствующих известных линейных компрессорах якорь, в соответствующих случаях подвешенный через посредство, по меньшей мере, одного пружинного элемента, представляет собой упругую инерционную систему, рассчитанную на определенную частоту колебаний при заданной характеристике "сила-путь" компрессора.
Известны различные способы регулирования положения или хода якоря в таком линейном компрессоре. Однако при известных способах регулирования хода якоря, как правило, отказываются от непосредственного непрерывного измерения положения якоря.
Фактическое положение якоря до сих пор определялось дискретным способом, например, посредством замыкания электрического контакта при достижении якорем определенного положения. Известен также непрерывный способ измерения положения, например, с помощью напряжения, индуцируемого в обмотке возбуждения.
Раскрытие изобретения
Задача настоящего изобретения состоит в создании устройства регулирования с вышеназванными признаками, которое сделает возможной точную настройку хода якоря.
Эта задача решена с помощью признаков, указанных в пункте 1 формулы изобретения. В соответствии с этим устройство регулирования должно иметь
средства для определения текущего значения положения якоря,
средства для измерения текущего значения тока обмотки возбуждения и
средства для задания тока обмотки возбуждения, так чтобы при установившемся режиме якоря в течение каждой полуволны движения якоря к якорю подводилось ровно столько энергии, сколько нужно для получения амплитуды колебаний, соответствующей заданному ходу якоря.
Прелагаемые в изобретении мероприятия основаны на том соображении, что для достижения желаемой длины хода, представляющей собой удвоенную амплитуду колебания, к якорю в течение каждой полуволны должно быть подведено определенное количество энергии, а именно, во время полуволны расширения для натяжения, по меньшей мере, возможно имеющегося пружинного элемента, а во время полуволны сжатия для совершения механической работы перемещения якоря и возможно связанной с ним движущейся части компрессора. Даже в установившемся режиме количества энергии, требующиеся для полуволн сжатия и расширения, как правило, различны и не известны заранее. Оба значения приходится оценивать, исходя из фактически устанавливающихся амплитуд колебания.
Основная идея предлагаемого в изобретении принципа регулирования состоит поэтому в том, что (квази-) непрерывное измерение положения якоря должно состоять не только из измерения длины хода, т.е. максимального отклонения, якоря, но и из измерения количества электрической энергии, подаваемой в якорь. Это возможно, поскольку количество электрической энергии пропорционально интегралу тока катушки по перемещению якоря. Во время каждой полуволны, в тот момент, когда в якорь поступит достаточное количество энергии, ток в катушке отключается. При каждом изменении направления движения якоря ток в катушке включается снова, причем с таким знаком, чтобы направление электромагнитной силы, действующей на якорь, и направление его движения совпадали. После этого измерение энергии и последующее отключение тока повторяются.
В дополнение к измерению положения в каждой полуволне, по меньшей мере, в определенной фиксированной, так называемой триггерной, точке может определяться скорость, а тем самым и кинетическая энергия якоря. При этом триггерная точка предпочтительно задается в области максимальной скорости якоря. Для измерения скорости не требуется отдельный датчик, так как ее можно определить посредством дифференцирования квазинепрерывного измерения положения. Далее, зная скорость, можно определить энергию, накопленную в якоре.
Во время полуволны расширения по результатам измерения положения и скорости, по меньшей мере, в одной триггерной точке, измерения положения дальней от компрессора мертвой точки, в которой кончается полуволна расширения, и измерения накопленной в якоре энергии можно оценить параметры линейного привода, например коэффициента жесткости пружины или коэффициента передачи "ток-сила". Во время полуволны сжатия с помощью аналогичных измерений можно определить параметры компрессора, например расходуемую в компрессоре в течение цикла механическую энергию, разность давлений нагнетания и всасывания в компрессоре и/или характеристику "сила-путь" компрессора.
Таким образом, предлагаемый в изобретении принцип регулирования делает возможным надежный запуск линейного компрессора, а также его надежную эксплуатацию при неустойчивых внешних условиях, т.е. при нестабильной характеристике компрессора. При этом под словом "надежный" подразумевается невозможность выброса поршня компрессора в фазе сжатия и его удара о пластину поршня или пластину клапана. Далее принцип регулирования позволяет очень точно регулировать так называемый мертвый объем камеры сжатия, а это является основной предпосылкой высокого общего кпд, например холодопроизводительности линейного компрессора.
Прочие предпочтительные модификации предлагаемого в изобретении линейного привода вытекают из зависимых пунктов формулы изобретения. При этом конструктивная форма по пункту 1 может сочетаться с признаками одного или даже нескольких зависимых пунктов. Таким образом, для линейного привода могут быть дополнительно предусмотрены еще следующие признаки:
Так, средства регулировки тока могут включать в качестве исполнительного звена регулятора тока выпрямительную схему с включенным после нее так называемым Н-мостом с регулируемыми элементами в его плечах. При этом в качестве регулируемых элементов в плечах моста предпочтительно могут быть применены МОП-транзисторы (MOSFET).
Измеренный ток обмотки возбуждения в качестве входной величины фактического значения тока предпочтительно подается на вход регулятора тока, управляющего элементами в плечах моста так, чтобы сигнал фактического значения тока стал равен откорректированному в соответствии с фактическим положением якоря, задаваемому регулятором положения заданному значению тока или, предпочтительно, отслеживал его. При необходимости сигнал фактического значения тока может подаваться также на вход регулятора положения.
Вместо вышеупомянутого определения скорости и энергии якоря с помощью, по меньшей мере, одной триггерной точки могут быть с особенным успехом применены также средства для непрерывного измерения скорости якоря (8). При этом можно с помощью соответствующих средств по измеренной скорости определить накопленную в якоре энергию.
Кроме того, могут быть также предусмотрены средства для регулирования частоты колебаний якоря. В этих средствах могут использоваться сигналы измерения положения, а при необходимости также сигналы измерения скорости.
Прочие предпочтительные модификации предлагаемого изобретением регулятора вытекают из не упомянутых выше зависимых пунктов.
Краткий перечень фигур чертежей
Ниже изобретение описывается подробнее с помощью предпочтительных примеров реализации со ссылками на чертежи. На чертежах представлены:
на фиг.1 - сильно схематизированный разрез части линейного привода, который сам по себе известен,
на фиг.2 - блок-схема первого варианта регулятора согласно изобретению и
на фиг.3 - блок-схема другого варианта такого регулятора.
Соответствующие части обозначены на чертежах одинаковыми номерами.
Осуществление изобретения
В основе представленного на фиг.1 линейного привода лежат известные сам по себе конструктивные варианты, применяемые для линейных компрессоров (ср. вышеупомянутый документ JP-A). На чертеже в основном схематически показана лишь верхняя часть сечения такого линейного привода 2; т.е. на чертеже изображены лишь те детали, которые лежат по одну сторону от оси или плоскости S, проходящей в направлении оси движения. Линейный привод 2 имеет, по меньшей мере, одну обмотку возбуждения 4, к которой относится, по меньшей мере, один сердечник 5, проводящий магнитный поток. В центральном щелевидном зазоре 7 под этим сердечником расположен магнитный якорь, например, с двумя аксиально расположенными друг за другом постоянными магнитами. Направления их намагниченности обозначены стрелками m1 и m2. Якорь, называемый также "якорными салазками", имеет по краям направленные вдоль оси, не рассматриваемые более подробно удлинители. Он может совершать в переменном магнитном поле обмотки 4 колебательное движение в осевом направлении, колеблясь относительно среднего положения Мр. Максимальное отклонение от среднего положения в осевом направлении х, т.е. амплитуда колебания обозначена +L1 и -L2. Соответственно длина хода Н якоря равна (L1+L2).
Как показано далее на чертеже, в представленном варианте исполнения две неподвижно закрепленные плоские пружины 9 и 9′ с обеих сторон среднего положения Мр могут своими подвижными точками А и А′ касаться удлиненных частей якоря 8. Разумеется возможны также конструктивные формы исполнения линейного привода и без пружин. Далее целесообразно, чтобы, по меньшей мере, с одной стороны своей удлиненной части якорь 8 был жестко связан с поршнем не изображенного на чертеже подробнее компрессора V.
В изображенном на чертеже варианте исполнения предполагается, что линейный привод 2 симметричен относительно плоскости S, т.е. что магнитопроводы, а в соответствующих случаях и обмотки возбуждения находятся с обеих сторон плоскости. Разумеется для предлагаемого в изобретении регулятора можно предусмотреть и такой линейный привод, который имеет обмотку возбуждения только с одной стороны, а с противоположной стороны в соответствующих случаях имеет только магнитопроводящее ярмо (см., например, US 6 323 568 B1). Наряду с изображенной Ш-образной формой магнитопровода возможны и другие формы, например М-образная.
При соединении якоря 8 линейного привода 2 с поршнем компрессора V пороговые значения энергии якоря для полуволн расширения и сжатия, вообще говоря, различны, т.е. в действительности имеют место два пороговых значения энергии якоря Es,exp и
Es,comp. Эти два пороговых значения энергии якоря изменяются во времени вследствие изменения во времени характеристики "сила-путь" компрессора, причем эти изменения происходят медленно по сравнению с периодом колебаний линейного привода. В связи с этим целесообразна и возможна наложенная адаптация обоих значений на собственно регулирование хода якоря.
Для регулирования хода Н якоря, т.е. амплитуд колебания +L1 и -L2 предназначен регулятор, с помощью которого задается ток в обмотке 4 возбуждения. Блок-схема первого варианта исполнения такого регулятора представлена на фиг.2. На чертеже применены следующие обозначения:
G - выпрямительная схема, например в виде выпрямительного моста,
С - сглаживающий конденсатор,
В - преобразователь в виде так называемого полного моста,
b1-b4 - четыре плеча этого преобразователя, соединенные по схеме так называемого Н-моста,
10 - модуль регулятора положения и
11 - модуль регулятора тока.
В качестве плеч моста b1-b4 особенно пригодны MOSFET (канальные полевые униполярные МОП-транзисторы) с защитными диодами di. Их управляющие электроды (затворы) обозначены буквами g1-g4. Они соединены с соответствующими выходами регулятора 11 тока. С выходных зажимов 12а и 12b подается ток возбуждения в обмотку возбуждения линейного привода 2. При этом фактическое значение тока обмотки, обозначенное Iist, определяется путем измерения падения напряжения на шунте, включенном в мостовую схему последовательно с обмоткой, или на двух шунтах, включенных между плечами моста b2 и b4 и массой.
Измеренное значение этого тока подается затем на вход регулятора 11 тока в точке 13 присоединения в цепи питания обмотки возбуждения. В качестве регулятора тока может быть использован, например, известный ШИМ-регулятор (Широтно-Импульсный Модулятор). В альтернативном варианте в качестве регулятора тока можно применить также известный двухпозиционный регулятор с фиксированной тактовой частотой, например 20 кГц.
На линейном приводе 2 установлено не рассматриваемое подробно, известное само по себе измерительное устройство 14, с помощью которого можно точно определить фактическое положение х и направление движения якоря 8. Это измеренное значение х подается на вход регулятора 10 положения, который, исходя из положения х и производных от него величин, в особенности скорости якоря, вычисляет заданное значение тока Isoll и подает его на вход регулятора 11 тока. Регулятор 11 тока управляет затворами g1-g4 так, чтобы обеспечить хорошее совпадение между заданным током Isoll и фактическим током Iist.
Изображенная на фиг.3 блок-схема другого предлагаемого изобретением регулятора отличается от схемы, показанной на фиг.2, только тем, что здесь измеренное фактическое значение тока Iist служит также входной величиной для измененного по сравнению с фиг.2 регулятора 10′ положения. Хотя при этом варианте возможны более значительные рассогласования между заданным током Isoll и фактическим током Iist, однако регулятор тока и здесь может при соответствующей настройке отключать ток желаемым образом.
Ниже описывается алгоритм регулирования положения с помощью устройств, изображенных на блок-схемах на фиг.2 и 3:
Действующая на якорь 8 электромагнитная сила F всегда пропорциональна фактическому току в катушке Iist, т.е.
F=K·Iist,
где F, К и Iist зависят от положения х.
При изменении направления движения изменяется полярность тока в катушке, так что теперь в направлении х действует сила F=K·(-Iist).
Либо непрерывно, либо с помощью специального триггерного сигнала, привязанного, например, к переходу движения якоря через нуль и находящегося вблизи положения якоря, в котором его кинетическая энергия максимальна, по результатам измерения мгновенных значений положения и скорости определяются потенциальная и кинетическая энергии якоря.
Энергия, подведенная к якорю в течение полуволны колебания, вычисляется по уравнению
Figure 00000001
.
Когда энергия якоря достигает порогового значения Es,comp или Es,exp, соответствующего желаемой амплитуде колебания +L1 или -L2, ток I отключается.
Наряду с этим основным алгоритмом возможен наложенный алгоритм коррекции, при котором путем сравнения измеренной амплитуды колебания +L1 или -L2 с соответствующей заданной амплитудой корректируется пороговое значение энергии якоря Es,comp или Es,exp.
Реализованный в блок-схемах принцип регулирования состоит, таким образом, из следующих основных элементов:
Измеряемые параметры:
положение х, направление движения и вычисляемая по ним скорость якоря 8; ток Iist.
Управляющий параметр:
ток катушки возбуждения. Здесь возможны различные варианты исполнительных органов для регулирования тока, причем величина рассогласования между фактическим и заданным значением тока может быть различной в зависимости от исполнительного органа.
Принцип регулирования:
Ток обмотки возбуждения всегда включен так, что электромагнитная сила (почти) всегда действует в направлении движения якоря; измерение электрической энергии, введенной в якорь в течение одной полуволны колебания; отключение тока при достижении порогового количества энергии.
Преимущества этого принципа регулирования:
В значительной мере предотвращается электрическое торможение якоря; этим обеспечивается высокий кпд.
Хотя частота колебаний якоря в значительной степени определяется движущейся массой, а также жесткостью возможно имеющейся пружины (пружин) и характеристикой "сила-путь" присоединенного компрессора, однако она может быть изменена за счет выбора коэффициента заполнения посредством регулирования тока: если при изменении направления движения действует больший ток на более коротком отрезке пути, то при том же количестве электрической энергии, вводимом в течение одной полуволны, частота колебаний увеличивается.

Claims (13)

1. Устройство для регулирования хода якоря в реверсивном линейном приводе, которое имеет, по меньшей мере, одну обмотку возбуждения, обтекаемую током обмотки возбуждения, и магнитный якорь, который под действием магнитного поля обмотки возбуждения совершает линейное колебательное движение в осевом направлении с заданным ходом якоря, со средствами для определения текущего положения (х) якоря, со средствами для измерения текущего значения тока (Iist) обмотки возбуждения и со средствами для задания тока (Isoll) обмотки возбуждения, так, что при установившемся режиме якоря (8) в течение каждой полуволны движения якоря (8) к якорю подводится ровно столько энергии, сколько нужно для получения амплитуды колебаний (+L1, -L2), соответствующей заданному ходу (Н) якоря, причем для каждой полуволны движения якоря (8) подводимая к якорю энергия определяется так, что для каждой полуволны движения якоря установлено соответствующее пороговое значение энергии якоря (Es, exp, Es, comp), и что при каждой полуволне движения якоря ток обмотки возбуждения отключается, как только энергия, подведенная к якорю, достигнет соответствующего порогового значения
(Es, exp, Es, comp).
2. Устройство по п.1, отличающееся тем, что якорь (8), выполненный с возможностью совершать колебания, удерживается с помощью, по меньшей мере, одного пружинного элемента (9, 9').
3. Устройство по п.1, отличающееся тем, что средства регулировки тока включают в качестве исполнительного звена регулятора тока выпрямительную схему с включенным после нее Н-мостом с регулируемыми элементами (b1-b4) в его плечах.
4. Устройство по п.3, отличающееся тем, что в качестве регулируемых элементов (b1-b4) в плечах моста применены МОП-транзисторы.
5. Устройство по п.3 или 4, отличающееся тем, что измеренный ток обмотки возбуждения в качестве входной величины фактического значения тока (Iist) поступает на вход регулятора (11) тока, который управляет элементами (b1-b4) в плечах моста так, чтобы сигнал фактического значения тока (Iist) был равен откорректированному в соответствии с фактическим положением (х) якоря, задаваемому регулятором (10, 10') положения заданному значению тока (Isoll) или, предпочтительно, отслеживал его.
6. Устройство по п.5, отличающееся тем, что сигнал фактического значения тока (Iist) поступает также на вход регулятора (10') положения.
7. Устройство по п.1, отличающееся тем, что предусмотрены средства для определения направления движения якоря (8).
8. Устройство по п.1, отличающееся тем, что предусмотрены средства для непрерывного измерения скорости якоря (8).
9. Устройство по п.8, отличающееся тем, что для каждой полуволны движения якоря (8), по меньшей мере, в одном фиксированном положении якоря осуществляется измерение скорости якоря.
10. Устройство по п.9, отличающееся тем, что фиксированное положение предусмотрено в области максимальной скорости якоря (8).
11. Устройство по одному из пп.8-10, отличающееся тем, что энергия, накопленная в якоре (8), определяется, исходя из измеренного значения скорости и положения якоря.
12. Устройство по одному из пп.1-4, 6-10, отличающееся тем, что предусмотрены средства для регулирования частоты колебаний якоря (8).
13. Устройство по одному из пп.1-4, 6-10, отличающееся тем, что якорь (8) жестко соединен с поршнем компрессора (V).
RU2006130550/09A 2004-03-05 2005-03-07 Устройство для регулировки хода якоря в реверсивном линейном приводе RU2373623C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004010846.3 2004-03-05
DE102004010846A DE102004010846A1 (de) 2004-03-05 2004-03-05 Vorrichtung zur Regelung des Ankerhubs in einem reversierenden Linearantrieb

Publications (2)

Publication Number Publication Date
RU2006130550A RU2006130550A (ru) 2008-04-20
RU2373623C2 true RU2373623C2 (ru) 2009-11-20

Family

ID=34877439

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006130550/09A RU2373623C2 (ru) 2004-03-05 2005-03-07 Устройство для регулировки хода якоря в реверсивном линейном приводе

Country Status (8)

Country Link
US (1) US7372221B2 (ru)
EP (1) EP1726082B1 (ru)
CN (1) CN1930764B (ru)
AT (1) ATE438947T1 (ru)
DE (3) DE102004010846A1 (ru)
ES (1) ES2329385T3 (ru)
RU (1) RU2373623C2 (ru)
WO (1) WO2005086327A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010403A1 (de) * 2004-03-03 2005-09-22 BSH Bosch und Siemens Hausgeräte GmbH Reversierender Linearantrieb mit Mitteln zur Erfassung einer Ankerposition
DE102004010846A1 (de) * 2004-03-05 2005-09-22 BSH Bosch und Siemens Hausgeräte GmbH Vorrichtung zur Regelung des Ankerhubs in einem reversierenden Linearantrieb
CN101294556A (zh) * 2007-04-28 2008-10-29 德昌电机股份有限公司 螺线管泵
JP2009240047A (ja) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd 電磁アクチュエータの駆動方法
ITGE20080036A1 (it) * 2008-04-30 2009-11-01 Dott Ing Mario Cozzani Srl Metodo per il controllo della posizione di un attuatore elettromeccanico per valvole di compressori alternativi.
DE102010041214A1 (de) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Schaltgerät sowie Verfahren zur Steuerung eines Schaltgeräts
CN103527374B (zh) * 2013-10-22 2015-10-28 大连海事大学 线圈感应泵
KR101523352B1 (ko) * 2014-10-29 2015-05-28 파스코이엔지(주) 전자 바이브레이터
DE102016216238A1 (de) 2016-08-29 2018-03-01 Bayerische Motoren Werke Aktiengesellschaft Ansteuer-Schaltung für eine elektrische Maschine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726738A (en) * 1985-01-16 1988-02-23 Hitachi, Ltd. Motor-driven compressor provided with torque control device
US5018357A (en) * 1988-10-11 1991-05-28 Helix Technology Corporation Temperature control system for a cryogenic refrigeration
JP3382061B2 (ja) * 1995-05-31 2003-03-04 松下電工株式会社 リニア振動モータ
US5980211A (en) * 1996-04-22 1999-11-09 Sanyo Electric Co., Ltd. Circuit arrangement for driving a reciprocating piston in a cylinder of a linear compressor for generating compressed gas with a linear motor
US6084320A (en) * 1998-04-20 2000-07-04 Matsushita Refrigeration Company Structure of linear compressor
WO2000016482A1 (en) * 1998-09-16 2000-03-23 Airxcel, Inc. Frequency control of linear motors
IL128085A0 (en) 1999-01-17 1999-11-30 Nachum Zabar Electromagnetic vibrator pump and leaf spring particularly useful therein
JP3931487B2 (ja) * 1999-06-25 2007-06-13 松下電工株式会社 リニア振動モータの駆動制御方法
JP3540727B2 (ja) 2000-07-19 2004-07-07 三洋電機株式会社 リニアコンプレッサ
JP3876611B2 (ja) * 2000-11-02 2007-02-07 株式会社日立製作所 流体搬送装置
US6809486B2 (en) * 2000-12-15 2004-10-26 Stirling Technology Company Active vibration and balance system for closed cycle thermodynamic machines
JP2002349434A (ja) * 2001-05-23 2002-12-04 Matsushita Electric Ind Co Ltd リニア圧縮機
JP2003339188A (ja) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd リニアモータの駆動装置
US7184254B2 (en) * 2002-05-24 2007-02-27 Airxcel, Inc. Apparatus and method for controlling the maximum stroke for linear compressors
JP3540311B2 (ja) * 2002-05-31 2004-07-07 松下電器産業株式会社 モータ駆動制御装置
DE102004010846A1 (de) * 2004-03-05 2005-09-22 BSH Bosch und Siemens Hausgeräte GmbH Vorrichtung zur Regelung des Ankerhubs in einem reversierenden Linearantrieb
DE102004010849A1 (de) * 2004-03-05 2005-09-22 BSH Bosch und Siemens Hausgeräte GmbH Lineare Antriebseinheit mit Schwingungsankerteil und Feder

Also Published As

Publication number Publication date
DE502005007845D1 (de) 2009-09-17
ES2329385T3 (es) 2009-11-25
EP1726082B1 (de) 2009-08-05
US20070236160A1 (en) 2007-10-11
CN1930764A (zh) 2007-03-14
DE202004021677U1 (de) 2010-06-10
ATE438947T1 (de) 2009-08-15
US7372221B2 (en) 2008-05-13
RU2006130550A (ru) 2008-04-20
DE102004010846A1 (de) 2005-09-22
KR20070000485A (ko) 2007-01-02
EP1726082A1 (de) 2006-11-29
WO2005086327A1 (de) 2005-09-15
CN1930764B (zh) 2010-05-05

Similar Documents

Publication Publication Date Title
RU2373623C2 (ru) Устройство для регулировки хода якоря в реверсивном линейном приводе
US20090243520A1 (en) Method for controlling operation of a linear vibration motor
US6174136B1 (en) Pump control and method of operating same
KR100678759B1 (ko) 구동 장치
US6774588B2 (en) Controlling apparatus for linear oscillation motor and method for controlling linear oscillation motor
RU2402859C1 (ru) Способ возбуждения электромагнитного силового привода
RU2419958C2 (ru) Способ регулирования линейного привода или линейного компрессора, а также регулируемый линейный привод или линейный компрессор
CN101389862B (zh) 用于调节直线压缩机中的活塞的方法
JP4229909B2 (ja) 小型電気機器の振動型電気モータ制御方法
CN107068325B (zh) 调整磁场的恒定的磁场强度的方法以及磁感应流量测量仪
EP1117176A2 (en) Self-oscillation system for driving a linear oscillatory actuator around its resonant frequency
KR20030091716A (ko) 리니어 모터의 구동장치
JP2006161800A (ja) フリーピストンの位置計測装置およびフリーピストンの制御装置
CA2344356A1 (en) Frequency control of linear motors
JP5895154B2 (ja) リニアアクチュエータの駆動方法
CN100461323C (zh) 控制电开关设备的装置和方法
Yoshitake et al. Dynamic analysis of a linear oscillatory actuator under feedback control
RU2439771C1 (ru) Вибрационный генератор электрической энергии
WO2019176471A1 (ja) リニア圧縮機及びリニア圧縮機制御システム
KR20060136455A (ko) 가역 선형 드라이브 유닛의 접극자 스트로크를 조절하는장치
WO2014125771A1 (ja) リニアアクチュエーター
EP2420202A2 (en) Resonant motor unit and electric device with resonant motor unit

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160308