RU2368898C1 - Способ оценки термоокислительной стабильности реактивных топлив - Google Patents

Способ оценки термоокислительной стабильности реактивных топлив Download PDF

Info

Publication number
RU2368898C1
RU2368898C1 RU2008120483/04A RU2008120483A RU2368898C1 RU 2368898 C1 RU2368898 C1 RU 2368898C1 RU 2008120483/04 A RU2008120483/04 A RU 2008120483/04A RU 2008120483 A RU2008120483 A RU 2008120483A RU 2368898 C1 RU2368898 C1 RU 2368898C1
Authority
RU
Russia
Prior art keywords
fuel
fuels
temperature
air
oxidative stability
Prior art date
Application number
RU2008120483/04A
Other languages
English (en)
Inventor
Георгий Николаевич Кишкилев (RU)
Георгий Николаевич Кишкилев
Валерий Александрович Астафьев (RU)
Валерий Александрович Астафьев
Александр Васильевич Исаев (RU)
Александр Васильевич Исаев
Алексей Александрович Саутенко (RU)
Алексей Александрович Саутенко
Марат Иматдинович Фахрутдинов (RU)
Марат Иматдинович Фахрутдинов
Original Assignee
Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" filed Critical Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации"
Priority to RU2008120483/04A priority Critical patent/RU2368898C1/ru
Application granted granted Critical
Publication of RU2368898C1 publication Critical patent/RU2368898C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Изобретение относится к лабораторным методам оценки эксплуатационных свойств моторных топлив и может быть использовано для идентификации термостабильных топлив, используемых в двигателях с высокой теплонапряженностью. Способ включает отбор и подготовку образца топлива, размещение этого образца, залитого в стеклянный стакан, в бомбе, которую герметизируют при заданном соотношении Vтоплива/Vвоздуха, термостатируют при заданной температуре в течение 4 часов, охлаждают, после чего оценивают термоокислительную стабильность топлива по количествам образовавшегося осадка и нерастворимых смол, причем объемное соотношение в бомбе Vтоплива/Vвоздуха берут равным 1:7,3-11,5, а термостатирование осуществляют при температуре топлива 200±2°С. Достигается повышение достоверности и точности определения. 2 табл., 1 ил.

Description

Изобретение относится к лабораторным методам оценки эксплуатационных свойств моторных топлив, в частности к определению термоокислительной стабильности (ТОС) реактивных топлив, и может быть использовано в авиационной и нефтехимической промышленности для идентификации термостабильных топлив, предназначенных к использованию на авиационной технике в двигателях с высокой теплонапряженностью.
Развитие современной авиации неразрывно связано с ростом теплонапряженности авиадвигателей, обусловленной конструкционными изменениями их узлов и агрегатов. Так, в отдельных узлах таких двигателей топливо нагревается до температуры 200°С и выше. Как известно, уже при температурах выше 100-110°С в топливах образуются высокотемпературные нерастворимые осадки и отложения, оказывающие негативное воздействие на работу топливной системы авиационного газотурбинного двигателя (АГТД). Для принятия решения о возможности применения топлив в современных теплонапряженных авиадвигателях необходим способ, позволяющий достоверно оценивать поведение топлив при температурах выше 150°С. В настоящее время таким требованиям отвечают лишь способы оценки ТОС топлив в динамических условиях, которые, однако, нашли ограниченное применение, поскольку являются весьма трудоемкими, дорогостоящими, на проведение испытаний требуется большое количество топлива.
Перед авторами стояла задача разработать лабораторный способ оценки ТОС реактивных топлив в статических условиях, который позволил бы при минимальных затратах топлива и средств достоверно идентифицировать термостабильные топлива для их применения в теплонапряженных двигателях, температура отдельных узлов топливных систем которых в условиях эксплуатации достигает 200°С.
При просмотре научно-технической литературы и источников патентной информации были выявлены технические решения, позволяющие частично решать аналогичные задачи.
Так, известен способ оценки ТОС авиакеросинов, предусматривающий однократную прокачку топлива на установке ДТС-2 вдоль наружной поверхности нагреваемой оценочной трубки и через последовательно установленный контрольный фильтр. ТОС топлив оценивается по совокупности следующих показателей: «индекс термостабильности», определяемый как частное от деления значения количества образовавшихся отложений на оценочной трубке, полученных на проверяемом топливе, на количество отложений, полученных при испытании эталонной жидкости; «температура начала образования отложений», а также «скорость забивки контрольного фильтра» (А.А. Гуреев и др. Квалификационные методы испытаний нефтяных топлив. М.: «Химия», 1984, с.137-139).
К недостаткам способа следует отнести низкую чувствительность по показателю «скорость забивки контрольного фильтра», высокую трудоемкость, большой расход топлива, а также высокую стоимость проведения испытаний. Вследствие указанных недостатков способ получил малое распространение.
Широко распространен способ оценки ТОС реактивных топлив, взятый за прототип, включающий отбор и подготовку пробы (50 см3) топлива, его термостатирование в течение 4-х часов при 150°С в бомбе прибора ТСРТ-2 при соотношении Vтоплива/Vвоздуха от 1:3,5 до 1:4 в присутствии пластины из электролитической меди марки М0к или M1к. После термостатирования бомбу вынимают из прибора, охлаждают на воздухе до комнатной температуры, фильтруют окисленное топливо с осадком через предварительно доведенный до постоянной массы фильтр, ополаскивают фильтр с осадком растворителем (изооктаном, гептаном нормальным или петролейным эфиром) и доводят до постоянной массы. По разности масс фильтра с осадком и чистого определяют количество образовавшегося в топливе осадка и пересчитывают его концентрацию на 100 см3 топлива. Допустимая массовая концентрация осадка в термостабильных топливах марок РТ, Т-6, Т-8 В не превышает 6 мг на 100 см3 топлива, в топливе общего назначения марки ТС-1 не более 18 мг на 100 см3 топлива. Дополнительно в термостабильных топливах определяют массовые концентрации нерастворимых и растворимых смол. Значение показателя «концентрация нерастворимых смол» для топлива марки РТ не должно превышать 3 мг на 100 см3 топлива. Для топлива марки Т-6, как более термостабильного, регламентируется отсутствие нерастворимых смол. Значение показателя «концентрация растворимых смол» для топлива марки РТ не должно превышать 30 мг на 100 см3 топлива, а для топлива марки Т-6 составлять не более 60 мг на 100 см3 топлива (ГОСТ 11802 «Топливо для реактивных двигателей. Метод определения термоокислительной стабильности в статических условиях» - прототип).
Указанный способ обладает низкой достоверностью результатов определения, обусловленной тем, что образующийся в результате термоокислительных процессов осадок, по количеству которого оценивают ТОС топлива, содержит еще и продукты коррозии меди, которые образуются при контакте топлива с медной пластиной. Кроме того, указанный способ не позволяет достоверно идентифицировать термостабильные топлива. Невозможность надежной дифференциации топлив объясняется тем, что в настоящее время во многих образцах (до 50%) наиболее широко применяемого топлива общего назначения марки ТС-1, как и в термостабильных топливах, концентрация образующегося осадка (по прототипу - ГОСТ 11802) не превышает 6 мг на 100 см3 топлива. При таком значении концентрации осадка эти топлива ошибочно идентифицируют как термостабильные и применяют на теплонапряженной технике, что в свою очередь приводит к отказам топливных систем АГТД. Для надежной идентификации термостабильных топлив требуются дополнительные исследования с помощью дорогостоящих динамических методов.
Технический результат изобретения - повышение достоверности и точности результатов определения ТОС топлив.
Указанный технический результат достигается тем, что в известном способе оценки ТОС реактивных топлив, включающем отбор и подготовку образца топлива, размещение этого образца, залитого в стеклянный стакан, в бомбе, которую герметизируют при заданном объемном соотношении Vтоплива/Vвоздуха, термостатируют при заданной температуре в течение 4 часов, охлаждают, после чего оценивают термоокислительную стабильность топлива по количествам образовавшихся осадка и нерастворимых смол, согласно изобретению объемное соотношение в бомбе Vтоплива/Vвоздуха берут равным 1:7,3-11,5, а термостатирование осуществляют при температуре топлива 200±2°С.
Для обоснования заявленной совокупности ограничительных и отличительных существенных признаков изобретения были проведены исследования образования нерастворимых соединений в топливе в приборе ТСРТ-2 на товарном топливе марки ТС-1 производства Когалымского НПЗ.
Известно, что повышение температуры термостатирования выше 150°С при соотношении Vтоплива/Vвоздуха в бомбе, равном от 1:3,5 до 1:4, приводит к уменьшению количества образующегося в топливе ТС-1 осадка (Сб. статей «Методы оценки эксплуатационных свойств реактивных топлив и смазочных материалов» под ред. Б.Д.Залога, М.: «Машиностроение», 1966, с.33, рис.6). Одной из причин, объясняющих снижение осадкообразования, считают недостаточное количество кислорода в бомбе, часть которого при повышении температуры расходуется на окисление паровой фазы (В.В. Малышев, В.А. Астафьев. Особенности образования твердой фазы при нагреве реактивных топлив. «Химия и технология топлив и масел», 1980, №12, с.26). Недостаток кислорода в системе можно компенсировать с помощью изменения соотношения Vтоплива/Vвоздуха в бомбе.
Получены результаты исследований, подтверждающие влияние соотношения
Vтоплива/Vвоздуха в бомбе на количество образующихся в топливе ТС-1 нерастворимых соединений (табл.1).
Как показали испытания топлива ТС-1, наибольшее количество нерастворимых соединений образуется при соотношении Vтоплива/Vвоздуха, равном 1:7,3-11,5 (табл.1, №№опытов 2,3,4, столбцы 5,6).
На чертеже представлены зависимости образования осадков от температуры и продолжительности термостатирования топлива ТС-1 в бомбе при соотношении
Vтоплива/Vвоздуха, равном 1:9.
Как показали испытания, температурой термостатирования, при которой в топливе ТС-1 образуется максимальное количество осадков, является температура 200°С, при этом процесс образования осадка наиболее интенсивно происходит в первые 4 часа испытаний, после чего прирост количества осадка замедляется.
Таким образом, необходимыми и достаточными значениями режимных параметров для достижения технического результата при реализации способа определения ТОС реактивных топлив являются:
соотношение Vтоплива/Vвоздуха в бомбе 1:7,3-11,5
температура топлива 200±2°С,
при продолжительности термостатирования 4 часа.
Способ реализуется следующим образом.
Пример.
Отбирают пробу испытуемого топлива (30 см3) и подготавливают ее к испытанию, фильтруя через бумажный фильтр. Подготовленное топливо в количестве 25 см3 наливают в предварительно доведенный до постоянной массы стеклянный стакан. Стакан с испытуемым образцом топлива накрывают стеклянной крышкой и помещают в бомбу прибора ТСРТ-2, которую герметично закрывают металлической крышкой. Затем бомбу с образцом топлива помещают в предварительно прогретый до 200±2°С термостат прибора ТСРТ-2 и термостатируют в течение 4 ч при температуре топлива 200±2°С. По истечении 4 ч испытаний бомбу вынимают, охлаждают на воздухе в течение ≈ одного часа, вынимают стакан с топливом и фильтруют окисленное топливо с образовавшимся в нем осадком через предварительно доведенный до постоянной массы контрольный фильтр. Стакан промывают растворителем (гептан нормальный, изооктан, петролейный эфир), который затем фильтруют через тот же фильтр. После окончания промывки фильтр с осадком и стакан с нерастворимыми смолами сушат в сушильном шкафу при температуре 105±2°С и доводят до постоянной массы. По разнице масс фильтра и стакана до испытания и после определяют, соответственно, количество образовавшихся в топливе осадка (Кос) и нерастворимых смол (Кнс), которые находят по формулам:
Кос=4·(МФ2-MФ1), мг/100 см3 топлива,
Кнс=4·(МС2С1), мг/100 см3 топлива,
где МФ1 - масса фильтра до испытания, мг;
МФ2 - масса фильтра после испытания, мг;
МС1 - масса стакана до испытания, мг;
МС2 - масса стакана после испытания, мг.
О термоокислительной стабильности топлива судят по значениям концентраций образовавшихся в топлива нерастворимых соединений.
В случае если концентрации образовавшихся в топливе осадка (Кос) и нерастворимых смол (Кнс) не превышают значения 10 мг/100 см3 топлива и
2 мг/100 см3 топлива соответственно, топливо считают термостабильным. При превышении указанных значений испытуемое топливо считают нетермостабильным.
Заявленным способом были исследованы товарные топлива различных марок (ТС-1, РТ, Т-6) и различных заводов-изготовителей, которые параллельно исследовались способом-прототипом (ГОСТ 11802), а также динамическим способом на установке ДТС-2, который наиболее приближен к условиям эксплуатации (табл.2).
Из представленных в таблице 2 результатов видно, что топлива ТС-1 по ГОСТ 11802 №№1-6 по значениям оцениваемых показателей «Концентрация осадка» и «Концентрация нерастворимых смол» удовлетворяют требованиям, предъявляемым к термостабильным топливам (столбец 3), т.е. идентифицируются как термостабильные. Однако оценка ТОС предлагаемым способом показывает, что указанные топлива термостабильными не являются (столбец 6), что коррелирует с результатами оценки ТОС в динамических условиях на установке ДТС-2 (столбцы 8,12). В то же время корреляция между результатами оценки ТОС топлив по ГОСТ 11802 и на установке ДТС-2 отсутствует (образцы №№1-6).
Таким образом, применение изобретения позволит повысить достоверность оценки ТОС топлив при значительном сокращении затрат на определение по сравнению с динамическим методом на установке ДТС-2, повысить точность оценки ТОС топлив за счет получения большего количества осадка и нерастворимых смол при заявляемых режимных параметрах способа. Предлагаемый способ достоверно идентифицирует термостабильные топлива, что позволяет принимать решения об их применении в теплонапряженных авиадвигателях.
Figure 00000001
Figure 00000002

Claims (1)

  1. Способ определения термоокислительной стабильности реактивных топлив, включающий отбор и подготовку образца топлива, размещение этого образца, залитого в стеклянный стакан, в бомбе, которую герметизируют при заданном соотношении Vтоплива/Vвоздуха, термостатируют при заданной температуре в течение 4 ч, охлаждают, после чего оценивают термоокислительную стабильность топлива по количествам образовавшегося осадка и нерастворимых смол, отличающийся тем, что объемное соотношение в бомбе Vтоплива/Vвоздуха берут равным 1:7,3-11,5, а термостатирование осуществляют при температуре топлива 200±2°С.
RU2008120483/04A 2008-05-26 2008-05-26 Способ оценки термоокислительной стабильности реактивных топлив RU2368898C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008120483/04A RU2368898C1 (ru) 2008-05-26 2008-05-26 Способ оценки термоокислительной стабильности реактивных топлив

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008120483/04A RU2368898C1 (ru) 2008-05-26 2008-05-26 Способ оценки термоокислительной стабильности реактивных топлив

Publications (1)

Publication Number Publication Date
RU2368898C1 true RU2368898C1 (ru) 2009-09-27

Family

ID=41169671

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008120483/04A RU2368898C1 (ru) 2008-05-26 2008-05-26 Способ оценки термоокислительной стабильности реактивных топлив

Country Status (1)

Country Link
RU (1) RU2368898C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600723C1 (ru) * 2015-12-07 2016-10-27 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ определения окислительной стабильности среднедистиллятных топлив
RU2685265C1 (ru) * 2018-04-24 2019-04-17 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ определения химической стабильности топлив для реактивных двигателей

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГОСТ 11802 «Топливо для реактивных двигателей. Метод определения термоокислительной стабильности в статических условиях». *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600723C1 (ru) * 2015-12-07 2016-10-27 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ определения окислительной стабильности среднедистиллятных топлив
RU2685265C1 (ru) * 2018-04-24 2019-04-17 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ определения химической стабильности топлив для реактивных двигателей

Similar Documents

Publication Publication Date Title
RU2589284C1 (ru) Способ оценки склонности смазочных масел к образованию высокотемпературных отложений
US2302224A (en) Means and method of testing oil
WO2022105354A1 (zh) 一种运行磷酸酯抗燃油剩余使用寿命评估方法
RU2368898C1 (ru) Способ оценки термоокислительной стабильности реактивных топлив
WO2022105353A1 (zh) 一种磷酸酯抗燃油氧化安定性测定法
CN102393367A (zh) 一种基于原子吸收光谱法的自动变速器油质检测方法
CN103675240A (zh) 油品性能的测试方法
Mihalčová Tribotechnical diagnosis in aircraft engine practice
US8166803B2 (en) Method for the quantitative determination of an aging effect on motor oil
RU2470285C2 (ru) Способ и устройство для определения работоспособности и качества смазочных материалов
WO2010107893A2 (en) Method and test kit for the determination of iron content of in-use lubricants
US4283200A (en) Method and apparatus for detecting corrosion in steam turbine installations
Kon et al. Estimation of the oxidative deterioration of turbine oil using membrane patch color
Berndt et al. Development of a laboratory test for the deposit forming tendency of diesel fuels
McConnell A wear theory for low speed diesel engines burning residual fuel
Wei et al. A field test method to quantitatively determine oxidation stability of gasoline engine oil
RU2595874C1 (ru) Способ определения условного эксплуатационного ресурса смазочного масла
Thompson et al. Estimation of Pyrrole Nitrogen in Petroleum Distillates
SU129872A1 (ru) Способ оценки коррозионных свойств моторных масел
CN116973265A (zh) 一种电力用油污油中油泥含量的测定方法
RU2625837C1 (ru) Способ оценки коррозионной активности реактивных топлив в динамических условиях
RU2175131C1 (ru) Способ определения индукционного периода окисления топлив
RU2701373C1 (ru) Способ определения предельной температуры применения дизельных топлив
JP4146246B2 (ja) タービン油劣化判定方法
SU930120A1 (ru) Способ определени работоспособности смазочных масел

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120527