RU2358213C2 - Способ сжижения богатого углеводородами потока - Google Patents

Способ сжижения богатого углеводородами потока Download PDF

Info

Publication number
RU2358213C2
RU2358213C2 RU2006129467/06A RU2006129467A RU2358213C2 RU 2358213 C2 RU2358213 C2 RU 2358213C2 RU 2006129467/06 A RU2006129467/06 A RU 2006129467/06A RU 2006129467 A RU2006129467 A RU 2006129467A RU 2358213 C2 RU2358213 C2 RU 2358213C2
Authority
RU
Russia
Prior art keywords
refrigerants
hydrocarbon
cooling
mixture
refrigeration cycle
Prior art date
Application number
RU2006129467/06A
Other languages
English (en)
Other versions
RU2006129467A (ru
Inventor
Хайнц БАУЕР (DE)
Хайнц БАУЕР
Хуберт ФРАНКЕ (DE)
Хуберт ФРАНКЕ
Райнер ЗАППЕР (DE)
Райнер ЗАППЕР
Марк ШИР (DE)
Марк ШИР
Original Assignee
Линде Акциенгезельшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезельшафт filed Critical Линде Акциенгезельшафт
Publication of RU2006129467A publication Critical patent/RU2006129467A/ru
Application granted granted Critical
Publication of RU2358213C2 publication Critical patent/RU2358213C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0287Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0295Shifting of the compression load between different cooling stages within a refrigerant cycle or within a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0298Safety aspects and control of the refrigerant compression system, e.g. anti-surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Способ сжижения богатого углеводородами потока, прежде всего потока природного газа, осуществляется за счет теплообмена со смесями хладагентов в каскаде из двух холодильных циклов, первый из которых предназначен для предварительного охлаждения (Е1), а второй - для сжижения и переохлаждения (Е2) сжижаемого богатого углеводородами потока (а) и в каждом из которых предусмотрен по меньшей мере один одно- или многоступенчатый компрессор (VI, V2) с приводом от по меньшей мере одной газовой турбины (G1, G2), снабженной стартером, который при нормальном режиме сжижения используют для поддержания работы газовой турбины. Согласно изобретению во втором холодильном цикле со смесью хладагентов используют компрессор (V2) с холодным всасыванием и со степенью сжатия, составляющей по меньшей мере 10, и первый холодильный цикл со смесью хладагентов по меньшей мере частично используют для промежуточного охлаждения (Е1) по меньшей мере части потока (36, 39) частично сжатой смеси хладагентов второго холодильного цикла. Изобретение позволит полностью использовать установленную мощность газовых турбин и сократить эксплуатационные и капитальные расходы. 3 з.п. ф-лы, 1 ил.

Description

Настоящее изобретение относится к способу сжижения богатого углеводородами потока, прежде всего потока природного газа, за счет теплообмена со смесями хладагентов в каскаде из двух холодильных циклов, первый из которых предназначен для предварительного охлаждения, а второй - для сжижения и переохлаждения сжижаемого богатого углеводородами потока и в каждом из которых предусмотрен по меньшей мере один одно- или многоступенчатый компрессор с приводом от по меньшей мере одной газовой турбины, снабженной стартером, который при нормальном режиме сжижения можно использовать для поддержания работы газовой турбины.
Под "предварительным охлаждением" в последующем подразумевается охлаждение сжижаемого богатого углеводородами потока до температуры, при которой происходит отделение от него тяжелых, соответственно высококипящих углеводородов. Последующее дальнейшее охлаждение сжижаемого богатого углеводородами потока ниже подпадает под понятие "сжижение".
Методы сжижения природного газа, к которым относится настоящее изобретение и которые в целом называют двухпоточным процессом сжижения природного газа, достаточно хорошо известны из уровня техники и описаны, например, в US 6105389.
При наличии в сжижаемом природном газе тяжелых углеводородов их отделяют от природного газа между стадией его предварительного охлаждения и стадией его сжижения и выводят из процесса в виде так называемой газоконденсатной фракции, которую в некоторых случаях направляют на дальнейшую переработку. Под тяжелыми или высококипящими углеводородами подразумеваются те компоненты сжижаемого богатого углеводородами потока, соответственно природного газа, которые вымораживались бы при последующем охлаждении и сжижении, т.е. углеводороды C5+ и ароматические соединения. Помимо этого перед сжижением природного газа от него часто отделяют те углеводороды, которые вызывали бы нежелательное повышение теплотворной способности сжиженного природного газа и под которыми при этом подразумеваются прежде всего пропан и бутан.
Обычно для отделения высококипящих углеводородов используют колонну для выделения тяжелых углеводородов, соответственно колонный скруббер, предназначенный для выделения тяжелых углеводородов, а также бензола из сжижаемого богатого углеводородами потока. Подобная технология описана, например, в DE-OS 19716415.
Используемые в установках для двухпоточного процесса сжижения природного газа циркуляционные компрессоры обычно имеют привод от газовых турбин. Газовые турбины, в свою очередь, обычно запускают электростартерами или стартерами с паровым приводом. Поскольку подобные стартеры часто должны развивать значительную мощность, составляющую от 20 до 40% от мощности газовых турбин, при нормальном режиме сжижения их используют в качестве так называемых вспомогательных двигателей для поддержания работы газовых турбин. Газовые турбины повышенной мощности выпускаются только с дискретной градацией мощности со сравнительно большим шагом между двумя ближайшими значениями мощности. Мощность же стартеров, соответственно вспомогательных двигателей, во избежание проблем с синхронизацией ограничена по сравнению с мощностью газовых турбин.
Учитывая множество самых разнообразных технологических ограничений, таких, например, как состав и давление сжижаемого богатого углеводородами потока, температура окружающей среды и иные факторы и требования к возможно предусматриваемому отделению тяжелых углеводородов, добиться оптимального распределения потребляемой мощности между приводами компрессоров обоих холодильных циклов со смесями хладагентов невозможно или возможно лишь случайно. Обычно первый холодильный цикл, соответственно цикл предварительного охлаждения, потребляет примерно от 40 до 55% от общей энергии, расходуемой на сжижение богатого углеводородами потока. Помимо этого мощность, потребляемая в цикле предварительного охлаждения, часто бывает меньше мощности, потребляемой во втором холодильном цикле, соответственно цикле сжижения.
Подобный дисбаланс можно компенсировать за счет разного использования вспомогательных двигателей. Так, например, если потребляемая мощность распределяется между первым и вторым холодильными циклами со смесями хладагентов в соотношении 45% на 55% и если в обоих холодильных циклах предусмотрено по газовой турбине мощностью 70 МВт, а также по вспомогательному двигателю мощностью 20 МВт, то вспомогательный двигатель первого холодильного цикла будет работать с отдачей мощности, равной только 4 МВт вместо потенциально возможных 20 МВт. Тем самым преобладающая часть капиталовложений в этот вспомогательный двигатель при нормальном режиме сжижения будет оставаться неиспользованной.
В основу настоящего изобретения была положена задача предложить способ сжижения богатого углеводородами потока указанного в начале описания типа, который позволял бы полностью использовать установленную мощность газовых турбин, а также стартеров/вспомогательных двигателей при нормальном режиме сжижения. Помимо этого должны быть сокращены, соответственно оптимизированы, капитальные и эксплуатационные расходы на применяемые газовые турбины, а также стартеры/вспомогательные двигатели, и прежде всего должна быть обеспечена возможность применения идентичных газовых турбин, а также стартеров/вспомогательных двигателей в обоих холодильных циклах.
Указанная задача решается согласно изобретению благодаря тому, что
а) во втором холодильном цикле со смесью хладагентов используют компрессор с холодным всасыванием и со степенью сжатия, составляющей по меньшей мере 10, и
б) первый холодильный цикл со смесью хладагентов по меньшей мере частично используют для промежуточного охлаждения по меньшей мере части потока частично сжатой смеси хладагентов второго холодильного цикла.
Ниже предлагаемый в изобретении способ, а также другие варианты его осуществления, заявленные в зависимых пунктах формулы изобретения, более подробно рассмотрены на примере одного из вариантов его осуществления со ссылкой на прилагаемый к описанию чертеж.
Как показано на прилагаемом к описанию чертеже, сжижаемый богатый углеводородами поток подают по трубопроводу а в теплообменник Е1. В этом теплообменнике богатый углеводородами поток охлаждают до температуры, при которой содержащиеся в нем тяжелые, соответственно высококипящие, углеводороды конденсируются для возможности их последующего отделения от богатого углеводородами потока в сепараторе Н, в который по трубопроводу b подают охлажденный технологический поток. Отделенные углеводороды отбирают по трубопроводу с и в некоторых случаях направляют на дальнейшую переработку.
Следует подчеркнуть, что предлагаемый в изобретении способ можно комбинировать с любыми известными из уровня техники методами отделения высококипящих углеводородов.
Далее богатый углеводородами поток, уже не содержащий высококипящих углеводородов, подают по трубопроводу d во второй теплообменник Е2, в котором его сжижают и переохлаждают за счет теплообмена со смесью хладагентов второго холодильного цикла. Сжиженный и переохлажденный богатый углеводородами поток отбирают из теплообменника Е2 по трубопроводу е, необязательно расширяют в турбодетандере Т1 и затем подают через вентиль f по трубопроводу g непосредственно на дальнейшее использование или на (промежуточное) хранение.
В показанной на прилагаемом к описанию чертеже схеме сжатую в компрессоре V1 смесь хладагентов подают по трубопроводу 10 в конденсатор Е3 и далее по трубопроводу 11 в теплообменник Е1, в котором ее переохлаждают. В теплообменнике Е1 смесь хладагентов разделяют на три отдельных потока 12, 15 и 18. Эти отдельные потоки смеси хладагентов далее расширяют пропусканием через вентили 13, 16 и 19 до давления разных уровней и после повторного пропускания через теплообменник Е1 и испарения в нем подают по трубопроводам 14, 17 и 20 в компрессор V1 для сжатия до давления разных уровней.
Компрессор V1 приводится от газовой турбины G1. На прилагаемом к описанию чертеже не показаны необходимые для пуска газовых турбин G1 и G2 стартеры, которые уже упоминались выше.
Аналогично рассмотренному выше первому холодильному циклу со смесью хладагентов сжатую смесь хладагентов второго холодильного цикла сначала подают по трубопроводу 30 в дополнительный охладитель Е4, а затем по трубопроводу 31 подают в теплообменник Е1, в котором ее подвергают охлаждению и конденсации. Далее поток сжиженной смеси хладагентов подают по трубопроводу 32 в теплообменник Е2, в котором ее подвергают дальнейшему переохлаждению и после выхода из которого расширяют в необязательном турбодетандере Т2, а затем по трубопроводу 33 подают в дроссельный вентиль 34 и расширяют в нем. Затем второй поток смеси хладагентов после ее испарения в теплообменнике Е2 подают по трубопроводу 35 во входную ступень циркуляционного компрессора V2.
Теплообменник Е2 может быть выполнен в виде змеевикового или пластинчатого теплообменника. При использовании для сжижения и переохлаждения сжижаемого богатого углеводородами потока пластинчатого теплообменника Е2 в предпочтительном варианте осуществления предлагаемого в изобретении способа смесь хладагентов второго холодильного цикла можно испарять при ее движении восходящим или нисходящим потоком.
Указанный выше циркуляционный компрессор V2, который согласно изобретению представляет собой компрессор с холодным всасыванием (холодильный компрессор), у которого степень сжатия составляет по меньшей мере 10, также приводится от газовой турбины G2, которая снабжена не показанным на чертеже стартером/вспомогательным двигателем.
Согласно изобретению поток частично сжатой смеси хладагентов отбирают по трубопроводу 36 из промежуточной ступени циркуляционного компрессора V2, подвергают дополнительному охлаждению в охладителе Е5, после чего по меньшей мере частично подают по трубопроводу 39 в теплообменник Е1 и подвергают в нем промежуточному охлаждению за счет теплообмена со смесью хладагентов первого холодильного цикла. Затем подвергнутую промежуточному охлаждению частично сжатую смесь хладагентов по трубопроводу 40 вновь подают в компрессор V2 в его соответствующую ступень промежуточного давления и подвергают в ней сжатию до необходимого конечного давления.
Использование первого холодильного цикла для промежуточного охлаждения смеси хладагентов второго холодильного цикла позволяет снизить нагрузку на второй холодильный цикл за счет соответствующего увеличения нагрузки на первый холодильный цикл, поскольку мощность, потребляемая компрессором V2 в его ступени высокого давления, уменьшается пропорционально снижению температуры всасывания подвергнутого промежуточному охлаждению потока смеси хладагентов в трубопроводе 40. Тем самым согласно изобретению появляется возможность сместить соотношение мощностей, потребляемых компрессорами V1 и V2, а также их соответствующими стартерами/вспомогательными двигателями, в сторону уравнивания вплоть до равных значений.
Выбор оптимального режима описанного выше промежуточного охлаждения определятся точкой росы используемой во втором холодильном цикле смеси хладагентов при выбранном промежуточном давлении, при котором происходит отвод смеси хладагентов. В идеальном случае всю смесь хладагентов второго холодильного цикла охлаждают с помощью первого холодильного цикла до температуры, при которой уравниваются показатели мощности, потребляемой приводами обоих компрессоров V1 и V2.
Использование первого холодильного цикла со смесью хладагентов для промежуточного охлаждения смеси хладагентов второго холодильного цикла обеспечивает возможность полного использования установленной мощности идентичных газовых турбин и их стартеров/вспомогательных двигателей.
С учетом упомянутой выше ограниченной мощности стартеров, соответственно вспомогательных двигателей, по сравнению с мощностью газовых турбин очевидно, что достигаемое согласно изобретению полное использование мощности обоих вспомогательных двигателей приводит к максимизации производительности всей установки. Сказанное можно пояснить на следующем примере.
Если при сжижении богатого углеводородами газового потока предлагаемым в изобретении способом распределение потребляемой мощности между первым и вторым холодильными циклами со смесями хладагентов достигает соотношения 50% на 50%, то при условии идентичности используемых в обоих холодильных циклах газовых турбин и стартеров/вспомогательных двигателей можно добиться полного использования их мощности, соответственно затраченных на них капиталовложений. Применительно к приведенному выше примеру сказанное означает возможность работы стартера/вспомогательного двигателя второго холодильного цикла на полную мощность, равную 20 МВт. По сравнению с рассмотренным в начале описания исходным уровнем предлагаемый в изобретении способ позволяет повысить полезную установленную мощность со 164 МВт до 180 МВт. Тем самым при данной концепции привода производительность всей установки можно повысить примерно на 10%.
Как указано выше, сжижаемый богатый углеводородами поток подвергают предварительному охлаждению до трех разных уровней температуры (за счет теплообмена с потоками 12/14, 15/17 и 18/20 смеси хладагентов). Однако подобная дискретизация уровней температуры предварительного охлаждения самое большее может лишь случайно повлиять на идеальную температуру на входе имеющейся у компрессора V2 ступени высокого давления.
С учетом сказанного выше в еще одном варианте осуществления предлагаемого в изобретении способа температуру, до которой в теплообменнике Е1 подвергают промежуточному охлаждению по меньшей мере часть потока 36, 39 частично сжатой смеси хладагентов второго холодильного цикла, регулируют, варьируя температуру, после промежуточного охлаждения до которой из используемого для промежуточного охлаждения теплообменника Е1 отбирают эту по меньшей мере часть потока частично сжатой смеси хладагентов второго холодильного цикла, что обозначено на чертеже изображенным пунктирной линией трубопроводом 21, и/или подавая в следующую ступень, соответственно в следующие ступени компрессора, не подаваемую в теплообменник Е1 на промежуточное охлаждение часть потока частично сжатой смеси хладагентов в виде отдельного потока 37, подвергаемого расширению пропусканием через вентиль 38 до давления на входе в соответствующую ступень компрессора. Подобный подход позволяет устанавливать температуру на входе в имеющуюся у компрессора V2 ступень высокого давления на необходимый уровень.

Claims (4)

1. Способ сжижения богатого углеводородами потока, прежде всего, потока природного газа, за счет теплообмена со смесями хладагентов в каскаде из двух холодильных циклов, первый из которых предназначен для предварительного охлаждения, а второй - для сжижения и переохлаждения сжижаемого богатого углеводородами потока и в каждом из которых предусмотрен по меньшей мере один одно- или многоступенчатый компрессор с приводом от по меньшей мере одной газовой турбины, снабженной стартером, который при нормальном режиме сжижения используют для поддержания работы газовой турбины, отличающийся тем, что
а) во втором холодильном цикле со смесью хладагентов используют компрессор (V2) с холодным всасыванием и со степенью сжатия, составляющей по меньшей мере 10, и
б) первый холодильный цикл со смесью хладагентов по меньшей мере частично используют для промежуточного охлаждения (Е1) по меньшей мере части потока (36, 39) частично сжатой смеси хладагентов второго холодильного цикла.
2. Способ по п.1, отличающийся тем, что температуру, до которой подвергают промежуточному охлаждению (Е1) по меньшей мере часть потока (36, 39) частично сжатой смеси хладагентов второго холодильного цикла, регулируют, варьируя температуру, после промежуточного охлаждения до которой со стадии промежуточного охлаждения (Е1) отбирают эту по меньшей мере часть потока частично сжатой смеси хладагентов второго холодильного цикла, и/или подавая в следующую ступень, соответственно в следующие ступени компрессора не подвергаемую промежуточному охлаждению часть (37) потока частично сжатой смеси хладагентов.
3. Способ по п.1 или 2, отличающийся тем, что сжижаемый богатый углеводородами поток подвергают сжижению и переохлаждению в змеевиковом или пластинчатом теплообменнике (Е2).
4. Способ по п.3, при осуществлении которого сжижаемый богатый углеводородами поток подвергают сжижению и переохлаждению в пластинчатом теплообменнике (Е2), отличающийся тем, что смесь (28) хладагентов второго холодильного цикла испаряют при ее движении восходящим или нисходящим потоком.
RU2006129467/06A 2004-03-09 2005-02-25 Способ сжижения богатого углеводородами потока RU2358213C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004011483.8 2004-03-09
DE102004011483A DE102004011483A1 (de) 2004-03-09 2004-03-09 Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes

Publications (2)

Publication Number Publication Date
RU2006129467A RU2006129467A (ru) 2008-04-20
RU2358213C2 true RU2358213C2 (ru) 2009-06-10

Family

ID=34895074

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006129467/06A RU2358213C2 (ru) 2004-03-09 2005-02-25 Способ сжижения богатого углеводородами потока

Country Status (6)

Country Link
AU (1) AU2005224308B2 (ru)
DE (1) DE102004011483A1 (ru)
EG (1) EG24721A (ru)
NO (1) NO20064557L (ru)
RU (1) RU2358213C2 (ru)
WO (1) WO2005090886A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792387C1 (ru) * 2022-11-18 2023-03-21 Публичное акционерное общество "НОВАТЭК" Способ сжижения природного газа "арктический каскад модифицированный" и установка для его осуществления
WO2024107081A1 (ru) * 2022-11-18 2024-05-23 Публичное акционерное общество "НОВАТЭК" Способ сжижения природного газа и установка для его осуществления

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029882A1 (de) * 2007-06-28 2009-01-02 Linde Ag Verfahren zum Abkühlen oder Verflüssigen eines Kohlenwasserstoffreichen Stromes
CN102538391B (zh) * 2012-02-19 2013-09-04 中国石油集团工程设计有限责任公司 多级单组分制冷天然气液化方法
US20220307765A1 (en) 2019-08-02 2022-09-29 Linde Gmbh Process and plant for producing liquefied natural gas
DE102020004821A1 (de) 2020-08-07 2022-02-10 Linde Gmbh Verfahren und Anlage zur Herstellung eines Flüssigerdgasprodukts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2440215A1 (de) * 1974-08-22 1976-03-04 Linde Ag Verfahren zum verfluessigen und unterkuehlen eines tiefsiedenden gases
US4404008A (en) * 1982-02-18 1983-09-13 Air Products And Chemicals, Inc. Combined cascade and multicomponent refrigeration method with refrigerant intercooling
FR2751059B1 (fr) * 1996-07-12 1998-09-25 Gaz De France Procede et installation perfectionnes de refroidissement, en particulier pour la liquefaction de gaz naturel
US6119479A (en) * 1998-12-09 2000-09-19 Air Products And Chemicals, Inc. Dual mixed refrigerant cycle for gas liquefaction
US6347532B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792387C1 (ru) * 2022-11-18 2023-03-21 Публичное акционерное общество "НОВАТЭК" Способ сжижения природного газа "арктический каскад модифицированный" и установка для его осуществления
WO2024107081A1 (ru) * 2022-11-18 2024-05-23 Публичное акционерное общество "НОВАТЭК" Способ сжижения природного газа и установка для его осуществления

Also Published As

Publication number Publication date
EG24721A (en) 2010-06-07
AU2005224308B2 (en) 2010-12-16
DE102004011483A1 (de) 2005-09-29
RU2006129467A (ru) 2008-04-20
WO2005090886A1 (de) 2005-09-29
NO20064557L (no) 2006-12-06
AU2005224308A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
RU2355960C1 (ru) Двухступенчатый отвод азота из сжиженного природного газа
RU2636966C1 (ru) Способ производства сжиженного природного газа
JP4521833B2 (ja) 低温液化冷凍方法及び装置
US20090205366A1 (en) Method for liquefaction of a stream rich in hydrocarbons
EA002617B1 (ru) Установка для сжижения природного газа
US20170030633A1 (en) System and method for liquefacation of natural gas
US7628035B2 (en) Method for processing a stream of LNG obtained by means of cooling using a first refrigeration cycle and associated installation
RU2533044C2 (ru) Способ и установка для охлаждения потока газообразных углеводородов
EP2426452A1 (en) Method and apparatus for cooling a gaseous hydrocarbon stream
CN111141107B (zh) 一种船用voc、bog综合液化系统及方法
JP4233619B2 (ja) 天然ガス液化のための冷却プロセスおよび装置
JP2014522477A (ja) 天然ガスの液化プロセス
RU2352877C2 (ru) Способ сжижения природного газа
RU2358213C2 (ru) Способ сжижения богатого углеводородами потока
US20100071409A1 (en) Method and apparatus for liquefying a hydrocarbon stream
US20090019888A1 (en) Method for liquefying a hydrocarbon-rich stream
US20120060552A1 (en) Method and apparatus for cooling a gaseous hydrocarbon stream
US20050005635A1 (en) Plant and process for liquefying natural gas
RU2373465C2 (ru) Способ сжижения богатого углеводородами потока
RU2537480C2 (ru) Способ сжижения потока с высоким содержанием углеводородов
US20150330705A1 (en) Systems and Methods for Natural Gas Liquefaction Capacity Augmentation
US20130074542A1 (en) System and method for recovering natural gas liquids with auto refrigeration system
US20060021378A1 (en) Method of liquefying a hydrocarbon-rich flow
AU2009201206B2 (en) Method of liquefying a hydrocarbon-rich fraction
KR20130088141A (ko) 메탄을 포함하는 탄화수소 스트림의 처리 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20191106

PD4A Correction of name of patent owner
PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20220228

Effective date: 20220228