RU2362148C1 - Радиографическая установка - Google Patents

Радиографическая установка Download PDF

Info

Publication number
RU2362148C1
RU2362148C1 RU2007145076/28A RU2007145076A RU2362148C1 RU 2362148 C1 RU2362148 C1 RU 2362148C1 RU 2007145076/28 A RU2007145076/28 A RU 2007145076/28A RU 2007145076 A RU2007145076 A RU 2007145076A RU 2362148 C1 RU2362148 C1 RU 2362148C1
Authority
RU
Russia
Prior art keywords
collimator
cavity
radiation
measuring chamber
converter
Prior art date
Application number
RU2007145076/28A
Other languages
English (en)
Inventor
Анатолий Васильевич Андреев (RU)
Анатолий Васильевич Андреев
Евгений Петрович Боголюбов (RU)
Евгений Петрович Боголюбов
Виталий Иванович Микеров (RU)
Виталий Иванович Микеров
Александр Павлович Кошелев (RU)
Александр Павлович Кошелев
Валерий Николаевич Самосюк (RU)
Валерий Николаевич Самосюк
Игорь Владимирович Мешков (RU)
Игорь Владимирович Мешков
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова"
Priority to RU2007145076/28A priority Critical patent/RU2362148C1/ru
Application granted granted Critical
Publication of RU2362148C1 publication Critical patent/RU2362148C1/ru

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Использование: для анализа объектов радиационными методами с помощью нейтронного, рентгеновского или гамма-излучения. Сущность заключается в том, что радиографическая установка содержит источник тепловых нейтронов, в котором перед источником быстрых нейтронов установлен блок-замедлитель, выполненный из полиэтилена в виде полого куба, внутри блока-замедлителя установлен конвертер, между торцевой поверхностью конвертера и внутренней поверхностью блока-замедлителя размещен слой полиэтилена с образованием полости, на поверхности блока-замедлителя последовательно расположены конвертер-отражатель, слой защиты от гамма-излучения, слой защиты для поглощения тепловых и быстрых нейтронов, сечение входного канала коллиматора совпадает с сечением полости, перед выходным каналом полости установлен коллиматор, по длине коллиматора последовательно расположена дополнительная защита из слоя от гамма-излучения, слоя защиты для поглощения тепловых и быстрых нейтронов, к дополнительной защите, примыкает измерительная камера, выполненная в виде усеченной пирамиды, меньшее основание которой расположено непосредственно перед выходным каналом полости, стенки измерительной камеры выполнены из блоков для защиты от гамма-излучения и блоков защиты для поглощения тепловых и быстрых нейтронов, внутри измерительной камеры расположены стол для исследуемого образца, детектирующая система и коллиматор, основание которого расположено непосредственно перед исследуемым образцом. Технический результат: повышение эффективности преобразования быстрых нейтронов в тепловые, уменьшение времени экспозиции, уменьшение влияния фонового сигнала, улучшение качества принимаемых изображений. 3 ил.

Description

Изобретение относится к исследованию внутренней структуры объектов, а именно к анализу объектов радиационными методами, например с помощью нейтронного, рентгеновского или гамма-излучения.
Известны устройства для радиографии и томографии внутренней структуры объектов, в которых просвечивают исследуемый объект расходящимся пучком рентгеновского излучения и получают теневое изображение внутренней структуры исследуемого объекта на соответствующей системе отображения. (Клюев В.В. и др. Промышленная радиационная интроскопия. - М.: Энергоатомиздат, 1985, с.5-8.)
Недостатком указанных устройств с использованием расходящегося пучка является низкая чувствительность к маломерным деталям внутренней структуры объекта (дефекты, включения).
Известным техническим решением является устройство для исследования внутренней структуры объектов по теневым проекциям сечений исследуемого объекта путем его сканирования коллимированным пучком рентгеновского излучения, регистрации прошедшего через объект излучения детектором. (Патент Великобритании №1283915, МПК: G01N 23/08, 1975 г.)
В этом устройстве получаемое пространственное разрешение в теневых проекциях определяется размерами коллимированного пучка, и при наличии в исследуемом объекте мелких деталей структуры последние могут не выявляться в получаемой теневой проекции.
Недостатки известных технических решений заключаются в том, что для получения теневых изображений перемещают коллимированные пучки относительно объекта. Это приводит к усложнению конструкции, к повышению требований к радиационной защите, к возможности пробелов при контроле объекта из-за резких перемещений излучателя, а также низкой эффективности использования излучения источника, увеличению времени исследования.
Известно устройство томографии, содержащее источник проникающего излучения, коллиматор, формирующий падающий на объект поток излучения в виде малорасходящегося пучка, средство перемещения объекта относительно падающего на него излучения, пространственный фильтр и детектор. (Патент Российской Федерации №2119659, МПК: G01N 23/02, 1998 г.) Устройство имеет сложную кинематическую структуру для идентификации расходящегося пучка после исследуемого объекта.
Известно устройство для радиографии и томографии, содержащее источник проникающего излучения, средство перемещения исследуемого объекта, оптическую систему регистрации излучения, содержащую сцинтилляционный экран, плоское зеркало, объектив, фотоприемник (ТВ-камера) и корректирующую линзу. (Патент Российской Федерации №2189031, МПК: G01N 23/04, 2002.)
Устройство имеет сложную оптическую систему формирования изображения, сравнительно низкие четкость изображения и чувствительность.
Известно рентгенографическое устройство, содержащее источник излучения, средство для размещения образца, экран-преобразователь, выполненный в виде усеченного конуса или усеченной пирамиды с расходящимися капиллярными каналами транспортировки излучения, стенки которых имеют форму боковой поверхности усеченных конуса, или пирамиды, или цилиндра, или призмы, на одном торце которого расположено средство, чувствительное к излучению, фотоприемник. (Патент Российской Федерации №2239822, МПК: G01N 23/04, Бюл. №31, от 10.12.2004. - Прототип.)
Прототип сложен в изготовлении, предназначен для работы с протяженным источником излучения.
Настоящее изобретение устраняет недостатки аналогов и прототипа.
Техническим результатом изобретения является повышение эффективности преобразования быстрых нейтронов в тепловые, уменьшение времени экспозиции, уменьшение влияния фонового сигнала, улучшение качества принимаемых изображений, повышение производительности процесса.
Технический результат достигается тем, что в радиографической установке, содержащей источник излучения, средство для размещения образца, коллиматор, выполненный в виде усеченной пирамиды, стенки которого имеют форму боковой поверхности усеченной пирамиды, и детектирующую систему, источник проникающего излучения выполнен в виде источника тепловых нейтронов, в котором перед источником быстрых нейтронов установлен блок-замедлитель, выполненный из полиэтилена в виде полого куба, внутри блока-замедлителя установлен конвертер, между торцевой поверхностью конвертера и внутренней поверхностью блока-замедлителя размещен слой полиэтилена с образованием полости, на поверхности блока-замедлителя последовательно расположены конвертер-отражатель, слой защиты от гамма-излучения, слой защиты для поглощения тепловых и быстрых нейтронов, сечение входного канала совпадает с сечением полости, перед выходным каналом полости установлен коллиматор, по длине коллиматора последовательно расположена дополнительная защита из слоя для поглощения гамма-излучения излучений, слоя защиты для поглощения тепловых и быстрых нейтронов, к дополнительной защите, примыкает измерительная камера, выполненная в виде усеченной пирамиды, меньшее основание которой расположено непосредственно перед выходным каналом в дополнительной защите, стенки измерительной камеры выполнены из блоков висмута, внешняя поверхность камеры закрыта блоками борированного полиэтилена, внутренняя поверхность камеры покрыта слоем литийсодержащего пластика и кадмием, внутри измерительной камеры расположены стол для исследуемого образца, детектирующая система и коллиматор, основание которого расположено непосредственно перед исследуемым образцом.
Сущность изобретения поясняется на фигурах 1-3.
На фиг.1 схематично представлена радиографическая установка, где: 1 - источник быстрых нейтронов (изотопный источник или нейтронный генератор), 2 - блок-замедлитель быстрых нейтронов из полиэтилена в виде куба размером 20×20×20 см, 3 - полость с выходным каналом размером от 5×10×5 см до 10×10×10 см. Ось канала находится на расстоянии 13 см от источника нейтронов 1. 4 -конвертер из вольфрама площадью 15×15 см и толщиной 2 см. Между торцевой поверхностью конвертера 4 и ближайшей поверхностью полости 3 должно быть 2 см полиэтилена; блок-замедлитель 2 окружен конвертером-отражателем 5 из свинца толщиной 20 см; защитой от гамма-излучения из висмута 6 толщиной 10 см, защитой из борированного полиэтилена 7 для поглощения тепловых и быстрых нейтронов (содержание бора не менее 3 мас.%) толщиной 16 см. По длине коллиматора расположена дополнительная защита (слои 8, 9 и 10): слой из свинца 8 размером 100×80×30 см, слой борированного полиэтилена 9 размером 1,5×1,5×0,5 м и слой висмута 10 размером 100×80×30 см. Между слоями защиты размещены тонкие слои гадолиния 0,2 мм и кадмия 0,6 мм (на фигуре не показаны). Внешняя поверхность защиты покрыта слоями гадолиния и кадмия (на фигуре не показаны). 11 - коллиматор, выполненный в виде усеченной пирамиды. Меньшее основание коллиматора примыкает непосредственно к выходному каналу полости 3 блока-замедлителя 2. 12 - стол для образца. 13 - исследуемый образец. 14 - детектирующая система. Измерительная камера выполнена из блоков 15 и 16 также в виде поверхности усеченной пирамиды. Меньшее основание измерительной камеры (открытая часть) размещена непосредственно у торцевой поверхности дополнительной защиты (8, 9, 10) непосредственно перед выходным каналом и имеет размеры 15×15 см, большее основание измерительной камеры имеет размер 40×60 см. Длина измерительной камеры составляет 160 см. Внутренние стенки измерительной камеры выполнены из блоков 16 из висмута. Толщина блоков 16 равна 5 см. Внешние стенки измерительной камеры выполнены из блоков 15 из борированного полиэтилена. Толщина блоков 15 равна 16 см. Внутренняя поверхность измерительной камеры покрыта слоем литийсодержащего пластика и кадмием (на фигуре не показано). В измерительной камере расположены: коллиматор 11, стол для образца 12, исследуемый образец 13, детектирующая система 14. Поперечный размер коллиматора 11 у выходного канала полости 3 блока-замедлителя 2 равен 12×12 см, а в области исследуемого образца - 30×40 см. Длина коллиматора 11, до выхода канала полости 3 в блоке-замедлителе 2, составляет 1,5 м.
На фиг.2 представлен спектр нейтронов на оси коллиматора 11 (кривая 1) на дальней стенке измерительной камеры (120 см от выхода коллиматора 11) и на расстоянии 20 см от оси.
На фиг.3 представлено распределение по плотности потока нейтронов на оси коллиматора 11 у задней дальней стенки камеры в энергетических группах: кривая 1 от 0 до 0,4 эВ; кривая 2 - от 0,4 до 100 эВ; кривая 3 - от 0,1 до 100 кэВ; кривая 4 - от 0,1 до 11 МэВ; кривая 5 - от 11 до 14 МэВ.
Быстрые нейтроны источника 1 излучаются в полный телесный угол. Значительная их часть попадает в вольфрамовый конвертер 4. Конвертер 4 расположен между источником нейтронов 1 (нейтронного генератора) и блоком-замедлителем 2. Экспериментальные исследования показали, что площадь конвертера 4 должна быть не менее 15×15 см, а толщина не менее 2 см.
Для использования в качестве конвертеров 4 эффективны материалы: Be, W, Pb и U. В данном устройстве использован конвертер 4 из вольфрама. При прохождении быстрых нейтронов через вольфрамовый конвертер 4 происходит неупругое рассеяние быстрых нейтронов, при котором в результате одного акта рассеяния нейтрон теряет энергию, что позволяет уменьшить размер полиэтиленового блока-замедлителя 2. Одновременно возникает реакция (n, 2n), сечение которой для большинства изотопов вольфрама составляет около 2 барн. Это приводит к размножению нейтронов и уменьшению их энергии. Быстрые нейтроны попадают в полиэтиленовый блок-замедлитель 2, в котором испытывают столкновения с ядрами водорода. В результате столкновения быстрые нейтроны замедляются до энергии 0,07 эВ, близкой к энергии тепловых нейтронов. Тепловые нейтроны, рожденные в полиэтиленовом блоке-замедлителе 2, пронизывают полость 3 и сталкиваются с материалом конвертера-отражателя 5. При этом они частично испытывают отражение обратно в блок-замедлитель 2. Конвертер-отражатель 5 преобразует и не замедлившиеся еще быстрые нейтроны за счет реакции (n, 2n), как и в конвертере 4. Тепловые нейтроны, не испытавшие отражение от стенок конвертера-отражателя 5, вытекают наружу и поглощаются в основном в слое защиты 6 от гамма-излучения и нейтронного излучений из висмута толщиной 10 см. Частично тепловые нейтроны поглощаются внутри блока-замедлителя 2 в результате неупругого рассеяния на водороде. Гамма-излучение, возникающее в результате неупругого рассеяния тепловых нейтронов в блоке-замедлителе 2, ослабляется в конвертере-отражателе 5, слое защиты 6 от гамма-излучения из висмута и дополнительно в слое защиты 7 - из борированного полиэтилена (содержание бора не менее 3 мас.%) толщиной 16 см.
Расчет и экспериментальная проверка позволили выбрать оптимальные размеры и расположение внутренней полости 3 блока-замедлителя 2, внутри которой плотность тепловых нейтронов максимальна. Наличие полости 3 уменьшает количество замедляющего вещества (полиэтилена), но позволяет приблизить вход коллиматора 11 к области максимальной плотности тепловых нейтронов. В результате получаем прирост плотности потока нейтронов на исследуемый образец 13 и детектирующую систему 14. Поток тепловых нейтронов выходит из полости 3 блока-замедлителя 2 и по коллиматору 11 направляется в измерительную камеру из блоков 15, 16 к исследуемому образцу 13 и детектирующей системе 14.
Измерительная камера из блоков 15, 16 позволяет уменьшить фон нейтронов и гамма-квантов прошедших через дополнительную защиту (слои 8, 9 и 10) коллиматора 11. Для предотвращения рассеяния нейтронов внутренняя поверхность коллиматора 11 покрыта тонкой прослойкой гадолиния толщиной 0,2 мм, а внутренняя поверхность измерительной камеры покрыта кадмием и литийсодержащим пластиком.
Расстояние L от основания полости 3 до облучаемого образца 13 равно 2 м. Поперечные размеры основания полости 3, излучающей тепловые нейтроны, составляет D=10 см.
Таким образом, отношение D/L=0,05. Эта величина определяет величину пространственного разрешения радиографической установки. Чистота спектра тепловых нейтронов характеризуется величиной кадмиевого отношения, которая для описываемой системы составляет не менее 25.

Claims (1)

  1. Радиографическая установка, содержащая источник излучения, средство для размещения образца, коллиматор, выполненный в виде усеченной пирамиды, стенки которого имеют форму боковой поверхности усеченной пирамиды, и детектирующую систему, отличающаяся тем, что источник проникающего излучения выполнен в виде источника тепловых нейтронов, в котором перед источником быстрых нейтронов установлен блок-замедлитель, выполненный из полиэтилена в виде полого куба, внутри блока-замедлителя установлен конвертер, между торцевой поверхностью конвертера и внутренней поверхностью блока-замедлителя размещен слой полиэтилена с образованием полости, на поверхности блока-замедлителя последовательно расположены конвертер-отражатель, слой защиты от гамма-излучения, слой защиты для поглощения тепловых и быстрых нейтронов, сечение входного канала коллиматора совпадает с сечением полости, перед выходным каналом полости установлен коллиматор, по длине коллиматора последовательно расположена дополнительная защита из слоя от гамма-излучения, слоя защиты для поглощения тепловых и быстрых нейтронов, к дополнительной защите примыкает измерительная камера, выполненная в виде усеченной пирамиды, меньшее основание которой расположено непосредственно перед выходным каналом полости, стенки измерительной камеры выполнены из блоков для защиты от гамма-излучения и блоков защиты для поглощения тепловых и быстрых нейтронов, внутри измерительной камеры расположены стол для исследуемого образца, детектирующая система и коллиматор, основание которого расположено непосредственно перед исследуемым образцом.
RU2007145076/28A 2007-12-06 2007-12-06 Радиографическая установка RU2362148C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007145076/28A RU2362148C1 (ru) 2007-12-06 2007-12-06 Радиографическая установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007145076/28A RU2362148C1 (ru) 2007-12-06 2007-12-06 Радиографическая установка

Publications (1)

Publication Number Publication Date
RU2362148C1 true RU2362148C1 (ru) 2009-07-20

Family

ID=41047262

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007145076/28A RU2362148C1 (ru) 2007-12-06 2007-12-06 Радиографическая установка

Country Status (1)

Country Link
RU (1) RU2362148C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079488A1 (zh) * 2009-12-29 2011-07-07 同方威视技术股份有限公司 利用光中子透射对物体成像的方法及探测器阵列
CN102280149A (zh) * 2011-06-28 2011-12-14 中国原子能科学研究院 压水堆核燃料棒中子照相检测装置及检测方法
RU2470287C1 (ru) * 2011-08-16 2012-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Система неразрушающего контроля изделий
RU2472138C1 (ru) * 2011-08-16 2013-01-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Способ неразрушающего контроля изделий
RU2561756C2 (ru) * 2010-04-26 2015-09-10 Конинклейке Филипс Электроникс Н.В. Детектор рентгеновского излучения с повышенными пространственной однородностью усиления и разрешением и способ изготовления детектора рентгеновского излучения
RU2628868C1 (ru) * 2016-07-22 2017-08-22 Российская Федерация, от имени которой выступает Госкорпорация "Росатом" Способ нейтронной радиографии и установка для его осуществления
CN109541671A (zh) * 2019-01-25 2019-03-29 中国科学院合肥物质科学研究院 一种高分辨率中子照相系统
CN111982940A (zh) * 2020-08-14 2020-11-24 兰州大学 基于紧凑型d-d中子源的热中子透射成像方法及成像装置
RU208999U1 (ru) * 2020-07-14 2022-01-26 Общество с ограниченной ответственностью "Полимастер" Устройство линейного перемещения рабочего стола для позиционирования дозиметрического прибора в дозиметрической установке гамма-излучения

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079488A1 (zh) * 2009-12-29 2011-07-07 同方威视技术股份有限公司 利用光中子透射对物体成像的方法及探测器阵列
US8841627B2 (en) 2009-12-29 2014-09-23 Nuctech Company Limited Method for imaging object using photoneutron transmission and detector arrays using the same
RU2561756C2 (ru) * 2010-04-26 2015-09-10 Конинклейке Филипс Электроникс Н.В. Детектор рентгеновского излучения с повышенными пространственной однородностью усиления и разрешением и способ изготовления детектора рентгеновского излучения
CN102280149A (zh) * 2011-06-28 2011-12-14 中国原子能科学研究院 压水堆核燃料棒中子照相检测装置及检测方法
RU2470287C1 (ru) * 2011-08-16 2012-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Система неразрушающего контроля изделий
RU2472138C1 (ru) * 2011-08-16 2013-01-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Способ неразрушающего контроля изделий
RU2628868C1 (ru) * 2016-07-22 2017-08-22 Российская Федерация, от имени которой выступает Госкорпорация "Росатом" Способ нейтронной радиографии и установка для его осуществления
WO2018016994A1 (ru) * 2016-07-22 2018-01-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ нейтронной радиографии и установка для его осуществления
US11067517B2 (en) 2016-07-22 2021-07-20 State Atomic Energy Corporation “Rosatom” On Behalf Of The Russian Federation Neutron radiography method and apparatus for the implementation thereof
CN109541671A (zh) * 2019-01-25 2019-03-29 中国科学院合肥物质科学研究院 一种高分辨率中子照相系统
RU208999U1 (ru) * 2020-07-14 2022-01-26 Общество с ограниченной ответственностью "Полимастер" Устройство линейного перемещения рабочего стола для позиционирования дозиметрического прибора в дозиметрической установке гамма-излучения
CN111982940A (zh) * 2020-08-14 2020-11-24 兰州大学 基于紧凑型d-d中子源的热中子透射成像方法及成像装置

Similar Documents

Publication Publication Date Title
RU2362148C1 (ru) Радиографическая установка
RU2406171C1 (ru) Мишень, преобразующая излучение в фотонейтроны
RU2305829C1 (ru) Способ и устройство для распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения
JP4906743B2 (ja) 物質検出及び画像化のための容器の非破壊検査における近単色且つ調整可能な光子源の、核共鳴蛍光との使用
JP4576368B2 (ja) 中性子モデレータ及び中性子照射方法並びに危険物質検出装置
Ahn et al. Measurement of neutrino oscillation by the K2K experiment
CA2742127C (en) Multiple screen detection systems
Miyamoto et al. Laser Compton back-scattering gamma-ray beamline on NewSUBARU
WO2008031313A1 (fr) Dispositif de détection dr/ct multiple pour conteneurs
WO2011079495A1 (zh) 快中子探测方法、物质识别方法及中子探测器
RU73737U1 (ru) Радиографическая установка
RU2366014C1 (ru) Коллиматор
JPWO2014142108A1 (ja) 線量分布測定装置
JP2013130418A (ja) 核物質検出装置、核物質検出方法
Piboule Non-destructive analysis of a bulky sample from a natural fossil reactor
Lemieux et al. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF
RU2505801C1 (ru) Устройство нейтронной радиографии
RU73080U1 (ru) Коллиматор
KR102675627B1 (ko) 수렴형 엑스레이 이미지 장치 및 방법
Gunsing et al. Determination of the boron content in polyethylene samples using the reactor Orphée
Šalamon et al. Measurements of the capture cross sections of natural silver in the resonance range with the time of flight technique
RU2362226C1 (ru) Источник тепловых нейтронов
RU2288465C1 (ru) Устройство для радиографии и томографии
RU100271U1 (ru) Устройство для обнаружения взрывчатых веществ
RU2329523C1 (ru) Детектор нейтронов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201207