WO2011079495A1 - 快中子探测方法、物质识别方法及中子探测器 - Google Patents

快中子探测方法、物质识别方法及中子探测器 Download PDF

Info

Publication number
WO2011079495A1
WO2011079495A1 PCT/CN2010/001137 CN2010001137W WO2011079495A1 WO 2011079495 A1 WO2011079495 A1 WO 2011079495A1 CN 2010001137 W CN2010001137 W CN 2010001137W WO 2011079495 A1 WO2011079495 A1 WO 2011079495A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutron
neutrons
thermal
rays
light
Prior art date
Application number
PCT/CN2010/001137
Other languages
English (en)
French (fr)
Inventor
李元景
杨祎罡
李铁柱
张勤俭
吴彬
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Publication of WO2011079495A1 publication Critical patent/WO2011079495A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/09Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being neutrons

Definitions

  • the present invention relates generally to the field of safe detection using X-rays and neutrons, and more particularly to a fast neutron detection method accompanied by X-rays, a method of using a light neutron identification substance, and simultaneous use of X-rays and photoneutron identification substances.
  • This method utilizes X-ray bombardment generated by high-energy electron accelerators including heavy neutrons and detected objects. Some of the nuclide reacts to emit characteristic gamma rays. By analyzing the energy spectrum of the gamma ray, it is possible to judge the elemental composition of the object to be detected, thereby achieving the purpose of material identification.
  • This method has the special advantage of being able to identify the type of element, but it is inferior in terms of image quality and has certain disadvantages in fusion with X-ray images.
  • Another object of the present invention is to provide a method of using a photoneutron recognition substance which can eliminate the interference of X-rays accompanying light neutrons, thereby improving the ability to recognize substances.
  • a third object of the present invention is to provide a method of simultaneously utilizing X-rays and photoneutrons to further enhance the ability to recognize substances.
  • a fourth object of the present invention is to provide a neutron detector capable of detecting fast neutrons accompanied by X-rays, which is capable of eliminating interference of X-rays with fast neutron measurements, thereby improving information about fast neutrons. accuracy.
  • the first object of the present invention is achieved by the following scheme: A fast neutron detection method for detecting fast neutrons accompanied by X-rays, the method comprising the steps of: passing the fast neutrons through a neutron moderator Absorb X-rays and slow down fast neutrons into thermal neutrons; and use thermal neutron detectors to detect thermal neutrons to obtain information about fast neutrons.
  • X-rays are absorbed by the moderator after several collisions in the neutron moderator, and fast neutrons can pass through the moderator and be slowed down to thermal neutrons, since X-rays are no longer present. In this way, the detection of thermal neutrons is not interfered with by X-rays, thereby improving the accuracy of information about fast neutrons.
  • fast neutrons pass through a thermal neutron shield prior to entering the neutron moderator to shield scattered thermal neutrons present in the environment.
  • a second object of the present invention is achieved by the following scheme: A method of using a light neutron identification substance, comprising the steps of: bombarding a light neutron conversion target with X-rays to generate light neutrons; guiding the light neutron transmission to be detected And detecting a light neutron passing through the detected object with a neutron detector; and further comprising: first guiding light neutrons passing through the detected object into a neutron moderator to absorb the light accompanying the light X-rays of neutrons and moderating the photoneutrons into thermal neutrons; and detecting the thermal neutrons by a thermal neutron detector in the neutron detector to obtain neutrons identifying the substance Transmission attenuation information.
  • a third object of the present invention is achieved by the following scheme: A method of simultaneously utilizing X-rays and photoneutrons to identify a substance, comprising the steps of: providing X-rays; directing a first portion of X-rays to directly transmit the detected object, and detecting with an X-ray detector X-rays passing through the detected object to obtain transmission attenuation information of the X-rays; guiding the second part of X-rays Capturing the light neutron conversion target to generate light neutrons for transmitting the detected object, and detecting the light neutrons passing through the detected object with a neutron detector to obtain transmission attenuation information of the light neutron; combining the light Transmission attenuation information of the sub- and transmission attenuation information of the X-ray to identify a substance of the detected object; the method further comprising first guiding light neutrons passing through the detected object into a neutron moderator to absorb the companion X-rays of the light neutrons and slowing the neutrons
  • the neutron moderator absorbs the X-rays accompanying the light neutrons, thereby eliminating the interference of the X-rays on the neutron measurement, the accuracy of the neutron transmission attenuation information can be improved.
  • X-rays and photoneutrons with different attenuation characteristics are simultaneously used to detect the object to obtain two different transmission attenuation information at the same time, thereby improving the recognition ability of the detection object.
  • a fourth object of the invention is achieved by the following scheme: A neutron detector comprising: a neutron moderator adapted to absorb X-rays therethrough and to slow the fast neutrons into thermal neutrons And a thermal neutron detector adapted to detect the thermal neutron to obtain information about the neutron.
  • the neutron detector can eliminate the interference of X-rays by allowing X-rays to absorb fast neutrons and slowing the fast neutrons into neutron moderators of thermal neutrons, thereby improving the measurement of neutron information. accuracy.
  • the neutron detector further includes a thermal neutron shield adapted to shield scattered thermal neutrons present in the environment.
  • Figure 1 is a schematic diagram of generating light neutrons
  • Figure 2 shows the measurement timing of optical neutrons
  • Figure 3 is a schematic illustration of a method for simultaneously utilizing X-ray and photoneutron identification materials in accordance with the present invention
  • FIG. 4 is a schematic illustration of one embodiment of a neutron detector in accordance with the present invention. detailed description
  • one of the known methods of generating fast neutrons is that the electron beam provided by the electron accelerator first bombards the electron target 1 1 to generate X-rays, and then X-rays bombard the light neutron conversion.
  • Target 12 is used to generate photoneutrons.
  • the commonly used photoneutron targets are nuclides with low neutron thresholds, such as 9 Be and 2 H.
  • ruthenium targets and heavy water targets usually act on neutron converters, in which the reaction type of ruthenium target can be It is expressed by the following formula: y + 9 Be ⁇ % Be +n, ⁇ i .- ⁇ .61MeV ( 1 ) where ⁇ represents photon, ⁇ represents neutron, and the energy of neutron is determined by the difference between the energy of the photon and the reaction threshold. Decide.
  • the reaction type of the heavy water target can be expressed by the following formula: ⁇ + 2 ⁇ , ⁇ + ⁇ , threshold: 2.223Me ( 2 ) From the above reaction formulas (1) and (2), the light neutron is accompanied by X-ray generation. It is generally considered that the generation timing of the light neutron is the same as the generation timing of the X-ray.
  • this photoneutron Since the energy of this photoneutron is between several hundred keV and several MeV (specifically determined by the energy of the accelerator), it is a fast neutron. Although the photoneutron conversion target has a certain shielding effect on X-rays, there are still a large number of X-rays accompanying the light neutrons. If this neutron detector is directly detected by a neutron detector, a large amount of X-rays will also enter the neutron detector. Since photoneutrons and X-rays are generated simultaneously, and the electron accelerator operates in a pulsed state with a pulse width of the order of ⁇ ⁇ , the photoneutrons and X-rays are very short (usually less than 1 s).
  • the neutron detector also measures the X-ray while measuring the neutron. Since the number of X-rays entering the neutron detector is very large, it is generally over 4 orders of magnitude, so no matter how insensitive the neutron detector is to X-rays, the X-ray will still form a huge signal in the neutron detector. And this kind of signal significantly exceeds the signal formed by the neutron in the neutron detector, which causes serious interference to the measurement of the optical neutron, which causes the neutron detector to fail to obtain information about the optical neutron.
  • Light neutrons generally undergo a large amount of collision in a substance to be absorbed by the substance. Depending on the material, the number of collisions of light neutrons can vary from tens to thousands to thousands of times, and can vary from a few ⁇ ⁇ to several tens of ms in terms of time.
  • the fast neutron detection method of the present invention light neutrons are first introduced into a neutron moderator made of polyethylene to absorb X-rays and to slow down photoneutrons into thermal neutrons, and then in heat.
  • the sub-detector measures thermal neutrons to obtain information about the optical neutrons.
  • the thermal neutron detector is conventional and therefore will not be described in detail herein.
  • the thermal neutron detector has a large area and is capable of forming a sufficiently large solid angle for absorbing thermal neutrons.
  • the neutron ' ft chemistry can also be made of graphite, other olefin polymers or other polymers containing hydrogen materials; thermal neutron detectors can use other neutron absorptions such as 1Q B, 6 Li Nuclide.
  • Figure 2 shows the measurement timing of the optical neutrons. From Figure 2 we can see the duration t x of the X-ray pulse 1 in the neutron moderator, typically 4 s, during which time the photoneutrons cannot be measured. There is also a time t d after t x , which is the time for the photoneutron detector to recover from the influence of the X-ray pulse, which is usually in the order of tens of ⁇ ⁇ , such as 45 s. After t d , since there is no X-ray effect, this is the measurement time of the light neutron. The t n given in the figure is the measurement time of the thermal neutron, generally in lOO s, which can be seen in the heat.
  • the measurement delay time of the sub-segment should be greater than the duration of the X-ray in the 'ft' body.
  • the t x , t d , t n , etc. given here are typical times, and can be fine-tuned according to the condition of the detector in actual work.
  • the neutron moderator delays the measurement of the light neutrons to avoid the X-rays, while the light neutrons are moderated to thermal neutrons and then the thermal neutrons are measured to obtain optical neutrons.
  • the above steps are repeated, so that information about the light neutrons can be continuously obtained.
  • the photoneutrons pass through the thermal neutron shield to shield the scattered thermal neutrons present in the environment before entering the neutron moderator. In this way, the interference of thermal neutrons in the environment with neutron measurements can be avoided.
  • Thermal neutron shields are also conventional and will not be described in detail herein.
  • the present invention provides a method of using a light neutron identification substance.
  • the neutron-converting target is first bombarded with X-rays to generate photoneutrons; the neutron collimator is used to direct the light neutrons to transmit the detected object; and then guided through the object to be detected.
  • the photoneutron enters the neutron moderator so that the X-ray accompanying the photoneutron is absorbed in the neutron moderator, while the photoneutron is slowed to the thermal neutron in the neutron moderator;
  • Thermal neutron detector measures thermal neutrons to obtain light neutrons in the object being detected
  • the transmission attenuation information is used to achieve the purpose of identifying the substance contained in the object to be detected by the transmission attenuation information.
  • a thermal neutron shielding body is shielded from the scattering existing in the environment before the light neutron passing through the object to be detected enters the neutron moderator. Thermal neutrons to avoid interference from neutron measurements by scattered thermal neutrons.
  • the present invention also provides a method of simultaneously utilizing X-rays and photoneutrons to identify substances.
  • Figure 3 shows a schematic diagram of a method for simultaneously identifying substances using both X-ray and light neutrons. Since the photoneutron reaction converts unwanted X-rays into photoneutrons, two electrons can be used simultaneously to obtain two types of ray. If two detectors are used to detect X-rays and photoneutrons separately, the different attenuation characteristics of the two rays in the object can be used to improve the recognition ability of the detected object.
  • FIG. 1 shows a schematic diagram of a method for simultaneously identifying substances using both X-ray and light neutrons. Since the photoneutron reaction converts unwanted X-rays into photoneutrons, two electrons can be used simultaneously to obtain two types of ray. If two detectors are used to detect X-rays and photoneutrons separately, the different attenuation characteristics of the two rays in the object can be used to improve the recognition ability of the detected object
  • an electron bombarding electron target 1 1 generates X-rays, and a first portion of X-rays pass through the object to be detected after passing through the X-ray collimator 32, and are measured by the X-ray detector to obtain X-ray attenuation information;
  • a light neutron conversion target 12 is placed, so that the second partial X-ray is converted into a photoneutron here, and the light neutron passes through the neutron collimator 31 and penetrates the detected object 33;
  • the photoneutrons of the detected object 33 first enter the thermal neutron shield in the neutron detector 34 to shield the scattered thermal neutrons in the environment; then the photoneutrons enter the neutron moderator in the neutron detector 34.
  • the neutron moderator completely surrounds the thermal neutron detector, so while absorbing X-rays and slowing down the neutrons, the neutron moderator also shields the thermal neutrons scattered in the environment. The role.
  • Equation (3) reflects a way of combining two types of attenuation information for material identification.
  • t is the thickness of the object to be inspected; ⁇ ⁇ ( ⁇ ) is the attenuation coefficient of the light neutron; ⁇ ⁇ ( ) is the attenuation coefficient of the X ray; I n (t) is the thickness of the incident neutron at the detected object t
  • the denominator reflects the attenuation factor of the X-ray intensity of the object of thickness t, while the numerator reflects the attenuation factor of the neutron ray intensity of the object of the same thickness; using its ratio V(t), The attribute of the object of thickness t is judged to realize the identification of the substance type.
  • FIG 4 shows a schematic diagram of one embodiment of the above neutron detector.
  • the neutron detector 34 includes a thermal neutron shield 341, a polyethylene neutron moderator 342 and a thermal neutron detector 343.
  • the thermal neutron shield 341 is located at the entrance of the incident neutron into the neutron detector 34 (1), and the black arrow passing through the thermal neutron shield 341 represents the incident neutron from the detected object.
  • the thermal neutron shield 341 eliminates the effects of scattered thermal neutrons in the environment on the incoming neutrons.
  • the neutron moderator 342 completely surrounds the thermal neutron detector 343.
  • the neutron moderator 342 can not only absorb the X-rays in the incident light neutrons, but also slow the photoneutrons into thermal neutrons, and also It acts to shield the scattered thermal neutrons in the environment.
  • Moderators Generally, polymers with hydrogen-containing materials such as alkenes are preferred. Graphite is also an option.
  • Thermal neutron detectors generally use 3He, 10B, 6Li, etc. as neutron-absorbing nuclides. The detector type is conventional, but it is desirable to have a large area to form a sufficiently large solid angle for absorbing thermal neutrons.
  • the incident light neutron is formed into the neutron detector 34. Due to the presence of scattered thermal neutrons in the environment, interference may be formed. Therefore, before the light neutrons enter the interior of the detector 34, they are first absorbed by the thermal neutron shielding body 341, so that the light neutrons are reflected in the interior of the detecting 34. Fast-light neutrons that attenuate information in matter. These fast neutrons are slowed down in the moderator 342 and delayed in time, thus avoiding the interference of X-ray pulses. When the neutron is slowed down to a thermal neutron, it can be measured by the thermal neutron detector 343. At this time, the count value of the thermal neutron detector 343 reflects the attenuation information of the photoneutron in the detected object.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)

Description

快中子探测方法、 物质识别方法及中子探测器 技术领域
本发明总的涉及利用 X射线和中子进行安全检测的领域, 更具体 地涉及伴有 X射线的快中子探测方法、 利用光中子识别物质的方法、 同时利用 X射线和光中子识别物质的方法、 以及中子探测器。 背景技术
随着经济和社会的发展, 安全检测技术的应用范围越来越广, 如 地铁站、 机场、 银行、 商场等, 几乎随处可见。 安全检测技术有很多 种, 其中利用加速器产生的光中子进行安全检测技术是一种已经得到 入的工作 __这种方法利用高能电子加速器产生的 X射线轰击包括重 中子与被检测的物体中的某些核素发生反应, 即可放出具有特征性的 γ射线, 通过分析 γ射线的能谱构成, 就能够对被检测物体的元素构 成进行判断, 从而达到物质识别的目的。 这种方法具有能够识别元素 种类的特别优点, 不过它在成像质量方面效果较差, 在与 X射线图像 相融合方面具有一定的不足。
因此出现了另外一种方案, 利用 X射线和光中子的具有不同衰减 特性的透射信息来进行成像, 同时能够得到 X射线成像和中子透射成 像两幅图像, 通过对 X射线衰减信息和中子衰减信息的融合, 可以提 高对被检测物体的识别能力。 但是这种方案还处在原理阶段, 要使之 能够实现, 必须解决一个问题: 如何在 X射线的强脉沖下实现对光中 子的测量? 因为光中子是伴随 X射线产生的, 虽然光中子转换靶起到 一定的 X射线屏蔽作用,但是进入中子探测器的 X射线仍然是非常多, 一般可以认为超过 4 个量级。 尽管中子探测器可以选择对中子敏感的 探测器, 但由于 X射线的数量过分地多, 无论该探测器对 X射线多么 地不灵敏, 一般情况仍是 X射线在中子探测器中形成了巨大的信号, 显著超过了中子探测器在其中形成的信号, 这实际使得中子透射信息 的获取无法完成。 本发明就是要解决这个问题。 发明内容
本发明的目的之一是提供一种快中子探测方法,该方法通过排除 X 射线对快中子测量的干扰, 能够探测伴有 X射线的快中子, 从而能提 高关于快中子的信息的准确性。
本发明的目的之二是提供利用光中子识别物质的方法, 该方法能 排除伴随光中子的 X射线的干扰, 因此能提高识别物质的能力。
本发明的目的之三是提供同时利用 X射线和光中子识别物质的方 法, 以进一步提高识别物质的能力。
本发明的目的之四是提供能够检测伴有 X射线的快中子的中子探 测器, 该中子探测器能够排除 X射线对快中子测量的干扰, 从而提高 关于快中子的信息的准确性。
本发明的第一目的通过下列方案得以实现: 一种快中子探测方法, 用于探测伴有 X射线的快中子, 该方法包括步骤: 使所述快中子通过 中子慢化体以吸收 X射线和将快中子慢化为热中子; 和用热中子探测 器探测热中子以获得关于快中子的信息。 X 射线在中子慢化体中经过 数次碰撞之后就会被该慢化体吸收, 而快中子则可以通过该慢化体并 被慢化为热中子, 由于 X射线已不存在, 这样探测热中子就不会受到 X射线的干扰, 从而能够提高关于快中子的信息的准确性。
作为本发明快中子探测方法的一个优选实施例, 快中子在进入中 子慢化体之前先经过热中子屏蔽体以屏蔽存在于环境中的散射热中 子。
本发明的第二目的通过下列方案得以实现: 一种利用光中子识别 物质的方法, 包括步骤: 用 X射线轰击光中子转换靶以产生光中子; 引导所述光中子透射被检测物体; 和用中子探测器探测穿过所述被检 测物体的光中子; 并且还包括: 先引导穿过所述被检测物体的光中子 进入中子慢化体以吸收伴随所述光中子的 X射线和将所述光中子慢化 为热中子; 和再由所述中子探测器中的热中子探测器探测所述热中子 以获得识别所述物质的中子透射衰减信息。
本发明的第三目的通过下列方案得以实现: 一种同时利用 X射线 和光中子识别物质的方法, 包括步骤: 提供 X射线; 引导第一部分 X 射线直接透射被检测物体, 并用 X射线探测器探测穿过所述被检测物 体的 X射线以获得所述 X射线的透射衰减信息; 引导第二部分 X射线 轰击光中子转换靶以产生用于透射被检测物体的光中子, 并用中子探 测器探测通过所述被检测物体的光中子以获得光中子的透射衰减信 息; 结合所述光中子的透射衰减信息和所述 X射线的透射衰减信息以 识别所述被检测物体的物质; 该方法还包括先引导穿过所述被检测物 体的光中子进入中子慢化体以吸收伴随所述光中子的 X射线和将所述 光中子慢化为热中子; 和再由所述中子探测器中的热中子探测器探测 所述热中子以获得所述光中子的透射衰减信息。 由于过中子慢化体吸 收了伴随光中子的 X射线, 从而排除了 X射线对中子测量的干扰, 因 此能够提高中子透射衰减信息的准确性。 另外, 同时利用衰减特性不 同的 X射线和光中子来检测物体, 以同时得到两种不同的透射衰减信 息, 由此提高了对检测物体的识别能力。
本发明的第四目的通过下列方案得以实现: 一种中子探测器, 包 括: 中子慢化体, 其适于吸收通过其中的 X射线, 并将所述快中子慢 化为热中子; 和热中子探测器, 其适于探测所述热中子以获得关于中 子的信息。 该中子探测器通过能吸收 X射线而允许快中子通过并将该 快中子慢化为热中子的中子慢化体, 能够排除 X射线的干扰, 从而提 高了测量中子信息的准确性。
作为本发明中子探测器的一个优选实施例, 中子探测器还包括热 中子屏蔽体, 其适于屏蔽存在于环境中的散射热中子。
通过阅读下列的详细描述及参考附图, 本发明的其他目的和优点 将变得很明显。 附图说明
图 1为产生光中子的示意图;
图 2为光中子的测量时序;
图 3为根据本发明的同时利用 X射线和光中子识别物质的方法的 示意图;
图 4为根据本发明的中子探测器的一个实施例的示意图。 具体实施方式
如图 1 所示, 已知快中子产生方式之一就是首先由电子加速器提 供的电子束轰击电子靶 1 1 产生 X射线, 再用 X射线轰击光中子转换 靶 12以产生光中子。 一般用到的光中子靶材都是具有低光中子阈值的 核素, 例如 9Be和 2H, 因此, 铍靶和重水靶通常作用中子转换体, 其 中, 铍靶的反应类型可以用下式表示: y + 9Be→%Be +n, \ i .-\ .61MeV ( 1 ) 其中, γ代表光子, η代表中子, 中子的能量由光子的能量与反应阈值 的差值决定。 重水靶的反应类型则可以用下式表示: γ + 2Η→、Η + η, 阈值 :2.223Me ( 2 ) 由上述反应式 ( 1 ) 和 (2 ) 可知, 光中子是伴随 X射线产生的, 一般认为光中子的产生时刻与 X射线的产生时刻是相同的。
由于这种光中子的能量在几百 keV到几个 MeV之间(具体由加速 器的能量决定) , 因此属于快中子。 尽管光中子转换靶对 X射线起到 一定的屏蔽作用, 但是仍有大量的 X射线伴随光中子。 如果用中子探 测器直接探测这种光中子, 大量的 X射线也会进入中子探测器。 由于 光中子和 X射线是同时产生的, 而电子加速器又是在脉冲状态下工作, 脉宽为 μ δ的量级, 因此光中子和 X射线会在很短的 (通常小于 1 s ) 时间内从光中子转换靶同时飞到中子探测器, 即中子探测器在测量中 子的同时也会测量到 X射线。 由于进入中子探测器的 X射线的数量非 常多, 一般会超出 4个量级, 因此无论中子探测器对 X射线多么不灵 敏, X 射线仍会在中子探测器中形成巨大的信号, 并且这种信号显著 超过中子在中子探测器中形成的信号, 从而对光中子的测量造成严重 干扰, 导致中子探测器无法获取关于光中子的信息。
已知 X射线和光中子在物质中具有不同特性:
• X射线经过数次碰撞之后, 就会被物质吸收, 其在物质中的存 活时间仅在 ns的量级解决了 X射线对光中子测量的干扰;
• 光中子在物质中一般要经过大量的碰撞才会被物质吸收。 根据 物质材料的不同, 光中子的碰撞次数可以从几十次到几千次不等, 从 时间上看可以从几个 μ δ到几十 ms不等。
由这两种射线不同的行为特性可知: 如果设置合适的中子慢化结 构, 让中子在该慢化体中进行减速。 由于将光中子由快中子减速为热 中子通常需要大于几个 s的时间, 因此当光中子被慢化为热中子时, X 射线脉冲已经不存在了, 此时用热中子灵敏的探测器对慢化后的光 中子进行测量, 就可以得到关于光中子的信息, 而不会受到 X射线的 干扰。
作为本发明快中子探测方法的一个实施例, 首先使光中子进入由 聚乙烯制成的中子慢化体以吸收 X射线并将光中子慢化为热中子, 再 用热中子探测器测量热中子, 从而获得光中子的相关信息。 其中, 热 中子探测器是常规的, 因此在此不作详细叙述。 热中子探测器的面积 较大, 能够形成吸收热中子的足够大的立体角。 在其它的实施例中, 中子' ft化体也可由石墨、 其它烯聚合物或其它含氢材料的聚合物制成; 热中子探测器则可以采用 1QB、 6Li等其它中子吸收核素。
图 2显示了光中子的测量时序。 从图 2 中可以看到 X射线脉冲 1 在中子慢化体中的持续时间 tx, —般为 4 s, 在这个时间段内光中子 是无法进行测量的。 在 tx之后还有一个 td的时间, 这个时间是用于光 中子探测器从 X射线脉冲的影响中恢复回来的时间, 这个时间一般在 几十 μ δ, 如 45 s。 在 td之后, 由于已经没有了 X射线的影响, 此时 就是光中子的测量时间, 图中给出的 tn就是热中子的测量时间, 一般 在 lOOO s, 由此可见, 热中子的测量延迟时间应大于 X射线在 'ft化体 中的持续时间。 这里给出的 tx, td, tn等都是典型时间, 实际工作中可 以根据探测器的情况来进行微调。 这样, 在一个脉冲周期 T 内, 通过 中子慢化体延迟光中子的测量以避开 X射线, 同时将光中子慢化为热 中子再测量热中子的方法, 获得光中子的相关信息。 在下一个脉冲开 始后, 重复上述步骤, 这样就能连续地获得光中子的相关信息。
作为本发明快中子探测方法的一个更优选的实施例, 光中子在进 入中子慢化体之前, 先经过热中子屏蔽体以屏蔽存在于环境中的散射 热中子。 这样, 就能避免环境中的热中子对中子测量的干扰。 热中子 屏蔽体也是常规的, 因此在此不作详细叙述。
根据上述的快中子探测方法, 本发明提供了利用光中子识别物质 的方法。 作为该方法的一个优选实施例, 先用 X射线轰击含光中子转 换靶以产生光中子; 再用中子准直器引导光中子透射被检测物体; 然 后引导穿过被检测物体的光中子进入中子慢化体以使伴随光中子的 X 射线在中子慢化体中被吸收掉, 同时光中子在中子慢化体中被慢化为 热中子; 最后由热中子探测器测量热中子以获得光中子在被检测物体 中的透射衰减信息, 从而通过此透射衰减信息达到识别被检测物体所 含物质的目的。
作为利用光中子识别物质的方法的一个更加优选的实施例, 在穿 过被检测物体的光中子进入中子慢化体之前, 先经过热中子屏蔽体以 屏蔽存在于环境中的散射热中子, 以避免散射热中子对中子测量的干 扰。
根据上述的快中子探测方法, 本发明还提供了同时利用 X射线和 光中子识别物质的方法。 图 3显示了同时利用 X射线和光中子两种透 射信息识别物质的方法的示意图。 由于光中子反应可以将无用的 X射 线转换为光中子, 因此, 利用一个电子加速器就能够同时获得两种射 线。 如果采用两种探测器来分别探测 X射线和光中子, 利用两种射线 在物体中的不同衰减特性, 可以提高对被检测物体的识别能力。 在图 2 中, 电子轰击电子靶 1 1产生 X射线, 第一部分 X射线在经过 X射线 准直器 32之后穿过被检测物体, 并被 X射线探测器测量, 得到 X射 线衰减信息; 在电子耙 1 1的前面, 放置了一个光中子转换靶 12 , 使第 二部分 X射线在此转换为光中子, 光中子经过中子准直器 31 之后穿 透被检测物体 33; 穿过被检测物体 33 的光中子先进入中子探测器 34 中的热中子屏蔽体以屏蔽环境中的散射热中子; 然后光中子进入中子 探测器 34中的中子慢化体中以使伴随光中子的 X射线消失,并使光中 子慢化为热中子;该热中子最后到达中子探测器 34中的热中子探测器, 由此, 热中子探测器获得了光中子在被检测物体中的透射衰减信息。 需要注明的是, 中子慢化体完全包围热中子探测器, 因此在吸收 X射 线和慢化光中子的同时, 中子慢化体也对环境中散射的热中子起到屏 蔽的作用。
通过结合 X射线和光中子衰减信息, 可以实现对被检测物体的识 别。 下面的公式 (3 )反映了如何将两种衰减信息结合在一起来进行物 质识别的一种方式。
Figure imgf000008_0001
其中, t为被检测物体的厚度; μ η(ΐ)为光中子的衰减系数; μ χ( )为 X 射线的衰减系数; In(t)为入射光中子在被检测物体厚度 t处的强度, In(0) 则为入射光中子的未衰减强度; Ix(t)为入射 X射线在被检测物体厚度 t 处的强度,IX(0)则为入射 X射线的未衰减强度。 在等式右侧, 分母反映 了厚度为 t的物体对 X射线强度的衰减倍数, 而分子则反映了同样厚 度的物体对中子射线强度的衰减倍数; 利用其比值 V(t), 即可对厚度 为 t的物体的属性进行判断, 从而实现对物质种类的识别。
图 4 显示了上述中子探测器的一个实施例的示意图。 如图所示, 中子探测器 34包括热中子屏蔽体 341, 聚乙烯中子慢化体 342和热中 子探测器 343。 热中子屏蔽体 341位于入射光中子进入中子探测器 34 的入口处(1) , 穿过热中子屏蔽体 341的黑色箭头代表来自被检测物体 的入射光中子。 热中子屏蔽体 341 能够消除环境中的散射热中子对入 射光中子的影响。 中子慢化体 342完全包围热中子探测器 343 , 因此, 中子慢化体 342不仅能够吸收掉入射光中子中的 X射线, 和将光中子 慢化为热中子, 而且还起到屏蔽环境中的散射热中子的作用。 慢化体 一般选用具有含氢材料, 如烯的聚合物, 石墨也是一种选择。 热中子 探测器一般选用 3He, 10B, 6Li等为中子吸收核素, 探测器类型是常 规的, 但是希望其面积较大, 以形成吸收热中子的足够大的立体角。
光中子由光中子靶出射之后, 穿透被检测物体之后, 形成入射光 中子进入中子探测器 34。 由于环境中存在散射的热中子, 会构成干扰, 因此在光中子进入探测器 34内部之前, 首先经过热中子屏蔽体 341的 吸收, 这样进入探测 34内部的才是反映光中子在物质中衰减信息的快 光中子。 这些快中子在慢化体 342 中进行慢化, 同时时间上得到了延 迟, 从而避开了 X射线脉冲的干扰。 当中子被慢化为热中子时, 就可 以被热中子探测器 343所测量, 此时热中子探测器 343的计数值就反 映了光中子在被检测物体中的衰减信息。
虽然已经描述了本发明的典型实施例, 应该明白本发明不限于这 些实施例, 对本专业的技术人员来说, 本发明的各种变化和改进都能 实现, 但这些都在本发明权利要求的精神和范围之内。

Claims

权 利 要 求
1 一种快中子探测方法, 用于探测伴有 X射线的快中子, 其特征 在于, 该方法包括步骤:
使所述快中子通过中子慢化体以吸收所述 X射线和将所述快中子 慢化为热中子; 和
用热中子探测器探测所述热中子以获得关于所述快中子的信息。
2. 根据权利要求 1所述的方法, 其特征在于: 所述快中子在进入所 述中子慢化体之前先经过热中子屏蔽体以屏蔽存在于环境中的散射热 中子。
3. 根据权利要求 1所述的方法, 其特征在于: 所述中子慢化体由含 氢材料的聚合物制成。
4. 根据权利要求 1所述的方法, 其特征在于: 所述中子慢化体由烯 聚合物制成。
5. 根据权利要求 1所述的方法, 其特征在于: 所述中子慢化体由石 墨制成。
6. 根据权利要求 1所述的方法, 其特征在于: 所述热中子探测器选 用下列组中的中子吸收核素: 3He, 1GB, 6Li。
7. 根据权利要求 1所述的方法, 其特征在于: 所述热中子探测器的 面积形成足够吸收热中子的立体角。
8. 一种利用光中子识别物质的方法, 包括步骤:
用 X射线轰击光中子转换靶以产生光中子;
引导所述光中子透射被检测物体; 和
用中子探测器探测穿过所述被检测物体的光中子;
其特征在于: 所述光中子的 X射线和将所述光中子慢化为热中子; 和 、、P ' 再由所述中子探测器中的热中子探测器探测所述热中子以获得识 别所述物质的中子透射衰减信息。
9. 根据权利要求 8所述的方法, 其特征在于: 所述光中子在通过所 述中子慢化体之前先经过热中子屏蔽体以屏蔽存在于环境中的散射热 中子。
10. 根据权利要求 8或 9所述的方法, 其特征在于: 所述光中子由中 子准直器引导透射所述被检测物体。
1 1. 一种同时利用 X射线和光中子识别物质的方法, 包括步骤: 提供 X射线;
引导第一部分 X射线直接透射被检测物体, 并用 X射线探测器探测 穿过所述被检测物体的 X射线以获得所述 X射线的透射衰减信息;
引导第二部分 X射线轰击光中子转换靶以产生用于透射被检测物 体的光中子, 并用中子探测器探测通过所述被检测物体的光中子以获 得光中子的透射衰减信息;
结合所述光中子的透射衰减信息和所述 X射线的透射衰减信息以 识别所述被检测物体的物质;
其特征在于: 所述光中子的 X射线和将所述光中子慢化为热中子; 和 、、P ' 再由所述中子探测器中的热中子探测器探测所述热中子以获得所 述光中子的透射衰减信息。
12. 根据权利要求 11所述的方法, 其特征在于: 所述光中子在通过 所述中子慢化体之前先经过热中子屏蔽体以屏蔽存在于环境中的散射 热中子。
13. 根据权利要求 11或 12所述的方法, 其特征在于: 所述光中子由 中子准直器引导透射所述被检测物体。
14. 根据权利要求 11或 12所述的方法, 其特征在于: 所述第一部分 X射线由 X射线准直器引导透射所述被检测物体。
15. 根据权利要求 11或 12所述的方法, 其特征在于: 所述光中子转 换靶的核素为 9Be或 2H。
16. 根据权利要求 1 1或 12所述的方法, 其特征在于: 所述 X射线由 X射线发生器产生, 所述 X射线发生器包括电子加束器。
17. 一种中子探测器, 包括:
中子慢化体, 其适于吸收通过其中的 X射线, 并将快中子慢化为热 中子; 和 信息。 , 、、 , . 、
18. 根据权利要求 17所述的中子探测器, 其特征在于: 还包括热中 子屏蔽体, 其适于屏蔽存在于环境中的散射热中子。
19. 根据权利要求 17或 18所述的中子探测器, 其特征在于: 所述中 子慢化体包围所述热中子探测器。
20. 根据权利要求 17或 18所述的中子探测器, 其特征在于: 所述中 子慢化体也适于屏蔽存在于环境中的散射热中子。
PCT/CN2010/001137 2009-12-29 2010-07-26 快中子探测方法、物质识别方法及中子探测器 WO2011079495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102443573A CN102109607B (zh) 2009-12-29 2009-12-29 快中子探测方法、物质识别方法及中子探测器
CN200910244357.3 2009-12-29

Publications (1)

Publication Number Publication Date
WO2011079495A1 true WO2011079495A1 (zh) 2011-07-07

Family

ID=44173816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001137 WO2011079495A1 (zh) 2009-12-29 2010-07-26 快中子探测方法、物质识别方法及中子探测器

Country Status (2)

Country Link
CN (1) CN102109607B (zh)
WO (1) WO2011079495A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376227B (zh) * 2014-09-26 2021-07-09 同方威视技术股份有限公司 利用光中子透射对物体成像的方法以及装置
CN106938124B (zh) * 2016-01-04 2019-10-01 南京中硼联康医疗科技有限公司 中子缓速材料
CN108398709A (zh) * 2017-02-08 2018-08-14 中国辐射防护研究院 一种光纤辐射探头
CN106908830B (zh) * 2017-02-16 2018-10-02 中国科学院合肥物质科学研究院 一种强辐射高温条件下测量中子通量的测量系统
CN110779939B (zh) * 2018-07-11 2020-12-29 同方威视技术股份有限公司 双模探测方法、控制器和系统
CN114264681A (zh) * 2021-12-29 2022-04-01 清华大学 分析金矿石品位的方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395633A (en) * 1979-09-11 1983-07-26 Commonwealth Scientific And Industrial Research Organization Level gauge using neutron irradiation
US4581532A (en) * 1984-07-06 1986-04-08 Mobil Oil Corporation Directional epithermal neutron detector
CN87206967U (zh) * 1987-05-04 1988-03-30 首都钢铁公司 中子测水仪探头
CN101329283A (zh) * 2007-06-21 2008-12-24 清华大学 一种光中子-x射线违禁品检测方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582758C (zh) * 2005-11-03 2010-01-20 清华大学 用快中子和连续能谱x射线进行材料识别的方法及其装置
CN201286191Y (zh) * 2008-06-19 2009-08-05 清华大学 一种光中子转换靶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395633A (en) * 1979-09-11 1983-07-26 Commonwealth Scientific And Industrial Research Organization Level gauge using neutron irradiation
US4581532A (en) * 1984-07-06 1986-04-08 Mobil Oil Corporation Directional epithermal neutron detector
CN87206967U (zh) * 1987-05-04 1988-03-30 首都钢铁公司 中子测水仪探头
CN101329283A (zh) * 2007-06-21 2008-12-24 清华大学 一种光中子-x射线违禁品检测方法及系统

Also Published As

Publication number Publication date
CN102109607B (zh) 2013-03-27
CN102109607A (zh) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4576368B2 (ja) 中性子モデレータ及び中性子照射方法並びに危険物質検出装置
US9207195B2 (en) High-energy X-ray-spectroscopy-based inspection system and methods to determine the atomic number of materials
US8374310B2 (en) Method and system for contraband detection using photoneutrons and X-rays
US20200025955A1 (en) Integrated Primary and Special Nuclear Material Alarm Resolution
EP2287636B1 (en) Method and system for inspecting special nuclear material
US20050105665A1 (en) Detection of neutrons and sources of radioactive material
WO2011079495A1 (zh) 快中子探测方法、物质识别方法及中子探测器
JP2010048799A (ja) 能動的取り調べを使用する核分裂性物質の検出のための装置及び方法
RU2362148C1 (ru) Радиографическая установка
CN102608651B (zh) 中子探测器
WO2015020710A2 (en) Integrated primary and special nuclear material alarm resolution
JP6377502B2 (ja) 中性子測定装置および中性子測定方法
Ryzhikov et al. A new multi-layer scintillation detector for detection of neutron-gamma radiation
CN110376227B (zh) 利用光中子透射对物体成像的方法以及装置
CN110927809A (zh) 特殊核材料检测装置
Kravchenko et al. A streak-camera monitor for hard X rays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840285

Country of ref document: EP

Kind code of ref document: A1