RU2358805C1 - Способ восстановления активности катализаторов гидрогенизационных процессов - Google Patents

Способ восстановления активности катализаторов гидрогенизационных процессов Download PDF

Info

Publication number
RU2358805C1
RU2358805C1 RU2008109047/04A RU2008109047A RU2358805C1 RU 2358805 C1 RU2358805 C1 RU 2358805C1 RU 2008109047/04 A RU2008109047/04 A RU 2008109047/04A RU 2008109047 A RU2008109047 A RU 2008109047A RU 2358805 C1 RU2358805 C1 RU 2358805C1
Authority
RU
Russia
Prior art keywords
catalyst
temperature
oxygen
containing gas
catalysts
Prior art date
Application number
RU2008109047/04A
Other languages
English (en)
Inventor
Владимир Константинович Смирнов (RU)
Владимир Константинович Смирнов
Капитолина Николаевна Ирисова (RU)
Капитолина Николаевна Ирисова
Елена Львовна Талисман (RU)
Елена Львовна Талисман
Original Assignee
ООО "Компания Катахим"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО "Компания Катахим" filed Critical ООО "Компания Катахим"
Priority to RU2008109047/04A priority Critical patent/RU2358805C1/ru
Application granted granted Critical
Publication of RU2358805C1 publication Critical patent/RU2358805C1/ru

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к нефтепереработке, в частности к способам гидрооблагораживания нефтяных фракций. Описан способ восстановления активности катализаторов гидрогенизационных процессов путем последовательных операций десорбции углеводородов с поверхности отработанных находящихся в стационарном слое катализаторов в среде водородсодержащего газа при температуре 200-400°С; пассивации поверхности катализаторов за счет их обработки в стационарном слое при температуре 100-120°С кислородсодержащим газом с содержанием кислорода 0,02-0,5об.%, выжига продуктов уплотнения углеводородов в потоке кислородсодержащего газа при температуре 400-550°С; перевода катализаторов из оксидной в предсульфидированную форму путем их контактирования с элементной серой в токе воздуха или инертного газа при условии, что выжиг продуктов уплотнения углеводородов и перевод катализаторов из оксидной в предсульфидированную форму осуществляют в подвижном слое катализатора, при этом температура выжига продуктов уплотнения углеводородов регулируется температурой кислородсодержащего газа и объемным соотношением кислородсодержащий газ: катализатор (15-30):1. Технический эффект - восстановление активности катализаторов гидрогенизационных процессов с минимальными потерями катализатора за счет разрушения. 2 з.п. ф-лы, 2 ил., 5 табл.

Description

Изобретение относится к нефтепереработке, в частности к способам гидрооблагораживания нефтяных фракций.
Ужесточение требований к качеству товарных нефтепродуктов, получаемых на базе высокосернистых нефтей, предъявляет новые требования к процессам гидрооблагораживания светлых и остаточных нефтяных фракций.
Эффективность данных процессов существенно зависит от активности и стабильности используемых катализаторов. Активность характеризует скорость и глубину протекания каталитических реакций, стабильность - устойчивость активности в течение срока службы катализатора.
Эксплуатация катализаторов гидрогенизационных процессов всегда сопровождается снижением их активности.
Для современных каталитических процессов нефтепереработки и нефтехимии наиболее распространенная причина ухудшения показателей эксплуатации катализаторов - отложение кокса на их поверхности.
Длительность периода, в течение которого потенциал катализатора используется с максимальной эффективностью (первый межрегенерационный цикл), зависит от состава используемой каталитической системы и условий ее эксплуатации (качество перерабатываемого сырья, технологические параметры) и колеблется от 4-6 месяцев при переработке бензиновых и среднедистиллятных фракций вторичного происхождения [Нефтепереработка и нефтехимия. 2003 г., № 1, с.17-20] до 6 лет при гидроочистке прямогонных бензиновых фракций [Нефтепереработка и нефтехимия. 2004 г., № 4, с.47-51].
Частично восстановить активность катализаторов гидрогенизационных процессов можно так называемой окислительной регенерацией, т.е. процессом контролируемого выжига продуктов уплотнения углеводородсодержащих соединений кислородсодержащими смесями при температурах катализа и выше [Масагутов P.M., Морозов Б.Ф., Кутепов Б.И. Регенерация катализаторов в нефтепереработке и нефтехимии. - М.: Химия, 1978, с.3, 103-105].
Активность и стабильность катализаторов после окислительной регенерации зависят не только от условий эксплуатации, но и способа восстановления их активности, включая подготовку катализатора к регенерации, в том числе десорбцию углеводородов с их поверхности; собственно процесса окислительной регенерации, заключающегося в контролируемом выжиге продуктов уплотнения углеводородов, и последующего перевода активных компонентов из оксидной в предсульфидированную форму.
Все гидрогенизационные процессы протекают на катализаторах, содержащих активные металлы в виде сульфидов. Поэтому до начала переработки сырья проводят активацию катализаторов путем их сульфидирования.
Например, катализатор в оксидной форме, загруженный в реактор, вначале контактируют при повышенной температуре с водородсодержащим газом, смешанным с сульфидирующим агентом, таким как сероводород, или легко разлагающиеся сероорганические соединения, или сырье, или их смеси [Oil@Gas Journal, Dec.20, 1982, pp. 69-74].
Во всех случаях проведение процесса сульфидирования катализатора в условиях промышленной установки целевого процесса гидрооблагораживания сложно технологически и связано с дополнительными затратами времени, энергоресурсов, реагентов.
Наиболее эффективным способом нанесения серы на катализатор является способ сульфидирования вне реактора гидрообработки углеводородного сырья. Для этого используют серосодержащие соединения и/или элементную серу.
Например, для нанесения серы на катализатор предлагается использовать сероорганические соединения с температурой кипения выше 100°С [европатент № 0460300 A1, оп. 11.12.91, Б.И. № 50]. Примером таких соединений может служить 2,2-тиодиэтанол, тиодигликолевая кислота, 3.3-тиолдипропанол, 1.6-дигидрокси-2.5-дитиагексан, 3.6-дитиогептановая кислота. Серосодержащие соединения растворяют в воде или органическом растворителе, катализатор обрабатывают полученным раствором с последующей сушкой для удаления растворителя. Недостатком данного способа является дороговизна и дефицитность индивидуальных соединений серы, а так же необходимость удаления растворителя с катализатора, что всегда приводит к снижению прочности катализатора.
Известен способ нанесения на катализатор элементной серы путем контактирования катализатора с расплавленной серой при температурах 100-150°С до тех пор, пока жидкая сера не впитается в поры частиц катализатора. Катализатор охлаждается так, что сера отверждается в порах частиц, процесс нагрева и охлаждения катализатора с серой ведется в токе азота [патент США № 4.177.136 от 04.12.79]. Полученный продукт используется в качестве верхнего слоя каталитического пакета. Недостатком этого способа является его сложность, отсутствие регулирования количества наносимой серы, в том числе необходимость использования расплавленной серы, и ограничение проведения процесса только в среде инертного газа. Все это усложняет технологию и значительно удорожает стоимость конечного продукта.
Наиболее технологичным способом перевода катализаторов из оксидной в предсульфидированную форму является способ получения катализаторов в предсульфидированной форме путем смешения гранул катализатора, содержащего носитель и один или более каталитически активных металлов в оксидной форме, с элементной серой, взятой в количестве не более 50 мас.% от массы катализатора при температуре ниже температуры плавления серы, нагревания смеси катализатора с серой при температуре выше температуры плавления серы, при условии, что элементную серу применяют в виде частиц с размером не более размера частиц катализатора, нагревание смеси катализатора с серой осуществляют в токе воздуха или инертного газа при непрерывном перемешивании [патент РФ № 2229934].
В зависимости от состава используемой при окислительной регенерации кислородсодержащей смеси различают паровоздушную и газовоздушную регенерацию.
Например, известен способ регенерации, заключающийся в пропускании через отработанный адсорбент при температуре 121-399°С потока газа, представляющего собой смесь инертного газа с оксидами углерода, водородом и водяным паром [заявка № 97112457/04, дата публикации 1998.08.10.]. Описанный выше способ относится к паровоздушной регенерации.
Наиболее существенным недостатком паровоздушного способа регенерации применительно к катализаторам гидрогенизационных процессов является опасность обводнения катализатора в начальный период проведения регенерации, когда катализатор недостаточно прогрет. При дальнейшем повышении температуры происходит мгновенное испарение воды, что сопровождается разрушением гранул катализатора.
Применение водяного пара приводит так же к частичному вымыванию соединений активных металлов, что при дальнейшей эксплуатации сказывается на активности катализатора.
Снизить потери активности и прочности удается при проведении газовоздушной регенерации.
Газовоздушная регенерация проводится в потоке смеси инертного газа, обычно азота, с кислородом, взятым в концентрации 0,5-20 об.% [Технология катализаторов. /Под редакцией И.П.Мухленова. - Л.: Химия, 1974, с.69].
Газовоздушная регенерация может проводиться:
- или в реакторе технологической установки,
- или вне реактора технологической установки на специализированной установке регенерации.
Максимальное восстановление активности с минимальными потерями прочности катализаторов может достигаться при проведении окислительной регенерации вне реактора технологической установки на специализированной установке во вращающейся печи непрямого нагрева при температуре 450-550°С и давлении 0,4-1,0 ати [Масагутов P.M., Морозов Б.Ф., Кутепов Б.И. Регенерация катализаторов в нефтепереработке и нефтехимии. - М.: Химия, 1978, с.108-110] при условии ведения процесса при технологических параметрах (температура и количество подаваемого в печь кислородсодержащего газа, концентрация в нем кислорода), соответствующих физико-химическим характеристикам катализатора (природа носителя, состав активных компонентов, содержание кокса).
При проведении окислительной регенерации на специализированной установке необходимо учесть, что все катализаторы гидрогенизационных процессов в ходе эксплуатации приобретают пирофорные свойства. Неконтролируемое возгорание катализатора приводит к безвозвратной потере его активности и снижению прочности, что делает его дальнейшую эксплуатацию неэффективной.
Необходимо предусмотреть меры предосторожности при выгрузке отработанного катализатора для предотвращения его воспламенения при контакте с воздухом. С этой целью рекомендуется проведение пассивации катализатора. Суть операции пассивации заключается в блокировании в мягких условиях содержащихся на поверхности отработанного катализатора легковоспламеняющихся на воздухе соединений активных компонентов в форме тонкодисперсных сульфидов и металлов тонкой оксидной пленкой, после чего катализатор практически теряет пирофорные свойства.
Известен способ окислительной регенерации катализаторов путем выжига продуктов уплотнения углеводородов в среде кислородсодержащего газа при давлении 0,45-3,5 атм [патент РФ № 2053843]. Данный способ относится к газовоздушной регенерации, но не предусматривает стадии пассивации катализаторов, и следовательно может быть осуществлен только в реакторе технологической установки.
Проведение окислительной регенерации катализаторов в реакторе технологической установки всегда сопровождается значительным перепадом температур по объему реактора, что приводит к разрушению части катализатора, находящейся в зоне высоких температур и неполному выжигу продуктов уплотнения углеводородов на части катализатора, находящейся в зоне низких температур.
Наиболее близким к предлагаемому техническому решению по технической сущности и достигаемому результату является способ восстановления активности катализаторов гидрогенизационных процессов путем выжига продуктов уплотнения углеродсодержащих соединений в среде кислородсодержащего газа с предварительными десорбцией углеводородов с поверхности катализаторов в среде водородсодержащего газа при постепенном подъеме температуры от 200-220°С до 380-400°С и пассивацией соединений их активных компонентов, путем обработки при температуре 100-120°С и давлении 4-10 ати смесью инертного газа с кислородсодержащим компонентом, осуществляемых в реакторе технологической установки, и выжига продуктов их уплотнения на специализированной установке во вращающейся печи непрямого нагрева при температуре 450-550°С и давлении 0,4-1,0 ати [патент РФ № 2282501].
Целью предлагаемого изобретения является разработка технического решения, позволяющего проводить в промышленных условиях максимально возможное восстановление активности катализаторов гидрогенизационных процессов с минимальными потерями катализатора за счет разрушения.
Поставленная цель достигается способом восстановления активности катализаторов гидрогенизационных процессов путем последовательных операций десорбции углеводородов с поверхности отработанных находящихся в стационарном слое катализаторов в среде водородсодержащего газа при температуре 200-400°С; пассивации поверхности катализаторов за счет их обработки в стационарном слое при температуре 100-120°С кислородсодержащим газом с содержанием кислорода 0,02-0,5 об.%; выжига продуктов уплотнения углеводородов в потоке кислородсодержащего газа при температуре 400-550°С; перевода катализаторов из оксидной в предсульфидированную форму путем их контактирования с элементной серой в токе воздуха или инертного газа, при условии, что выжиг продуктов уплотнения углеводородов и перевод катализаторов из оксидной в предсульфидированную форму осуществляют в подвижном слое катализатора, при этом температура выжига продуктов уплотнения углеводородов регулируется температурой кислородсодержащего газа и объемным соотношением кислородсодержащий газ: катализатор (15-30):1; температура кислородсодержащего газа по мере снижения содержания углерода в катализаторе, направляемом на стадию выжига продуктов уплотнения углеводородов, составляет
при содержании углерода (мас.%) соответственно
270-380°C выше 10
380-420°С 10-4
420-480°С 4-2
480-550°С менее 2,
концентрация кислорода в кислородсодержащем газе при выжиге продуктов уплотнения углеводородов составляет 12-20 об.%.
Отличительным признаком предлагаемого технического решения является то, что выжиг продуктов уплотнения углеводородов и перевод катализаторов из оксидной в предсульфидированную форму осуществляют в подвижном слое катализатора, при этом температура выжига продуктов уплотнения углеводородов регулируется температурой кислородсодержащего газа и объемным соотношением кислородсодержащий газ: катализатор (15-30):1; температура кислородсодержащего газа по мере снижения содержания углерода в катализаторе, направляемом на стадию выжига продуктов уплотнения углеводородов, составляет
при содержании углерода (мас.%) соответственно
270-380°С выше 10
380-420°С 10-4
420-480°С 4-2
480-550°С менее 2,
концентрация кислорода в кислородсодержащем газе при выжиге продуктов уплотнения углеводородов составляет 12-20об.%.
Заданные в формуле предлагаемого изобретения последовательность и условия выполнения операций:
- десорбции углеводородов с поверхности катализаторов,
- пассивации поверхности катализаторов,
позволяют при сравнительно низких температурах блокировать соединения активных компонентов поверхности катализатора оксидной пленкой, предотвращающей возгорание катализатора при контакте с атмосферным воздухом при выгрузке катализатора из реактора технологической установки и доставке его на специализированную установку окислительной регенерации.
Заданные в формуле предлагаемого изобретения условия проведения выжига продуктов уплотнения углеводородов с поверхности обеспечивают высокую интенсивность процесса и исключают возможность перегрева катализатора выше максимально допустимой температуры, которая определяется термостойкостью катализатора.
Для алюмокобальтмолибленовых катализаторов существенное ухудшение прочностных характеристик и снижение содержания активных компонентов наблюдается при нагреве выше температуры 550°С, для алюмоникельмолибденовых - 520°С, для цеолитсодержащих катализаторов - 500°С.
Приведенная в формуле предлагаемого изобретения зависимость температуры кислородсодержащего газа от содержания углерода в регенерируемом катализаторе обеспечивает оптимальную температуру окислительной регенерации.
Процесс выжига продуктов уплотнения углеводородов с поверхности катализаторов сопровождается следующими реакциями:
(1) С+O2=CO2+395,4 кДж/моль
(2) С+1/2 О2=СО+110,4 кДж/моль
(3) СО+1/2 O2=CO2+285,0 кДж/моль
(4) S+O2=SO2+298 кДж/моль
(5) 2Н2+O2=2Н2O+136 кДж/моль
(6) 2MoS+5O2=2МоО3+2SO2
(7) 2NiS+3O2=2NiO+2SO2
(8) 2CoS+3O2=2CoO+2SO2
Реакции 1-8 начинаются при температуре не менее 270°С. В результате этих реакций происходит значительное выделение тепла, которое суммируется с теплом кислородсодержащего газа. Это может привести к резкому повышению температуры в слое катализатора в реакционной зоне. Во избежание перегрева катализатора температуру кислородсодержащего газа необходимо регулировать в зависимости от содержания углерода в катализаторе в соответствии с формулой предлагаемого изобретения.
Глубина осуществления реакций 1-8 и требуемый отвод из реакционной зоны выделяемого при этом тепла обеспечивается заданным в формуле предлагаемого изобретения объемным соотношением кислородсодержащий газ: катализатор. Превышение указанного расхода кислородсодержащего газа приведет к выносу катализатора вместе с дымовыми газами. Заниженный расход не обеспечит подачу в реакционную зону достаточного количества кислорода.
После проведения выжига углеродистых отложений активные компоненты катализатора находятся в оксидной форме.
Перемешивание катализатора, находящегося в оксидной форме, с элементной серой в условиях формулы предлагаемого изобретения позволяет нанести на поверхность катализатора количество серы, достаточное для перевода активных компонентов катализатора из оксидов в сульфиды без чрезмерного перегрева катализатора и использования токсичных жидких сероорганических соединений.
Применение ранее описанных выше технических решений для восстановления активности катализаторов гидрогенизационных процессов в принятом нами сочетании и условиях проведения каждой операции не известно.
Таким образом предлагаемое изобретение отвечает требованиям «новизна» и «существенное отличие».
Предлагаемый способ восстановления активности катализаторов гидрогенизационных процессов осуществляют следующим образом.
После прекращения подачи сырья в реактор установки гидрооблагораживания с неподвижным слоем катализатора проводят десорбцию углеводородов с поверхности катализаторов, для чего на загруженный в реактор катализатор подают водородсодержащий газ с содержанием водорода 60-80 об.% при температуре в реакторе 200-220°С. Постепенно со скоростью 25-30°С/час повышают температуру в реакторе до 380-400°С. Определяют концентрацию углеводородов в водородсодержащем газе. Выдерживают катализатор в указанных условиях до достижения концентрации углеводородов в водородсодержащем газе не более 0,5мас.%, после чего снижают температуру в реакторе до 100-120°С со скоростью 20-25°С/час.
При температуре в реакторе 100-120°С переходят к выполнению операции пассивации. Для этого заменяют водородсодержащий газ на инертный, например на азот, и устанавливают давление в реакторе 4-10 ати. После полного вытеснения водорода из реактора в состав инертного газа вводят кислородсодержащий компонент, с расходом 400-600 нм33 катализатора в количестве, обеспечивающим концентрацию кислорода в смеси газов 0,02-0,50 об.%. В качестве кислородсодержащего компонента используют кислород и/или двуокись углерода, и/или воздух.
После выравнивания концентрации кислорода на входе в реактор и на выходе из реактора температуру в реакторе снижают до 40-60°С, проводят выгрузку катализатора и перевозят выгруженный катализатор на специализированную установку окислительной регенерации, в состав который входят блок окислительной регенерации (принципиальная схема приведена на фиг.1) и блок предсульфидирования (принципиальная схема приведена на фиг.2).
От поступившего на установку катализатора отбирают представительную пробу, которую анализируют на содержание углерода. В зависимости от содержания углерода в поступившем на переработку катализаторе устанавливают режим эксплуатации блока окислительной регенерации и начинают проведение операции по выжигу углеродсодержащих соединений.
Для чего пассивированный катализатор подают в загрузочный бункер Б-11, откуда он равномерно стекает на поверхность сита С-11. Регулирование подачи катализатора из бункера Б-11 на сито С-11 осуществляется шибером, установленном в нижней части бункера Б-11. Вибрационное сито С-11 позволяет осуществлять отделение инертных шаров и катализаторной пыли от нерегенерированного катализатора.
Отсеянный нерегенерированный катализатор с вибрационного сита С-11 через транспортер-подьемник Т-11 подают в приемный бункер Б-21.
Из бункера Б-21 катализатор с помощью вибрационного питателя В-11 поступает в реактор регенерации Р-11, где при температуре 400-550°С происходит выжиг углеродистых отложений с поверхности катализатора (окислительная регенерация). Указанная температура обеспечивается температурой подаваемого в реактор кислородсодержащего газа, поступающего из печи подогрева П-11 с температурой 270-550°С в зависимости от содержания углерода на катализаторе, и концентрацией в нем кислорода (12-20 об.%), а также объемным соотношением кислородсодержащий газ: катализатор (15-30):1.
На выходе из реактора окислительной регенерации Р-11 катализатор попадает в приемный бункер Б-31, где происходит выделение дымовых газов и частичное охлаждение катализатора. Из бункера Б-31 катализатор через шибер стекает на вибрационный питатель В-21 и попадает на транспортер-подьемник Т-21, который обеспечивает его подачу на поверхность сита С-21, где происходит отделение регенерированного катализатора от образовавшихся при регенерации пыли и крошки.
Если регенерации подвергается смесь катализаторов с различным диаметром гранул, то катализатор, просеянный на сите С-21, направляют на сито С-31, в котором устанавливают соответствующие решетки, позволяющие осуществить разделение разных по размеру частиц катализатора.
Контроль за проведением процесса выжига углеродистых отложений ведут по содержанию в регенерированном катализаторе углерода (остаточное содержание не более 0,8 мас.%) и серы (остаточное содержание не более 0,4 мас.%). Пробы отбираются с сита С-21 или С-31 через каждый час.
Катализатор, полученный после выполнения операции выжига углеродистых отложений, направляют на блок предсульфидирования, где проводят операцию перевода катализаторов из оксидной в предсульфидированную форму.
Для этого катализатор с сита С-31 (или С-21) блока регенерации (см. фиг.1) подают в загрузочный бункер Б-12 блока предсульфидирования (см. фиг.2), откуда через шибер самотеком поступает на транспортер-подъемник Т-12. На этот же транспортер через дозатор Д-12 подают твердую элементную серу, измельченную до размера не более среднего размера частиц катализатора, в расчетном количестве. Для катализаторов гидроочистки, имеющих диаметр экструдатов 2-5 мм и длину 3-7 мм, размер частиц серы не превышает 5 мм.
С транспортера Т-12 смесь катализатора с порошком элементной серы поступает в приемный бункер Б-22, откуда вибрационным питателем В-12 подается в реактор предсульфидирования Р-12, где ее нагревают до температуры 120-160°С в течение 60 минут при непрерывном перемешивании. Нагрев смеси серы с катализатором происходит потоком нагретого в печи подогрева П-12 до температуры 140-200°С воздуха или инертного газа при расходе последних 2,0-4,5 нм33 катализатора.
На выходе из реактора предсульфидирования Р-12 катализатор попадает в приемный бункер Б-32, где происходит частичное охлаждение катализатора. Из бункера Б-32 катализатор через шибер стекает на вибрационный питатель В-22, попадает на транспортер-подьемник Т-22 и выводится с установки.
Полученный катализатор направляют на установку гидрогенизационных процессов.
Предлагаемый способ восстановления активности катализаторов гидрогенизационных процессов иллюстрируется, но не исчерпывается примерами, приведенными ниже.
Сведения о катализаторах, используемых при иллюстрации предлагаемого способа восстановления активности катализаторов гидрогенизационных процессов, приведены в табл.1. В этой же таблице приведены характеристики катализаторов после их пассивации. Физико-химические свойства свежих катализаторов характеризуются содержанием в них соединений активных компонентов и коллективной прочностью на раздавливание.
Условия проведения стадий десорбции углеводородов с поверхности катализаторов, пассивации соединений активных компонентов катализаторов, выжига продуктов уплотнения углеводородов и получения катализаторов в предсульфидированной форме приведены в табл.2, 3, 4, 5 соответственно.
В табл.4 приведены также физико-химические характеристики катализаторов, полученных после выполнения операции выжига продуктов уплотнения углерода, в табл.5 - физико-химические и эксплуатационные характеристики катализаторов после выполнения операции перевода их из оксидной в предсульфидированную форму.
Физико-химические свойства катализаторов после пассивации характеризуются содержанием углерода и серы, после выжига продуктов уплотнения - содержанием углерода, оксидов активных металлов и прочностью, предсульфидированных - прочностью и содержанием серы.
Данные по содержанию серы и углерода на пасивированных катализаторах используются для выбора режима проведения операции выжига углеродистых отложений с поверхности катализатора.
Данные по содержанию углерода на катализаторе после выжига отложений свидетельствуют о полноте удаления с поверхности катализатора продуктов уплотнения углеводородов, т.е. об эффективности проведения стадии выжига продуктов уплотнения углеводородов. Последняя характеризуется так же наличием или отсутствием изменений содержания оксидов активных металлов и коллективной прочности на раздавливание.
Важным показателем предлагаемого способа является минимизация потерь катализатора за счет разрушения из-за снижения механической прочности на стадии выжига продуктов уплотнения углеводородов. Эти показатели приведены в табл.4.
Содержание серы в составе предсульфидированного катализатора определяется составом катализатора и колеблется в пределах 9-15 мас.%.
Предсульфидированный катализатор должен обладать прочностью на раскалывание, позволяющей производить загрузку каталитической системы с использованием специальных устройств, и выдерживать нагрузки, возникающие в процессе эксплуатации и регенерации. Последние определяются показателем коллективной прочности на раздавливание. Для катализаторов гидрогенизационных процессов прочность на раскалывание должна составлять не менее 1,8 кг/мм, на раздавливание - не менее 0,8 МПа.
В качестве эксплуатационного показателя использована конверсия серы, достигаемая при использовании этих катализаторов в процессах гидроочистки нефтяного сырья. Этот показатель дает представление о восстановлении активности катализатора.
Пример 1.
Восстановление активности катализатора PK-442Ni. Катализатор находился в эксплуатации на установке глубокого гидрооблагораживания вакуумного газойля с содержанием серы 2,0-2,5 мас.%.
Основные физико-химические и эксплуатационные характеристики свежего катализатора PK-442Ni приведены в табл.1.
После прекращения подачи сырья на катализатор PK-442NI установили концентрацию водорода в водородсодержащем газе 60 об.%, температуру в реакторе 220°С. Постепенно, со скоростью 25°С/час, повысили температуру в реакторе до 400°С. Концентрация углеводородов в водородсодержащем газе составила 4,2 мас.%. Катализатор выдержали в указанных условиях до достижения концентрации углеводородов в водородсодержащем газе 0,5 мас.%, после чего снизили температуру в реакторе до 120°С со скоростью 20°С/час. При температуре в реакторе 120°С заменили водородсодержащий газ на азот. Установили давление в реакторе 4 ати и приступили к проведению операции пассивации.
После полного вытеснения водорода из реактора к азоту, подаваемому в реактор, добавили воздух в количестве, обеспечивающем концентрацию кислорода в смеси газов 0,50 об.%. После выравнивания концентрации кислорода на входе в реактор и на выходе из реактора температуру в реакторе снизили до 40°С и приступили к выгрузке катализатора.
После выгрузки провели анализ катализатора на содержание в нем серы и углерода. Данные приведены в табл.1.
Выжиг продуктов уплотнения углеводородов с поверхности катализатора проводили на блоке окислительной регенерации специализированной установки (схема приведена на фиг.1), реактор Р-11 которой представляет собой вращающийся со скоростью 0,7-1,0 об/мин горизонтальную цилиндрическую емкость с внутренними продольными перегородками.
Выжиг проводили при давлении 1,0 ати и температуре 550°С, обеспечиваемой путем подачи в реактор регенерации технологического воздуха с температурой 270°С, концентрацией кислорода 20 об.% при соотношении кислородсодержащего газа к катализатору 15:1.
Потери после отсева регенерированного катализатора от образовавшихся в процессе эксплуатации и регенерации пыли и крошки составили 3,5%.
Физико-химические характеристики регенерированного катализатора приведены в табл.4.
Перевод катализатора из оксидной в предсульфидированную форму проводили на блоке предсульфидирования специализированной установки регенерации (см. фиг.2). Содержание серы в смеси, подаваемой в реактор Р-12, составляло 15 мас.%. Температуру в реакторе Р-12 поддерживали на уровне 120°С путем подачи в реактор воздуха, нагретого в печи П-12 до температуры 160°С. Время пребывания катализатора в зоне нагрева составляло 60 мин, скорость вращения реактора - 0,7 об/мин.
Сравнение характеристик свежего, после пассивации, после выжига отложений и предсульфидированного катализатора PK-442Ni показывает, что изменений в химическом составе катализатора практически не произошло, продукты уплотнения углеводородов удалены практически полностью. Прочностные характеристики и активность катализатора снизились незначительно, потери катализатора за счет разрушения минимальны.
Пример 2.
Восстановление активности катализатора РК-231Со. Катализатор находился в эксплуатации на установке гидрооблагораживания смесевых среднедистиллятных фракций с содержанием серы 1,6-2,0 мас.%, содержанием непредельных углеводородов 10-15 мас.%.
Основные физико-химические и эксплуатационные характеристики свежего катализатора РК-231Со приведены в табл.1.
После прекращения подачи сырья на катализатор РК-231Со установили концентрацию водорода в водородсодержащем газе 80 об.%, и температуру в реакторе 200°С. Постепенно, со скоростью 30°С/час, повысили температуру в реакторе до 380°С. Концентрация углеводородов в водородсодержащем газе составила 3,5 мас.%. Катализатор выдержали в указанных условиях до достижения концентрации углеводородов в водородсодержащем газе 0,4 мас.%, после чего снизили температуру в реакторе до 100°С со скоростью 25°С/час. При температуре в реакторе 100°С заменили водородсодержащий газ на азот. Установили давление в реакторе 10 ати и приступили к проведению операции пассивации.
После полного вытеснения водорода из реактора к азоту, подаваемому в реактор, добавили воздух в количестве, обеспечивающим концентрацию кислорода в смеси газов 0,02 об.%. Установили расход газовой смеси 600 нм33 катализатора. После выравнивания концентрации кислорода на входе в реактор и на выходе из реактора температуру в реакторе снизили до 40°С и приступили к выгрузке катализатора.
После выгрузки провели анализ катализатора на содержание в нем серы и углерода. Данные приведены в табл.1.
Выжиг продуктов уплотнения углеводородов с поверхности катализатора проводили на блоке окислительной регенерации специализированной установки (схема приведена на фиг.1), реактор Р-11 которой представляет собой стационарную горизонтальную цилиндрическую емкость, оборудованную внутри движущейся лентой, для перемещения катализатора.
Выжиг проводили при давлении 0,4 ати и температуре 450°С, обеспечиваемой путем подачи в реактор регенерации технологического воздуха с температурой 380°С, концентрацией кислорода 12 об.% при соотношении кислородсодержащего газа к катализатору 30:1.
Потери после отсева катализатора от образовавшихся в процессе эксплуатации и регенерации пыли и крошки составили 3,0%.
Физико-химические характеристики катализатора после выжига продуктов уплотнения приведены в табл.4.
Перевод катализатора из оксидной в предсульфидированную форму проводили на блоке предсульфидирования специализированной установки (см. фиг.2). Содержание серы в смеси, подаваемой в реактор Р-12, составляло 12 мас.%. Температуру в реакторе Р-12 поддерживали на уровне 160°С путем подачи в реактор воздуха, нагретого в печи П-12 до температуры 200°С. Время пребывания катализатора в зоне нагрева составляло 60 мин, скорость вращения реактора - 1,0 об/мин.
Сравнение характеристик свежего, после пассивации, после выжига отложений и предсульфидированного катализатора РК-231Со показывает, что изменений в химическом составе катализатора практически не произошло, продукты уплотнения углеводородов удалены практически полностью. Прочностные характеристики и активность катализатора снизились незначительно, потери катализатора за счет разрушения минимальны.
Реализация предлагаемого способа регенерации каталитических систем гидрогенизационных процессов по примерам 3-11 проводилась в последовательности, аналогичной примерам 1-2, выжиг продуктов уплотнения углеводородов осуществляли в реакторе, конструкция которого описана в примере 1. При реализации предлагаемого изобретения по примеру 11 (прототип) операцию предсульфидирования не проводили. Перевод оксидов металлов в сульфиды проводили непосредственно в реакторе гидроочистки путем подачи в реактор диметилдисульфидов при температуре 180-340°С.
Сведения об используемых при выполнении примеров 3-11 катализаторах, технологические параметры каждой операции и получаемые результаты приведены в табл.1-5.
Видно, что при проведении операции выжига продуктов уплотнения углеводородов с поверхности катализаторов в соответствии с формулой предлагаемого изобретения (примеры 1-8) их физико-химические и эксплуатационные характеристики изменяются незначительно. Потери катализаторов в виде крошки и пыли минимальны.
Проведение этой операции с отклонением технологических параметров от заданных в формуле предлагаемого изобретения (примеры 9 и 10) приводит к значительному снижению активности катализатора, неполному выжигу углеродсодержащих соединений, ухудшению его прочностных свойств и большим потерям.
Техническим решением, изложенным в прототипе (пример 11), не предусмотрены контроль за характеристиками подаваемого в реактор выжига кислородсодержащего газа, его количеством, а также перевод катализаторов из оксидной в предсульфидированную форму вне реактора технологической установки.
Отсутствие контроля за количеством и характеристиками подаваемого в реактор выжига кислородсодержащего газа приводит к резким колебаниям температуры в реакторе выжига (регенерации) и неконтролируемому подъему температуры выше допустимых значений. В результате прочность катализатора и содержание в нем активных компонентов значительно снижается (по сравнению со свежим). Потери катализатора при перегрузке в виде пыли и крошки значительны. Активность катализатора значительно снизилась. Конверсия серы на катализаторе после регенерации составила всего 89,6% по сравнению с 95,5 у свежего.
Из приведенных выше данных видно, что реализация предлагаемого способа восстановлении активности катализаторов гидрогенизационных процессов протекает с минимальными потерями их активности и прочности.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005

Claims (3)

1. Способ восстановления активности катализаторов гидрогенизационных процессов путем последовательных операций десорбции углеводородов с поверхности отработанных, находящихся в стационарном слое катализаторов в среде водородсодержащего газа при температуре 200-400°С; пассивации поверхности катализаторов за счет их обработки в стационарном слое при температуре 100-120°С кислородсодержащим газом с содержанием кислорода 0,02-0,5 об.% выжига продуктов уплотнения углеводородов в потоке кислородсодержащего газа при температуре 400-550°С; перевода катализаторов из оксидной в предсульфидированную форму путем их контактирования с элементной серой в токе воздуха или инертного газа, отличающийся тем, что выжиг продуктов уплотнения углеводородов и перевод катализаторов из оксидной в предсульфидированную форму осуществляют в подвижном слое катализатора, при этом температура выжига продуктов уплотнения углеводородов регулируется температурой кислородсодержащего газа и объемным соотношением кислородсодержащий газ: катализатор, равном (15-30): 1.
2. Способ по п.1, отличающийся тем, что температура кислородсодержащего газа по мере снижения содержания углерода в катализаторе, направляемом на стадию выжига продуктов уплотнения углеводородов, составляет при содержании углерода (мас.%) соответственно:
270-380°С выше 10
380-420°С 10-4
420-480°С 4-2
480-550°С менее 2.
3. Способ по п.1, отличающийся тем, что концентрация кислорода в кислородсодержащем газе при выжиге продуктов уплотнения углеводородов составляет 12-20 об.%.
RU2008109047/04A 2008-03-12 2008-03-12 Способ восстановления активности катализаторов гидрогенизационных процессов RU2358805C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008109047/04A RU2358805C1 (ru) 2008-03-12 2008-03-12 Способ восстановления активности катализаторов гидрогенизационных процессов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008109047/04A RU2358805C1 (ru) 2008-03-12 2008-03-12 Способ восстановления активности катализаторов гидрогенизационных процессов

Publications (1)

Publication Number Publication Date
RU2358805C1 true RU2358805C1 (ru) 2009-06-20

Family

ID=41025825

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008109047/04A RU2358805C1 (ru) 2008-03-12 2008-03-12 Способ восстановления активности катализаторов гидрогенизационных процессов

Country Status (1)

Country Link
RU (1) RU2358805C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528375C2 (ru) * 2009-07-09 2014-09-20 ДжейЭкс НИППОН ОЙЛ ЭНД ЭНЕРДЖИ КОРПОРЕЙШН Способ изготовления регенерированного катализатора гидроочистки и способ получения нефтехимического продукта
WO2014175941A1 (en) * 2013-04-25 2014-10-30 Uop Llc Catalytic pyrolysis of biomass using a multi-stage catalyst regenerator
RU2658850C2 (ru) * 2016-03-01 2018-06-25 Общество с ограниченной ответственностью "ПромСинтез" (ООО "ПромСинтез") Установка для регенерации катализатора гидрообработки и способ с ее применением
RU2748975C1 (ru) * 2020-09-04 2021-06-02 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "Сервис Катализаторных Систем" Комплексный способ восстановления активности катализаторов гидропроцессов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528375C2 (ru) * 2009-07-09 2014-09-20 ДжейЭкс НИППОН ОЙЛ ЭНД ЭНЕРДЖИ КОРПОРЕЙШН Способ изготовления регенерированного катализатора гидроочистки и способ получения нефтехимического продукта
WO2014175941A1 (en) * 2013-04-25 2014-10-30 Uop Llc Catalytic pyrolysis of biomass using a multi-stage catalyst regenerator
RU2658850C2 (ru) * 2016-03-01 2018-06-25 Общество с ограниченной ответственностью "ПромСинтез" (ООО "ПромСинтез") Установка для регенерации катализатора гидрообработки и способ с ее применением
RU2748975C1 (ru) * 2020-09-04 2021-06-02 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "Сервис Катализаторных Систем" Комплексный способ восстановления активности катализаторов гидропроцессов

Similar Documents

Publication Publication Date Title
JP5784733B2 (ja) 超臨界水処理とその次の水素化による重質炭化水素供給原料からのイオウ除去
KR101493631B1 (ko) 에뷸레이트 베드 하이드로프로세싱 방법 및 시스템 및 기존의 에뷸레이트 베드 시스템을 개량하는 방법
JP5986203B2 (ja) 流動接触分解プロセスにおける酸化的脱硫
GB2108861A (en) Catalyst regeneration process including metal contaminants removal
WO2007128798A1 (en) Improved process for converting carbon-based energy carrier material
JPH03139595A (ja) スラリー式水素化処理方法
EA023527B1 (ru) Предварительное сульфидирование и предварительная подготовка катализаторов гидроконверсии для процессов гидроконверсии углеводородов в кипящем слое
RU2358805C1 (ru) Способ восстановления активности катализаторов гидрогенизационных процессов
CN103182328A (zh) 一种煤液化油加氢失活催化剂的再生方法
JPS642422B2 (ru)
JP4528479B2 (ja) 水添処理触媒の交換バッチの予備硫化
CN102140366A (zh) 一种铂铼重整催化剂的初始反应方法
CN101445746B (zh) 一种连续重整装置的预钝化方法
FR2540883A1 (fr) Procede d'hydrocraquage d'huiles lourdes en presence d'additif melange sec forme de charbon ou d'escarbilles et d'un compose metallique
KR930011921B1 (ko) 레늄함량이 높은 촉매를 사용한 다단계 촉매적 개량방법
WO2015147223A1 (ja) 重油脱硫触媒の再生利用方法
US7745366B2 (en) Microwave spent catalyst decoking method
CN101423774B (zh) 一种连续重整装置初始反应的钝化方法
CA2028299C (en) Catalyst regeneration process
US4298458A (en) Low pressure hydrotreating of residual fractions
JPH03131685A (ja) スラリー式水素化処理方法
CN107362834B (zh) 一种在用连续重整催化剂的处理方法
CN110249035A (zh) 使用fcc进行油馏分的氧化脱硫和砜管理
RU2290996C1 (ru) Способ регенерации каталитических систем гидрогенизационных процессов
US2926132A (en) Upgrading petroleum naphthas containing unsaturated hydrocarbons and sulfur compounds