RU2355470C2 - Каталитическая система и способ восстановления nox - Google Patents

Каталитическая система и способ восстановления nox Download PDF

Info

Publication number
RU2355470C2
RU2355470C2 RU2007128066/04A RU2007128066A RU2355470C2 RU 2355470 C2 RU2355470 C2 RU 2355470C2 RU 2007128066/04 A RU2007128066/04 A RU 2007128066/04A RU 2007128066 A RU2007128066 A RU 2007128066A RU 2355470 C2 RU2355470 C2 RU 2355470C2
Authority
RU
Russia
Prior art keywords
catalyst
specified
silver
oxide
reducing agent
Prior art date
Application number
RU2007128066/04A
Other languages
English (en)
Other versions
RU2007128066A (ru
Inventor
Джонатан Ллойд МЭЙЛ (US)
Джонатан Ллойд МЭЙЛ
Григорий Лев Соловейчик (US)
Григорий Лев СОЛОВЕЙЧИК
Элисон Лиана ПАЛМАТЬЕ (US)
Элисон Лиана ПАЛМАТЬЕ
Дан ХАНКУ (US)
Дан ХАНКУ
Грегори Ли УОРНЕР (US)
Грегори Ли УОРНЕР
Дженифер Кэтлин РЕДЛАЙН (US)
Дженифер Кэтлин РЕДЛАЙН
Эрик Джордж БУДЕШЕЙМ (US)
Эрик Джордж БУДЕШЕЙМ
Тереза Гросела РОША (US)
Тереза Гросела РОША
Стенли Тереза БАДДЛ (US)
Стенли Тереза БАДДЛ
Original Assignee
Дженерал Электрик Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дженерал Электрик Компани filed Critical Дженерал Электрик Компани
Publication of RU2007128066A publication Critical patent/RU2007128066A/ru
Application granted granted Critical
Publication of RU2355470C2 publication Critical patent/RU2355470C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/681Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/686Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/896Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Настоящее изобретение относится к каталитической системе и способу восстановления выбросов оксидов азота с ее использованием. Описана каталитическая система для восстановления NOx, содержащая: катализатор, содержащий металлоксидную подложку катализатора, каталитический оксид металла, содержащий, по крайней мере, один из оксида галлия или серебра, и инициирующий металл, выбранный из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия, висмута и их смеси, газовый поток, содержащий органический восстановитель, и соединение, содержащее серу. Описана каталитическая система для восстановления NOx, включающая в себя: катализатор, содержащий (i) металлоксидную подложку катализатора, содержащую оксид алюминия, (ii) каталитический оксид металла, который содержит, по крайней мере, один из оксида галлия или серебра в диапазоне примерно от 1 до 31 мольных %, и (iii) инициирующий металл или комбинацию инициирующих металлов, выбранных из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия, висмута, индия и вольфрама, серебра и кобальта, индия и молибдена, индия и серебра, висмута и серебра, висмута и индия, и молибдена и серебра в диапазоне примерно от 1 до 31 мольного %; газовый поток, содержащий (А) воду в диапазоне примерно от 1 до 15 мольных %; (В) газообразный кислород в диапазоне примерно от 1 до 15 мольных %, и (С) органический восстановитель, выбранный из группы, состоящей из алканов, алкенов, спиртов, эфиров, сложных эфиров, карбоновых кислот, альдегидов, кетонов, карбонатов и их комбинаций; и оксид серы; где указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод: NOх пр�

Description

Уровень техники
Данное изобретение главным образом относится к каталитической системе и способу восстановления выбросов оксида азота и, более точно, к каталитической системе, которая состоит из многокомпонентного катализатора, восстановителя и соединения, содержащего серу.
Долгое время велись поиски способов снижения вредных эффектов загрязнения атмосферы, вызванных побочными продуктами, образующимися из-за несовершенства высокотемпературных процессов горения органических веществ. При высокотемпературном процессе горения в присутствии большого количества воздуха образуются вредные побочные продукты, такие как оксиды азота, обычно известные как NOx. Считается, что NOx и производные соединения играют главную роль в образовании приземного слоя озона, который вызывает астму и другие респираторные заболевания. NOx также способствует образованию копоти, которая связана с рядом серьезных воздействий на состояние здоровья, с кислотными дождями, а также с загрязнением прибрежных районов. Таким образом, выбросы NOx являются предметом многих регулятивных предписаний, ограничивающих количество NOx, которое может присутствовать в выделяющихся газах, выбрасываемых в окружающую среду.
Известен способ, касающийся NOx, который включает использование селективного каталитического восстановления (СКВ), для восстановления NOx до газообразного азота (N2), с использованием аммиака (NH3) в качестве восстановителя. Однако возможные опасные последствия самого аммиака хорошо известны, использование NH3 в системе СКВ ставит дополнительные экологические проблемы и другие задачи, которые также необходимо решить. Тогда как регулирующие органы продолжают вводить ограничения на уменьшение выбросов NOx, другие нормативные требования также снижают дозволенный уровень NH3, который может быть выброшен в атмосферу. Из-за регулирующих ограничений на выделение аммиака использование углеводородов и их кислородных производных для восстановления NOx в процессе СКВ является весьма привлекательным. Для данных целей был предложен ряд катализаторов, включающих цеолиты, перовскиты и металлы на металлоксидной подложке катализатора. Однако существующие каталитические системы имеют или низкую активность, или небольшой интервал рабочих температур, или слабо устойчивы к воде, что негативно сказывается на практическом применении. Более того, катализаторы, активные для восстановления NOx, очень чувствительны к сере и теряют свою активность, если сера присутствует в системе. Например, патент US 6703343 описывает использование каталитических систем для восстановлении NOx. Однако эти каталитические системы требуют специально синтезированной металлоксидной подложки катализатора с очень низким уровнем примесей. Помимо этого данные каталитические системы особо чувствительны к отравлению серой. Следовательно, необходима эффективная каталитическая система для восстановления выбросов NOx, которая является стабильной, работает в широком интервале температур и эффективно работает в присутствии серы.
Краткое описание изобретения
Настоящие изобретение описывает каталитические системы, которые показывают удивительно улучшенную эффективность в присутствии соединений, содержащих серу. При этом данные каталитические системы могут быть изготовлены, используя доступные в продаже металлоксидные подложки катализаторов с обычным содержанием примесей. Таким образом, одним из вариантов осуществления настоящего изобретения является каталитическая система для восстановления NOx, в которой каталитическая система состоит из катализатора, содержащего металлоксидную подложку катализатора, каталитический оксид металла, содержащий, по крайней мере, один из оксида галлия или оксида серебра, и инициирующий металл, выбранный из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия, висмута и их смесей. Также каталитическая система состоит из газового потока, содержащего органический восстановитель, и соединения, содержащего серу.
Другим вариантом осуществления настоящего изобретения является каталитическая система для восстановления NOx, в которой каталитическая система состоит из катализатора, содержащего (i) металлоксидную подложку катализатора, содержащую оксид алюминия, (ii) каталитический оксид металла, содержащий, по крайней мере, один из оксида галлия или оксида серебра в диапазоне примерно от 1 до 31 мольного %, и (iii) инициирующий металл или комбинацию инициирующих металлов, выбранных из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия, висмута, индия и вольфрама, серебра и кобальта, индия и молибдена, индия и серебра, висмута и серебра, висмута и индия, и молибдена и серебра в диапазоне примерно от 1 до 31 мольного %. Каталитическая система состоит также из газового потока, содержащего (A) воду в диапазоне примерно от 1 до 15 мольных %; (B) газообразный кислород в диапазоне примерно от 1 до 15 мольных %; и (С) органический восстановитель, выбранный из группы, состоящей из алканов, алкенов, спиртов, простых эфиров, сложных эфиров, карбоновых кислот, альдегидов, кетонов, карбонатов и их комбинаций; и оксида серы. Органический восстановитель и NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до 24:1.
Еще одним вариантом осуществления настоящего изобретения является способ восстановления NOx, включающий стадии обеспечения газовой смесью, содержащей NOx, органический восстановитель и соединение, содержащее серу; и контакта газовой смеси с катализатором, где катализатор состоит из металлоксидной подложки катализатора, каталитического оксида металла, содержащего оксид галлия или оксид серебра, и, по крайней мере, одного из инициирующих металлов, выбранных из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и висмута.
Еще одним вариантом осуществления настоящего изобретения является способ восстановления NOx, включающий: обеспечение газовой смесью, содержащей (А) NOx; (B) воду в диапазоне примерно от 1 до 15 мольных %; (С) кислород в диапазоне примерно от 1 до 15 мольных %; (D) и органический восстановитель, выбранный из группы, состоящей из алканов, алкенов, спиртов, простых эфиров, сложных эфиров, карбоновых кислот, альдегидов, кетонов, карбонатов и их комбинаций; и (E) оксид серы; и контакт указанной газовой смеси с катализатором, содержащим (i) металлоксидную подложку катализатора, содержащую, по крайней мере, один из оксида алюминия, диоксида титана, диоксида циркония, карбида кремния или диоксида церия; (ii) каталитический оксид металла, присутствующий в количестве, находящемся в диапазоне примерно от 1 до 31 мольного %, и содержащий, по крайней мере, один из оксида галлия или оксида серебра; и (iii) инициирующий металл или комбинацию инициирующих металлов, присутствующих в количестве, находящемся в диапазоне примерно от 1 до 31 мольного %, и выбранных из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия, висмута, индия и вольфрама, серебра и кобальта, индия и молибдена, индия и серебра, висмута и серебра, висмута и индия, и молибдена и серебра; где указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до 24:1; и где указанный контакт происходит при температуре в диапазоне примерно от 100°С до 600°С и объемной скорости в диапазоне примерно от 5000 ч-1 до 100000 ч-1.
Различные другие особенности, аспекты и преимущества настоящего изобретения будут более ясны из последующего описания и прилагаемой формулы изобретения.
Детальное описание изобретения
В нижеследующем описании и формуле изобретения будет приведен ряд терминов, определения которых будут даны ниже. Термины в единственном числе включают в себя формы во множественном числе, если в контексте прямо не подразумевается обратное.
Одним из вариантов осуществления настоящего изобретения, состоящего из каталитической системы для селективного восстановления NOx, используется каталитическая система, которая состоит из катализатора, восстановителя и соединения, содержащего серу. Катализатор состоит из металлоксидной подложки катализатора, каталитического оксида металла и, по крайней мере, из одного из инициирующего металла. Восстановитель состоит из органического соединения. Раскрываемая в данном описании каталитическая система эффективно работает в присутствии серы.
Металлоксидная подложка катализатора может содержать оксид алюминия, диоксид титана, диоксид циркония, диоксид церия, карбид кремния или любую смесь данных веществ. Обычно металлоксидная подложка катализатора содержит гамма-оксид алюминия с сильно развитой поверхностью, содержащий примеси, в одном из вариантов осуществления настоящего изобретения, по крайней мере, около 0,2 весовых %, в другом варианте осуществления настоящего изобретения, по крайней мере, около 0,3 весовых %. Металлоксидная подложка катализатора может быть изготовлена любым способом, известным в данной области техники, например, таким как совместное осаждение, распылительная сушка и зольгелиевым способом.
Катализатор также содержит каталитический оксид металла. В одном из вариантов осуществления настоящего изобретения каталитический оксид металла содержит оксид галлия. В одном из частных вариантов осуществления настоящего изобретения катализатор содержит примерно от 5 до 31 мольного % оксида галлия. В другом из частных вариантов осуществления настоящего изобретения катализатор содержит примерно от 12 до 31 мольного % оксида галлия. Помимо этого в еще одном из частных вариантов осуществления настоящего изобретения катализатор содержит примерно от 18 до 31 мольного % оксида галлия, где во всех случаях мольные проценты вычисляются делением количества молей каталитического металла на общее количество молей металлических компонент катализатора, включающего подложку катализатора и каждый присутствующий инициирующий металл. В другом варианте осуществления настоящего изобретения каталитический оксид металла состоит из оксида серебра. В другом из частных вариантов осуществления настоящего изобретения катализатор содержит примерно от 0,5 до 31 мольного % оксида серебра. В другом из частных вариантов осуществления настоящего изобретения катализатор содержит примерно от 1 до 8 мольных % оксида серебра. Помимо этого в еще одном из частных вариантов осуществления настоящего изобретения катализатор содержит примерно от 1 до 5 мольных % оксида серебра, где во всех случаях мольные проценты вычисляются делением количества молей каталитического металла на общее количество молей металлических компонент катализатора, включающего подложку катализатора и каждый присутствующий инициирующий металл.
Также катализатор состоит, по крайней мере, из одного инициирующего металла. Инициирующий металл может состоять, как минимум, из серебра, кобальта, молибдена, висмута, вольфрама или индия. Помимо этого инициирующий металл может также быть комбинацией более чем одного из данных металлов. Катализатор обычно содержит примерно от 1 до 31 мольного % инициирующего металла. В некоторых вариантах осуществления настоящего изобретения катализатор содержит примерно от 1 до 15 мольных % инициирующего металла. В некоторых других вариантах осуществления настоящего изобретения катализатор содержит примерно от 1 до 9 мольных % инициирующего металла. В одном частном варианте осуществления настоящего изобретения катализатор содержит примерно от 1 до 5 мольных % инициирующего металла. Следует учитывать, что термин «инициирующий металл» включает элементные металлы, оксиды металлов или соли инициирующего металла, например Co2O3. В одном частном варианте осуществления настоящего изобретения каталитический оксид металла состоит из оксида серебра, кроме того, каталитическая система должна содержать, по крайней мере, один из инициирующих металлов, который выбран из группы, состоящей из кобальта, молибдена, вольфрама, индия, висмута и их смеси.
Катализатор может быть изготовлен по методу предварительного смачивания, который включает применение гомогенного и заранее приготовленного раствора прекурсора для каталитического оксида металла и инициирующего металла, контактирующего с металлоксидной подложкой катализатора. Частицы оксида металла, используемые для подложки катализатора, прокаливаются перед применением раствора прекурсора. В некоторых вариантах осуществления настоящего изобретения первичная стадия сушки осуществляется примерно при 80°С-120°С в течение примерно 1-2 часов, за которой следует основной процесс прокаливания. Прокаливание может проводиться в интервале температур примерно от 500°С до 800°С. В некоторых вариантах осуществления настоящего изобретения прокаливание проводится в интервале температур примерно от 650°С до 725°С. В некоторых вариантах осуществления настоящего изобретения прокаливание выполняется от 2 до 10 часов. В некоторых других вариантах осуществления настоящего изобретения прокаливание выполняется от 4 до 8 часов. Частицы просеиваются для того, чтобы отобрать и использовать те, диаметр которых составляет примерно от 0,1 до 1000 микрометров. В одном из вариантов осуществления изобретения размер частиц варьируется примерно от 2 до 50 микрометров в диаметре. Исходя из площади поверхности и полного объема пор частиц металлоксидной подложки катализатора, можно подсчитать необходимую загрузку катализатора. Специалистам в данной области ясно, что из-за загрузки катализатора площадь поверхности и пористость может быть примерно на 20-30% ниже в полученном в итоге катализаторе. Загрузка катализатора определяется, исходя из общего объема пор подложки, являющегося объемом металлического прекурсора, который можно загрузить предварительным смачиванием. Загрузка прекурсора выбирается обычно так, чтобы количество металла было меньше, чем монослой активного оксида металла на маталлоксидной подложке катализатора. В некоторых вариантах осуществления настоящего изобретения в качестве общего, необходимого для загрузки объема прекурсора используется двойной объем пор, и загрузка металла берется в пределах примерно от 1 до 5 миллимолей смеси каталитического оксида металла и инициирующего металла на грамм металлоксидной подложки катализатора.
На последующих стадиях изготовления катализатора могут быть приготовлены растворы прекурсоров каталитического оксида металла и одного или более инициирующих металлов. Растворы прекурсоров могут быть приготовлены в водной среде, гидрофильной органической среде или в их смеси. Гидрофильная органическая среда содержит карбоновые кислоты, спирты и их смеси, такие как, но не ограничиваясь ими, уксусная кислота и этанол. Растворы обычно получают смешением органических растворителей с солями металлов, такими как, но не ограничиваясь ими, нитраты металлов, цитраты, оксалаты, ацетилацетонаты, молибдаты или бензоаты, в количестве, необходимом для приготовления раствора с подходящей молярностью, которая требуется для каталитической композиции. В некоторых вариантах осуществления настоящего изобретения соли металлов являются молибдениевыми гетерополярными анионами или молибдатом аммония. Способ, используемый для изготовления каталитической системы, известен в области техники и включает размещение подложки металлоксидного катализатора на сотообразной матрице при использовании промывочной грунтовки или экструзию суспензии до необходимой формы. Степень чистоты металлического прекурсора как для каталитического оксида металла, так и для инициирующего металла, находится в диапазоне примерно от 95 до 99,999% весовых процентов. В одном из вариантов осуществления настоящего изобретения все металлические прекурсоры смешиваются вместе как можно более гомогенно перед добавлением к металлоксидной подложке катализатора. В некоторых других вариантах осуществления настоящего изобретения различные металлические прекурсоры добавляются последовательно друг за другом к металлоксидной подложке катализатора. В одном из вариантов осуществления настоящего изобретения требуемый объем раствора прекурсора добавляется для того, чтобы покрыть металлоксидную подложку катализатора и создать катализатор с требуемой конечной загрузкой катализатора. После того как раствор соли металла или растворы были добавлены к металлоксидной подложке катализатора, катализатор может быть опционально оставлен на период времени, в некоторых вариантах осуществления настоящего изобретения, около 6-10 часов. Катализатор затем сушится в течение периода времени при требуемой температуре. В частном варианте осуществления настоящего изобретения катализатор может быть высушен под вакуумом опционально при пропускании потока азота через смесь. Наконец, катализатор может быть прокален при требуемой температуре в течение требуемого времени, давая конечный каталитический продукт.
Катализаторы, соответствующие примерам осуществления настоящего изобретения, могут быть получены как вручную, так и с использованием автоматизированного процесса. Обычно ручной процесс используется для изготовления катализаторов большой массы, например, такой как от 1 до 20 грамм (г). Автоматизированный процесс обычно используется, когда катализаторы обладают небольшой массой, например, такой как от 5 миллиграмм (мг) до 100 мг. В основном, ручной и автоматизированный процессы приготовления катализатора похожи, за исключением того, что автоматизированный процесс включает автоматические измерения и нанесение раствора прекурсора на металлоксидную подложку катализатора.
В некоторых вариантах осуществления настоящего изобретения органические восстановители для использования в каталитической системе, в примерах осуществления настоящего изобретения, содержат углеводороды, которые являются текучими, как жидкость или газ, так, чтобы они могли течь сквозь катализатор при включении в истекающий газовый поток для использования в каталитической системе для восстановления NOx. Обычно углеводороды, с меньшим чем 16 числом углеродных атомов, будут текучими, хотя углеводороды с большим числом углеродных атомов также могут быть текучими, например, в зависимости от химической структуры и температуры газового потока. Углеводороды могут быть углеводородами любого типа, включая, например, алканы и алкены как с линейной цепью, так и с разветвленной или циклической. Органический восстановитель может содержать углеводороды одного типа, или он может содержать смесь различных углеводородов. Также смесь может быть смесью углеводородов, имеющих одинаковое количество углеродных атомов, например, таких как октан, октен и 1,3-диметилциклогексан. Аналогично смесь может быть смесью углеводородов, имеющих различное количество углеродных атомов, например, таких как гексан и бутан. Частной подходящей смесью углеводородов для использования в качестве восстановителя в каталитической системе в различных вариантах осуществления настоящего изобретения является газолин. Как известно специалистам в данной области, газолин обычно состоит из смеси линейных и разветвленных углеводородов, главным образом из углеводородов, имеющих от 5 до 12 углеродных атомов. В другом варианте осуществления настоящего изобретения органический восстановитель состоит из углеводородов, содержащих кислород. В некоторых частных вариантах осуществления настоящего изобретения каталитическая система содержит органический восстановитель, выбранный из группы, состоящей из алканов, алкенов, спиртов, эфиров, сложных эфиров, карбоновых кислот, альдегидов, кетонов, карбонатов и их комбинаций. В некоторых вариантах осуществления настоящего изобретения органический восстановитель содержит соединение, по крайней мере, с одной функциональной группой, выбранной из группы, включающей гидроксил, алкоксил, карбонил, карбонат и их комбинацию. Некоторые не ограничивающие примеры подходящих органических восстановителей включают гексан, пропан, этан, 2,2,4-триметилпентан, октан, пропен, этен, метанол, этиловый спирт, 1-бутанол, 2-бутанол, 1-пропанол, изопропанол, диметиловый эфир, диметилкарбонат, ацетальдегид, ацетон и их комбинации.
Каталитическая система также содержит серу. В некоторых вариантах осуществления настоящего изобретения соединение, содержащее серу, находится в газовом потоке, содержащем NOx, например в отработанном газе источника горения. В других вариантах осуществления настоящего изобретения соединение, содержащее серу, добавляется к газовому потоку, содержащему восстановитель, до, или после, или во время сочетания с газовым потоком NOx. Также, в других вариантах осуществления настоящего изобретения, соединение, содержащее серу, присутствует в газовом потоке, содержащем NOx, и, также, добавляется к газовому потоку, содержащему восстановитель, до, или после, или во время сочетания с газовым потоком NOx. Количество соединения, содержащего серу, присутствующего в газовом потоке, в одном из вариантов осуществления настоящего изобретения, находится в пределах примерно между 0,1 промилле до 50 промилле, и в другом варианте осуществления настоящего изобретения, в пределах примерно между 0,1 промилле до 20 промилле. Также, в других вариантах осуществления настоящего изобретения, катализатор предварительно обработан соединением, содержащим серу. В некоторых других вариантах осуществления настоящего изобретения соединение, содержащее серу, присутствует в газовом потоке, содержащем NOx, или добавлено к газовому потоку, содержащему восстановитель, или до, или после, или во время сочетания с газовым потоком NOx, и катализатор также предварительно обработан соединением, содержащим серу. Предварительная обработка катализатора соединением, содержащим серу, обычно происходит при воздействии на катализатор газовой смеси, включающей соединение, содержащее серу. В различных вариантах осуществления настоящего изобретения соединение, содержащее серу, выбирается из группы, состоящей из оксида серы, меркаптана и их комбинации. В одном варианте осуществления настоящего изобретения соединение, содержащее серу, состоит из диоксида серы.
Каталитическая система может быть использована совместно с процессом или системой, в которой могло бы требоваться восстанавливать выбросы NOx, такой как газовая турбина, паровая турбина, бойлер, локомотив; или передвижная выхлопная система, такая как, но не ограничиваясь этим, дизельная выхлопная система. Каталитическая система может также использоваться с системами, которые включают генерирование газов при сжигании угля, сжигании летучих органических соединений (ЛОС), или при сжигании пластмасс, или на кремниевых производствах, или при производстве азотной кислоты. Катализатор обычно устанавливается внутри выхлопной системы, где он подвергался бы воздействию выделяющегося газа, содержащего NOx. Катализатор может располагаться как реактор с решетчатым, так и с псевдоожиженным слоем, покрытый монолитной, пенообразной, ячеистой или мембранной структурой, или располагаться любым другим способом внутри выхлопной системы таким образом, чтобы катализатор контактировал с выделяющимся газом. В связи с тем, что описываемые здесь каталитические системы, эффективно работают в присутствии серы, они могут успешно использоваться для удаления NOx из выделяющихся газов из двигателей, которые в качестве топлива используют дизель, так как дизельное топливо имеет высокое содержание серы. Аналогично каталитические системы могут успешно работать с другими видами топлива с высоким содержанием серы.
Как известно специалистам в данной области, хотя каталитические реакции обычно являются сложными и состоят из большого количества стадий, считается, что общий процесс реакции селективного каталитического восстановления для восстановления
NOx происходит следующим образом:
NOx + O2 + органический восстановитель → N2 + CO2 + H2O (1)
Выделяющийся газовый поток обычно содержит воздух, воду, CO, CO2, NOx и также может содержать другие примеси. Помимо этого несгоревшее или не полностью сгоревшее топливо также может присутствовать в выделяющемся газовом потоке. Органический восстановитель обычно подается в выделяемый газовый поток, образуя газовую смесь, которая затем подается через катализатор. Достаточное количество кислорода для реакции восстановления NOx может уже присутствовать в выделяемом газовом потоке. Если количество кислорода, присутствующего в газовой смеси, недостаточно для реакции восстановления NOx, то дополнительный газообразный кислород может быть также введен в выделяемый газовый поток в форме кислорода или воздуха. В некоторых вариантах осуществления настоящего изобретения газовый поток содержит примерно от 1 до 21 мольного % газообразного кислорода. В некоторых других вариантах осуществления настоящего изобретения газовый поток содержит примерно от 1 до 15 мольных % газообразного кислорода.
Одним из преимуществ данного изобретения является то, что реакция восстановления может протекать в условиях «низкого содержания восстановителя». То есть количество восстановителя, добавленного к выделяемому газу для восстановления NOx, обычно мало. Уменьшение количества восстановителя для превращения NOx в азот может обеспечить большую эффективность процесса за счет снижения стоимости сырья. Молярное отношение восстановителя к NOx обычно находится в пределах примерно от 0,25:1 до 6:1. В других вариантах осуществления данного изобретения отношение обычно является таким, что отношение углеродных атомов в восстановителе находится примерно в пределах от 0,5 до 24 молей на моль NOx. В некоторых других вариантах осуществления настоящего изобретения органический восстановитель и NOx находятся в молярном отношении углерод:NOx в пределах примерно от 0,5:1 до 15:1. В одном из частных вариантов осуществления настоящего изобретения органический восстановитель и NOx находятся в молярном отношении углерод:NOx в пределах примерно от 0,5:1 до 8:1.
Реакция восстановления может протекать в интервале температур. Обычно температура может быть для одного из вариантов осуществления настоящего изобретения в интервале примерно от 100°С до 600°С, для другого варианта примерно от 200°С до 500°С и еще для варианта осуществления примерно от 350°С до 450°С.
Реакция восстановления может протекать при условиях, в которых газовая смесь обладает объемной скоростью в одном варианте осуществления настоящего изобретения в интервале примерно от 5000 обратных часов (ч-1) до 100000 ч-1, в другом варианте в интервале примерно от 8000 ч-1 до 50000 ч-1, в еще одном варианте в интервале примерно от 8000 ч-1 до 40000 ч-1.
Пример осуществления каталитической системы может также успешно применяться во влажных условиях. В частных вариантах осуществления настоящего изобретения восстановление NOx выполняется с применением примеров настоящего изобретения, которые могут быть эффективны при содержании воды в выделяемых газовых потоках. В некоторых вариантах осуществления настоящего изобретения газовый поток содержит примерно от 1 до 15 мольных % воды и, в некоторых других вариантах осуществления настоящего изобретения, примерно от 2 до 10 мольных % воды.
Без дальнейшего уточнения, считается, что специалист, использующий данное описание, воспользуется настоящим изобретением в полной мере. Следующие примеры приведены для того, чтобы дать дополнительное представление для специалиста, применяющего заявленное изобретение. Примеры приведены лишь для того, чтобы представить работу, которая способствовала созданию настоящей заявки на изобретение. Таким образом, данные примеры не предназначены ограничить каким-либо способом изобретение, определенное в прилагаемой формуле изобретения.
Примеры
Катализатор изготовляют и используют в комбинации с восстановителем согласно примерам осуществления настоящего изобретения. Превращение NOx анализируют при различных условиях проведения эксперимента, включая изменение составов катализатора, восстановителей, температур реакций и отношений восстановителя к
NOx.
В последующих примерах каждый из образцов катализатора изготавливают с помощью коммерческой гамма-алюминиевой подложки катализатора от Saint-Gobain NorPro of Stow, Ohio. Алюминиевая подложка катализатора имеет чистоту от 99,5% до 99,7%. Алюминиевая подложка сначала прокаливается при температуре 725°С в течение 6 часов в присутствии окислителя. В качестве окислителя может быть воздух или окисляющий газ, содержащий примерно от 1% до 21% кислорода в азоте. Алюминиевые частицы затем просеиваются для того, чтобы отобрать подложку катализатора, имеющую размер частиц в диаметре примерно от 450 микрометров до 1000 микрометров, если иное не оговаривается. Перед загрузкой подложка катализатора имеет площадь поверхности около 240 квадратных метров на грамм (м2/г) и объем пор 0,796 миллилитров на грамм (мл/г).
Галлий или серебро, используемые в качестве металла для каталитического оксида металла, добавляют к алюминию. К сырой алюминиевой подложке добавляют металл в растворимой форме, который может быть сделан как из раствора нитрата галлия, имеющего формулу Ga(NO3)3·6H2O, так и из раствора нитрата серебра. Например, раствор получают смешением деионизированной воды с нитратом галлия с чистотой 99,999% (основного металла), полученным от Alfa-Aesar of Ward Hill, Massachusetts. Во всех операциях применяют миллипористую воду с электрическим сопротивлением 18 мегаом·сантиметр. Для инициирующего металла к алюминиевой подложке добавляют водный раствор нитратной соли требуемого металла(ов), который также имеет чистоту 99,999% (основного металла) и получен от Alfa-Aesar. Перед нанесением на алюминиевую подложку все металлические прекурсоры как можно однороднее смешиваются вместе. Катализаторы оставляют на время от 6 до 10 часов и затем высушивают при непрерывном вакууме с притоком азота в течение от 4 до 5 часов при 80°С. Наконец, высушенный катализатор подвергают термообработке. Профиль нагрева для такой обработки начинается с повышения температуры с 25°С до 110°С при шаге 1,4°С в минуту. Катализатор выдерживают при 110°С в течение 1,5 часов, после чего температуру увеличивают на 5°С в минуту до значения 650°С. Катализатор выдерживают 6 часов при данной температуре и затем охлаждают в течение периода времени от 4 до 6 часов.
Катализатор тестируют в высокоэффективном 32-трубочном микрореакторе для исследования катализаторов, если другое не указано. Используется реактор, нагреваемый с помощью газового распределителя с обычной воздушной прослойкой, который равномерно распределяет поток реагента в параллельных трубках реактора через присоединенные капилляры. Распределитель имеет такие характеристики нагрева, которые позволяют осуществлять предварительный нагрев потока реагента и производить испарение жидких реагентов перед распределением. Полностью скомпонованный обогреваемый распределитель монтируется на вертикальной перемещающейся платформе, которая поднимается и опускается под действием пневматического давления. Трубки реактора вводят в 10-сантиметровый (см) позолоченный хорошо изолированный медный отсек реактора (размеры 13,5 см на 25 см), способный нагреваться до различных температур в пределах от 200°С до 650°С.
Химически инертные уплотнительные кольца KALREZ™, полученные от DuPont of Wilmington, Delaware, используются в качестве вязкоэластичных торцевых уплотнений на конце каждой из трубок реактора. Трубки реактора изготавливают из трубок INCONEL 600™ с внешним диаметром 0,635 см и внутренним диаметром 0,457 см, полученных от Inco Alloys/Special Metals of Saddle Brook, New Jersey. Трубки свободно передвигаются внутри позолоченного медного нагревательного отсека. Каждая трубка содержит фритту из кварцевых волокон, на которую помещают около 0,050 г образца в центр каждой трубки, через которые пропускают поток реагента, моделирующий выделяемый газовый поток, состоящий из газовой смеси, содержащей NOx и восстановитель. Для обеспечения равномерного потока в каждой из 32 исследуемых трубок используется отдельная параллельная трубка. Штуцеры соединяют с распределителем для доставки составной газовой смеси. Компоненты составной газовой смеси подаются в смеситель с использованием регулятора потока массы и затем направляются в распределитель. Давление в распределителе поддерживается примерно при 275,8 килопаскалей (кПа). Температура и поток в реакторе полностью контролируются автоматически.
После загрузки в трубки катализатор подвергают термообработке при потоке воздуха, как было описано выше, и затем вводят в реакцию с составной газовой смесью. Выходящий продукт подается в нагретые распределительные краны для сбора проб, которыми укомплектован ряд трубок, и непрерывным потоком направляется в хемилюминесцентный анализатор. Любой поток, не направленный в аналитическое устройство, подается в вентиляционную трубу.
Переключение распределительных кранов для маршрутизации газов контролируется компьютером и выполняется по заранее определенной временной последовательности. Хемилюминесцентный анализатор соединен с компьютерной системой регистрации данных. Данные, соответствующие выделяемой из трубок реактора композиции, упорядочивают по времени и сохраняют. Данные параллельной трубки также сохраняются для сравнения с композицией, вводимой в трубки реактора. Такое объединение экспериментальных данных позволяет определять активность и селективность каждого образца катализатора.
Для исследования восстановления NOx используют поток реагента составной газовой смеси, состоящей из восстановителя, около 200 промилле NOx, 12 объемных % кислорода, 7 объемных % воды и составляющего остальное количество азота и опционально серосодержащего соединения. В вариантах осуществления настоящего изобретения исследование восстановления NOx проводят в присутствии соединения, содержащего серу, например SO2. В некоторых примерах SO2 смешивают с газовой смесью, содержащей восстановитель, и, в некоторых других примерах, сам катализатор заранее до эксперимента обрабатывают SO2. Тип и количество восстановителя в потоке варьируют в зависимости от проводимых экспериментов. Скорость потока составной газовой смеси в каждой трубке составляет 29 стандартных кубических сантиметров в минуту (сксм) на каждую трубку.
В таблице 1 представлены композиции приготовленных образцов катализатора, выраженные в мольных процентах каждого из инициирующего металла и/или каталитического металла, присутствующих в катализаторе. Остальной состав композиции - это алюминий из алюминиевой подложки катализатора. Мольные проценты определяются для каждого компонента делением числа молей данного компонента на общее количество молей металлических компонентов в катализаторе, включая металлические компоненты металлоксидной подложки катализатора. Аббревиатура «С.П.» означает сравнительный пример.
ТАБЛИЦА 1
Пример Ga In Ag Co W
Сравн.пример 1 29 0 0 0 0
Сравн.пример 2 0 0 2 0 0
Пример 1 27 2 0 0 0
Пример 2 27 0 0 0 2
Пример 3 25 0 0 0 4
Пример 4 20 0 0 0 8
Пример 5 21 3 0 0 3
Пример 6 22 3 0 0 3
Пример 7 21 6 0 0 1
Пример 8 27 0 2 0 0
Пример 9 25 0 2 2 0
Пример 10 27 0 0 2 0
Пример 11 22 3 0 3 0
В каждом проведенном эксперименте первой серии приготавливают и исследуют различные образцы катализатора с различными восстановителями, применяя описанную методику исследования, при 450°С. Результаты, представленные в таблице 2, показывают процент превращенного NOx в каждой из каталитических систем. Номера примеров в таблице 2 соответствуют каталитическим композициям в примерах таблицы 1. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx в основном равно примерно 6:1 для каждой из экспериментальных систем. Аббревиатура «ДМЭ» и «ИПС» означают диметиловый эфир и изопропиловый спирт. Во всех примерах, перечисленных в таблице 2, газовая смесь, содержащая восстановитель, содержит 5 промилле SO2.
ТАБЛИЦА 2
Восстановители
Пример MeOH ДМЭ EtOH Ацетальдегид Ацетон ИПС
Сравн.пример 1 66 33 45 44 46 68
Сравн.пример 2 14 4 71 65 59 86
Пример 1 33 14 48 38 37 69
Пример 2 76 68 27 37 45 35
Пример 3 42 17 18 30 37 31
Пример 4 56 26 28 32 37 37
Пример 5 21 9 49 43 47 69
Пример 6 23 12 44 39 40 70
Пример 7 17 14 30 31 36 42
Пример 8 16 6 65 75 62 90
Пример 9 15 5 70 71 60 80
Пример 10 53 8 26 25 22 65
Пример 11 20 -- 17 -- -- 48
Как видно из таблицы 2, пример 2, в котором используется комбинация оксида галлия, в качестве каталитического оксида металла, и висмут, в качестве инициирующего металла, показывает особенно хорошие результаты при использовании таких восстановителей, как метанол и ДМЭ. Пример 8, содержащий галлий и серебро, и пример 9, содержащий галлий, кобальт и серебро, - оба показывают хорошие результаты с этанолом, ацетальдегидом, ацетоном и ИПС.
В каждом проведенном эксперименте второй серии приготавливают и исследуют различные образцы катализатора с различными восстановителями, применяя описанную методику исследования, при 450°С. Результаты, представленные в таблице 3, показывают процент превращенного NOx в каждой из каталитических систем. Большинство катализаторов, приведенных в таблице 3, содержат молибден. Аббревиатура «С.П.» означает сравнительный пример. Сравнительный пример 3 состоит только из алюминиевой подложки. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx в основном равно примерно 6:1 для каждой из экспериментальных систем. Во всех примерах, перечисленных в таблице 3, газовая смесь, содержащая восстановитель, содержит 5 промилле SO2.
ТАБЛИЦА 3
Каталитическая композиция Восстановитель
Пример Ga In Mo MeOH ДМЭ Ацетальдегид EtOH ИПС Ацетон
Сравн.прим.3 0 0 0 28 15 11 10 14 10
Пример 12 20 0 8 40 19 30 34 49 21
Пример 13 22 3 3 28 15 23 35 43 19
Пример 14 24 0 5 79 27 46 55 81 45
Пример 15 25 2 0 33 14 38 48 69 37
Пример 16 26 0 0 53 8 25 26 65 22
Пример 17 27 0 2 68 35 43 47 72 29
Пример 18 27 2 0 24 7 39 48 65 45
Пример 19 21 6 1 5 -- -- 15 22 --
Как видно из таблицы 3, примеры 14 и 17, в которых используется комбинация оксида галлия, в качестве каталитического оксида металла, и молибден, в качестве инициирующего металла, показывают хорошие результаты при использовании таких восстановителей как метанол и ИПС.
В каждом проведенном эксперименте третьей серии приготавливают и исследуют различные образцы катализатора с использованием н-октана в качестве восстановителя, применяя описанную методику исследования, при 400°С. Результаты, представленные в таблице 4, показывают процент превращенного NOx в каждой из каталитических систем. Все катализаторы, представленные в таблице 4, содержат серебро. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx в основном равно примерно 6:1 для каждой из экспериментальных систем. Во всех примерах, перечисленных в таблице 4, газовая смесь содержит 600 промилле н-октана. В последних двух столбцах данных катализатор предварительно обрабатывают SO2. Предварительную обработку катализатора SO2 осуществляют путем воздействия газовой смеси, содержащей 5 промилле SO2, при 400°С в течение 16 часов. В данном наборе экспериментов каждый пример включает 3 прохода при 3 различных условиях. При первых условиях свежий катализатор вводят в контакт с газовой смесью, которая не содержит какого-либо количества SO2. При вторых условиях тот же катализатор предварительно обрабатывают газовой смесью, содержащей SO2, и затем вводят в контакт с газовой смесью, которая не содержит какого-либо количества SO2. При третьих условиях тот же катализатор предварительно обрабатывают газовой смесью, содержащей SO2, и затем вводят в контакт с газовой смесью, которая содержит 1 промилле SO2. В основном, каждый катализатор показывает лучшие результаты в условиях 2 и 3 по сравнению с условием 1.
ТАБЛИЦА 4
Пример Композиция катализатора Содержание SO2 в потоке
(промилле)
Условие 1 Условие 2 Условие 3
Ga In Ag 0 0 1
Катализатор, предварительно обработанный
SO2
Процент превращенного NOx
Ср.пример 4 0 0 2 77 95 95
Пример 20 27 0 2 98 98 98
Пример 21 25 2 2 97 96 96
Пример 22 22 3 3 40 86 89
Пример 23 25 0 4 17 84 86
Пример 24 20 4 4 2 47 51
Ср.пример 5 0 0 5 18 88 89
Пример 25 22 1 6 0 26 35
Пример 26 20 0 9 7 23 28
Пример 27 0 0 29 48 35 23
В каждом проведенном эксперименте четвертой серии приготавливают и исследуют различные образцы катализатора с использованием ИПС в качестве восстановителя, применяя описанную методику исследования, при 450°С. Результаты, представленные в таблице 5, показывают процент превращенного NOx в каждой из каталитических систем. Все катализаторы, представленные в таблице 5, содержат серебро. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx в основном равно примерно 6:1 для каждой из экспериментальных систем. В последних двух столбцах данных катализатор предварительно обрабатывают SO2. Предварительная обработка каждого катализатора SO2 проводится описанным в предыдущем пункте способом. В данном наборе экспериментов каждый пример включает 3 прохода при 3 различных условиях. В первых условиях свежий катализатор вводят в контакт с газовой смесью, которая не содержит какого-либо количества SO2. Во вторых условиях тот же катализатор предварительно обрабатывают газовой смесью, содержащей SO2, и затем вводят в контакт с газовой смесью, которая не содержит какого-либо количества SO2. В третьих условиях тот же катализатор предварительно обрабатывают газовой смесью, содержащей SO2, и затем вводят в контакт с газовой смесью, которая содержит 1 промилле SO2. Представленное в 3 строке количество SO2 содержит индекс а или b. Индекс «а» показывает, что газовая смесь, использованная для данных экспериментов, содержит 150 промилле ИПС, а индекс «b» показывает, что газовая смесь содержит 400 промилле ИПС. Каждый катализатор показывает лучшие результаты при условиях 2 и 3 по сравнению с условиями 1.
ТАБЛИЦА 5
Пример Каталитическая композиция Содержание SO2 в потоке
(промилле)
Условие 1 Условие 2 Условие 3
Ga In Ag 0a 0b 1b
Катализатор, предварительно обработанный SO2
Процент превращенного NOx
Сравн.пример 6 0 0 2 7 12 80
Пример 28 27 0 2 4 25 90
Пример 29 25 2 2 5 18 80
Пример 30 22 3 3 3 7 49
Пример 31 25 0 4 3 9 60
Пример 32 20 4 4 4 7 38
Пример 33 22 1 6 3 7 33
Пример 34 20 0 9 2 13 22
Сравн.пример 7 0 0 29 2 14 18
В каждом проведенном эксперименте пятой серии исследуют различные восстановители при температуре 450°С в присутствии или в отсутствии SO2 в газовой смеси. Данные эксперименты проводят с использованием катализатора, содержащего 27% Ga и 2% Ag. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx в основном равно примерно 6:1 для каждой из экспериментальных систем. Результаты, представленные в таблице 6, показывают процент превращенного NOx в каждой из каталитических систем. Аббревиатура «2,2,4-ТМП» означает 2,2,4-триметилпентан.
ТАБЛИЦА 6
Восстановитель 0 ppm SO2 5 ppm SO2
C3H6 63 69
EtOH 26 65
PrOH 17 90
2,2,4-ТМП 72 70
Гексан 28 45
В каждом проведенном эксперименте шестой серии исследуют различные восстановители при температуре 450°С в присутствии или в отсутствии SO2 в газовой смеси. Данные эксперименты проводят с использованием катализатора, содержащего 24% Ga и 5% Mo. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx в основном равно примерно 6:1 для каждой из экспериментальных систем. Результаты, представленные в таблице 7, показывают процент превращенного NOx в каждой из каталитических систем. Аббревиатура «2,2,4-ТМП» означает 2,2,4-триметилпентан.
ТАБЛИЦА 7
Восстановитель 0 ppm SO2 5 ppm SO2
MeOH 7 78
EtOH 55 55
PrOH 53 80
C3H6 45 64
2,2,4-ТМП 23 65
Гексан 30 30
Октан 51 40
В каждом проведенном эксперименте седьмой серии в 96-трубочном реакторе в качестве восстановителей исследуют метанол и диметиловый эфир при температуре 400°С в присутствии газовой смеси, содержащей 5 промилле SO2, 1000 промилле NOx, 2% воды, 13% O2 и остальное количество гелия при номинальной объемной скорости 13000 ч-1. В таблице 8 представлены как каталитические композиции, так и активность катализатора для каждого эксперимента. Оставшееся количество молей катализатора включает металлоксидную подложку катализатора, которая в данных экспериментах имеет средний размер частиц, равный 20 микрометрам. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx в основном равно примерно 6:1 для каждой из экспериментальных систем. Активность катализатора выражается в молях превращенного NOx в N2 на грамм катализатора в час. Азот непосредственно определяется с помощью газовой хроматографии.
ТАБЛИЦА 8
Пример Катализатор Восстановитель
Bi In Ag Ga MeOH ДМЭ
Пример 35 0 17 12 0 0,0016 0,0017
Пример 36 0 17 0 12 0,0014 0,0016
Пример 37 0 12 6 12 0,00051 0,00079
Пример 38 0 6 6 17 0,00036 0,00051
Пример 39 4 0 6 13 0,00033 0,00047
Пример 40 0 0 12 17 0,00026 0,00041
Пример 41 2 0 12 12 0,00019 0,00035
Пример 42 2 12 12 0 0,00015 0,00031
Пример 43 0 23 0 6 0,00015 0,00030
Пример 44 0 12 17 0 0,00020 0,00030
Пример 45 11 0 0 0 -- 4,1Е-05
Сравн.пример 8 0 0 29 0 -- 1,4Е-06
Пример 46 0 12 12 6 -- 0,00032
В каждом проведенном эксперименте восьмой серии в 96-трубочном реакторе в качестве восстановителей исследуют пропен и этен при температуре 400°С в присутствии газовой смеси, содержащей 5 промилле SO2, 1000 промилле NOx, 2% воды, 13% O2 и остальное количество гелия при номинальной объемной скорости 13000 ч-1. В таблице 9 представлены как каталитические композиции, так и активность катализатора для каждого эксперимента. Оставшееся количество молей катализатора включает металлоксидную подложку катализатора, которая в данных экспериментах имеет средний размер частиц, равный 20 микрометрам. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx в основном равно примерно 6:1 для каждой из экспериментальных систем. Активность катализатора выражается в молях превращенного NOx в N2 на грамм катализатора в час. Азот непосредственно определяется с помощью газовой хроматографии.
ТАБЛИЦА 9
Пример Катализатор Восстановитель
Bi Mo In Ag Ga Пропен Этен
Пример 47 0 0 12 12 6 0,0016 --
Пример 48 0 0 6 17 6 0,0012 --
Пример 49 0 4 0 18 6 0,0011 --
Пример 50 0 0 17 12 0 0,0011 --
Пример 51 0 4 12 12 0 0,00098 --
Пример 52 8 0 0 0 7 0,00097 --
Пример 53 0 0 6 0 23 0,00096 --
Пример 54 6 0 0 13 0 0,00094 --
Пример 55 0 0 0 12 17 0,00094 --
Сравн.пример 9 0 0 0 0 29 0,00093 --
Пример 56 0 17 0 6 0 0,00090 --
Пример 57 0 12 0 6 6 0,00089 --
Пример 58 0 0 6 6 17 0,00086 --
Пример 59 0 0 12 6 12 0,00085 --
Пример 60 0 0 29 0 0 0,00075 --
Сравн.пример 10 0 0 0 29 0 0,00068 --
Пример 61 0 0 17 12 0 -- 0,0021
Пример 62 0 0 17 0 12 -- 0,0017
Пример 63 0 0 12 6 12 -- 0,0010
Пример 64 0 0 12 12 6 -- 0,00076
Пример 65 0 0 6 17 6 -- 0,00075
Пример 66 0 0 6 6 17 -- 0,0064
Пример 67 0 0 0 12 17 -- 0,00063
Пример 68 0 0 12 17 0 -- 0,0059
Пример 69 0 0 23 0 6 -- 0,00055
Пример 70 4 0 0 6 13 -- 0,00052
Пример 71 0 0 12 0 17 -- 0,00035
Пример 72 4 0 0 19 0 -- 0,00034
Сравн.пример 11 0 0 0 29 0 -- 0,00012
Пример 73 11 0 0 0 0 -- 5Е-05
Пример 74 0 0 29 0 0 -- 1,1Е-05
В каждом проведенном эксперименте девятой серии в качестве восстановителя исследуют метанол при температуре 400°С в присутствии газовой смеси, содержащей 5 промилле SO2, 200 промилле NOx, 4% воды, 13% O2 и остальное количество азота при номинальной объемной скорости 28000 ч-1. В таблице 10 представлены как каталитические композиции, так и активность катализатора для каждого эксперимента. Оставшееся количество молей катализатора включает металлооксидную подложку катализатора. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx в основном равно примерно 6:1 для каждой из экспериментальных систем. Активность катализатора выражается в молях превращенного NOx в N2 на грамм катализатора в час. Сравнительный пример 12 содержит лишь алюминиевую подложку и оксид галлия.
ТАБЛИЦА 10
Пример Катализатор Восстановитель
Ga Ag In Mo MeOH
Пример 75 6 6 19 0 1,1Е-05
Пример 76 6 19 6 0 3,0Е-05
Пример 77 6 0 25 0 2,1Е-05
Пример 78 13 6 13 0 0,00014
Пример 79 19 6 6 0 1,3Е-05
Пример 80 0 6 25 0 0,00014
Пример 81 0 19 13 0 8,3Е-06
Пример 82 29 2 0 0 5,1Е-06
Пример 83 5 16 10 0 2,0Е-05
Сравн.пример 12 31 0 0 0 3,1Е-07
Пример 84 0 0 13 13 1,9Е-05
Были описаны различные варианты осуществления настоящего изобретения для реализации различных задач, соответствующих изобретению. Следует отметить, что данные варианты осуществления изобретения лишь иллюстрируют принципы различных вариантов данного изобретения. Без отклонения от сущности и объема данного изобретения их различные модификации и адоптации будут очевидны для специалиста в данной области. Таким образом, предполагается, что данное изобретение распространяется на все подходящие модификации и вариации в том объеме, в котором они представлены в прилагаемых пунктах формулы изобретения и их эквивалентах.

Claims (35)

1. Каталитическая система для восстановления NOx, содержащая:
катализатор, содержащий металлоксидную подложку катализатора, каталитический оксид металла, содержащий, по крайней мере, один из оксида галлия или серебра, и инициирующий металл, выбранный из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия, висмута и их смеси;
газовый поток, содержащий органический восстановитель; и
соединение, содержащее серу.
2. Каталитическая система по п.1, где указанная металлоксидная подложка катализатора содержит, по крайней мере, один член, выбранный из группы, включающей оксид алюминия, диоксид титана, диоксид циркония, диоксид церия, карбида кремния, или их смесей.
3. Каталитическая система по п.1, где указанный каталитический оксид металла содержит примерно от 5 до 31 мол.% оксида галлия.
4. Каталитическая система по п.1, где указанный каталитический оксид металла содержит примерно от 0,5 до 31 мол.% оксида серебра.
5. Каталитическая система по п.1, где указанный катализатор содержит указанный инициирующий металл примерно от 1 до 31 мол.%.
6. Каталитическая система по п.1, где каталитический оксид металла содержит оксид галлия, а инициирующий металл содержит серебро или комбинацию индия и серебра.
7. Каталитическая система по п.1, где каталитический оксид металла содержит оксид серебра, а инициирующий металл содержит индий.
8. Каталитическая система по п.1, где указанный органический восстановитель выбран из группы, состоящей из алканов, алкенов, спиртов, эфиров, сложных эфиров, карбоновых кислот, альдегидов, кетонов, карбонатов и их комбинаций.
9. Каталитическая система по п.1, где указанный органический восстановитель выбран из группы, состоящей из гексана, пропана, этана, 2,2,4-триметилпентана, октана, пропена, этена, метанола, этилового спирта, бутилового спирта, пропилового спирта, диметилового эфира, диметилкарбоната, ацетальдегида, ацетона и их комбинаций.
10. Каталитическая система по п.1, где указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод: NOх примерно от 0,5:1 до 24:1.
11. Каталитическая система по п.1, где указанный газовый поток также содержит воду примерно от 1 до 15 мол.%.
12. Каталитическая система по п.1, где указанный газовый поток также содержит газообразный кислород примерно от 1 до 21 мол.%.
13. Каталитическая система по п.1, где указанное соединение, содержащее серу, присутствует в указанном газовом потоке, содержащем NOx, или в газовом потоке, содержащем восстановитель, или в обоих потоках.
14. Каталитическая система по п.1, где указанный катализатор предварительно обработан указанным соединением, содержащим серу.
15. Каталитическая система по п.1, где указанное соединение, содержащее серу, выбрано из группы, состоящей из оксида серы, меркаптана и их комбинаций.
16. Каталитическая система по п.1, где указанное соединение, содержащее серу, содержит диоксид серы.
17. Каталитическая система по п.1, где NOx получен из очага горения, включающего, по крайней мере, одно из газовой турбины, бойлера, локомотива, передвижной выхлопной системы, при сжигании угля, при сжигании пластмасс, при сжигании летучих органических соединений, на кремниевых производствах или при производстве азотной кислоты.
18. Каталитическая система для восстановления NOx, включающая в себя: катализатор, содержащий (i) металлоксидную подложку катализатора, содержащую оксид алюминия, (ii) каталитический оксид металла, который содержит, по крайней мере, один из оксида галлия или серебра примерно от 1 до 31 мол.%, и (iii) инициирующий металл или комбинацию инициирующих металлов, выбранных из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия, висмута, индия и вольфрама, серебра и кобальта, индия и молибдена, индия и серебра, висмута и серебра, висмута и индия и молибдена и серебра примерно от 1 до 31 мол.%;
газовый поток, содержащий (А) воду примерно от 1 до 15 мол.%; (В) газообразный кислород примерно от 1 до 15 мол.% и (С) органический восстановитель, выбранный из группы, состоящей из алканов, алкенов, спиртов, эфиров, сложных эфиров, карбоновых кислот, альдегидов, кетонов, карбонатов и их комбинаций; и оксид серы;
где указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод: NOх примерно от 0,5:1 до 24:1.
19. Способ восстановления NOx, включающий стадии:
обеспечения газовой смесью, содержащей NOx, органический восстановитель и соединение, содержащее серу, и
контакта указанной газовой смеси с катализатором, где указанный катализатор состоит из металлоксидной подложки катализатора, каталитического оксида металла, содержащего оксид галлия или оксид серебра, и, по крайней мере, одного инициирующего металла, выбранного из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и висмута.
20. Способ по п.19, где указанный катализатор предварительно обработан указанным соединением, содержащим серу, перед пропусканием указанной газовой смеси через указанный катализатор.
21. Способ по п.19, где указанный контакт происходит при температуре примерно от 100 до 600°С.
22. Способ по п.19, где указанный контакт осуществляется при объемной скорости примерно от 5000 до 100000 ч-1.
23. Способ по п.19, где указанная металлоксидная подложка катализатора содержит, по крайней мере, один из оксида алюминия, диоксида титана, диоксида циркония, карбида кремния или диоксида церия.
24. Способ по п.19, где указанный каталитический оксид металла содержит оксид галлия примерно от 5 до 31 мол.%.
25. Способ по п.19, где указанный катализатор содержит оксид серебра примерно от 1 до 31 мол.%.
26. Способ по п.19, где указанный катализатор содержит указанный инициирующий металл примерно от 1 до 31 мол.%.
27. Способ по п.19, где указанный органический восстановитель выбран из группы, состоящей из алканов, алкенов, спиртов, эфиров, сложных эфиров, карбоновых кислот, альдегидов, кетонов, карбонатов и их комбинаций.
28. Способ по п.19, где указанный органический восстановитель выбран из группы, состоящей из гексана, пропана, пропена, этана, этена, 2,2,4-триметилпентана, октана, метанола, этилового спирта, бутилового спирта, пропилового спирта, диметилового эфира, диметилкарбоната, ацетальдегида, ацетона и их комбинаций.
29. Способ по п.19, где указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод: NOх примерно от 0,5:1 до 24:1.
30. Способ по п.19, где указанный газовый поток содержит воду примерно от 1 до 15 мол.%.
31. Способ по п.19, где указанный газовый поток содержит газообразный кислород примерно от 1 до 21 мол.% кислорода.
32. Способ по п.19, где указанное соединение, содержащее серу, выбрано из группы, состоящей из оксида серы, меркаптана и их комбинаций.
33. Способ по п.19, где указанное соединение, содержащее серу, содержит диоксид серы.
34. Способ по п.19, в котором NOx получен из очага горения, включающего, по крайней мере, одно из газовой турбины, бойлера, локомотива, передвижной выхлопной системы, при сжигании угля, при сжигании пластмасс, при сжигании летучих органических соединений, на кремниевых производствах или при производстве азотной кислоты.
35. Способ восстановления NOx, включающий:
обеспечение газовой смесью, содержащей (А) NOx; (В) воду примерно от 1 до 15 мол.%; (С) кислород примерно от 1 до 15 мол.%; (D) органический восстановитель, выбранный из группы, состоящей из алканов, алкенов, спиртов, эфиров, сложных эфиров, карбоновых кислот, альдегидов, кетонов, карбонатов и их комбинаций; и (Е) оксид серы; и
контакт указанной газовой смеси с катализатором, содержащим (i) металлоксидную подложку катализатора, содержащую, по крайней мере, один из оксида алюминия, диоксида титана, диоксида циркония, карбида кремния или диоксида церия; (ii) каталитический оксид металла, присутствующий в количестве примерно от 1 до 31 мол.% и содержащий, по крайней мере, один из оксида галлия или оксида серебра; и (iii) инициирующий металл или комбинацию инициирующих металлов, присутствующих в количестве примерно от 1 до 31 мол.% и выбранных из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия, висмута, индия и вольфрама, серебра и кобальта, индия и молибдена, индия и серебра, висмута и серебра;
где указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод: NOх примерно от 0,5:1 до 24:1 и где указанный контакт осуществляется при температуре примерно от 100 до 600°С и объемной скорости примерно от 5000 до 100000 ч-1.
RU2007128066/04A 2004-12-22 2005-12-08 Каталитическая система и способ восстановления nox RU2355470C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/022,897 US8062991B2 (en) 2004-12-22 2004-12-22 Catalyst system and method for the reduction of NOx
US11/022,897 2004-12-22

Publications (2)

Publication Number Publication Date
RU2007128066A RU2007128066A (ru) 2009-01-27
RU2355470C2 true RU2355470C2 (ru) 2009-05-20

Family

ID=36204927

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007128066/04A RU2355470C2 (ru) 2004-12-22 2005-12-08 Каталитическая система и способ восстановления nox

Country Status (9)

Country Link
US (1) US8062991B2 (ru)
CN (1) CN101087649B (ru)
AU (1) AU2005319468B2 (ru)
CA (1) CA2593500C (ru)
DE (1) DE112005003017T5 (ru)
GB (1) GB2435594B (ru)
MX (1) MX2007007562A (ru)
RU (1) RU2355470C2 (ru)
WO (1) WO2006068850A1 (ru)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8056322B2 (en) 2005-12-12 2011-11-15 General Electric Company System and method for supplying oxygenate reductants to an emission treatment system
US9272271B2 (en) 2007-09-19 2016-03-01 General Electric Company Manufacture of catalyst compositions and systems
US20090263297A1 (en) * 2007-09-19 2009-10-22 General Electric Company Catalyst and method of manufacture
US9375710B2 (en) 2007-09-19 2016-06-28 General Electric Company Catalyst and method of manufacture
US20110047995A1 (en) * 2009-08-31 2011-03-03 General Electric Company Catalyst and method of manufacture
US8871669B2 (en) * 2008-05-19 2014-10-28 General Electric Company Catalyst and method of manufacture
US7987663B2 (en) 2007-11-30 2011-08-02 General Electric Company Methods for reducing emissions from diesel engines
US20100196236A1 (en) 2009-01-30 2010-08-05 General Electric Company Templated catalyst composition and associated method
US20100196237A1 (en) * 2009-01-30 2010-08-05 General Electric Company Templated catalyst composition and associated method
US8148295B2 (en) * 2009-02-16 2012-04-03 Millennium Inorganic Chemicals, Inc. Catalyst promoters in vanadium-free mobile catalyst
US8889587B2 (en) 2009-08-31 2014-11-18 General Electric Company Catalyst and method of manufacture
US9308497B2 (en) 2010-10-04 2016-04-12 Basf Corporation Hydrocarbon selective catalytic reduction catalyst for NOx emissions control
US8293197B2 (en) * 2010-10-29 2012-10-23 General Electric Company Systems and methods for enhanced selective catalytic reduction of NOx
US20120329644A1 (en) 2011-06-21 2012-12-27 General Electric Company Catalyst composition and catalytic reduction system
US8765085B2 (en) * 2012-04-26 2014-07-01 Basf Corporation Base metal catalyst and method of using same
EP3065854A2 (en) 2013-11-06 2016-09-14 Watt Fuel Cell Corp. Reformer with perovskite as structural component thereof
US9627699B2 (en) 2013-11-06 2017-04-18 Watt Fuel Cell Corp. Gaseous fuel CPOX reformers and methods of CPOX reforming
WO2015069762A2 (en) 2013-11-06 2015-05-14 Watt Fuel Cell Corp. Chemical reactor with manifold for management of a flow of gaseous reaction medium thereto
CA2929721C (en) 2013-11-06 2019-08-20 WATT Fuel Cell Corp Liquid fuel cpox reformer and fuel cell systems, and methods of producing electricity
AU2014346747B2 (en) 2013-11-06 2017-02-09 WATT Fuel Cell Corp Integrated gaseous fuel CPOX reformer and fuel cell systems, and methods of producing electricity
MX352227B (es) 2013-11-06 2017-11-15 WATT Fuel Cell Corp Reformadores cpox de combustible liquido y metodo de reformacion cpox.
CN104324737B (zh) * 2014-11-05 2016-08-17 上海纳米技术及应用国家工程研究中心有限公司 一种整体式常温低浓度一氧化碳催化剂及其制备和应用
CN106466609A (zh) * 2015-08-20 2017-03-01 中国石油化工股份有限公司 一氧化碳低温催化还原脱除氮氧化物的催化剂
CN111905750B (zh) * 2019-05-10 2023-03-10 中国科学技术大学 氧化镓超薄片,其制备方法以及用途
CN112023912B (zh) * 2020-08-31 2023-06-13 陕西科技大学 一种负载单质铋的铋系光催化剂及其制备方法和应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498927A (en) * 1967-04-19 1970-03-03 Du Pont Process for applying porous coatings on catalyst supports
US5238890A (en) * 1990-10-31 1993-08-24 Idemitsu Kosan Company Limited Exhaust gas purifying catalyst and an exhaust gas purifying method using the catalyst
EP0526099B1 (en) * 1991-07-23 1997-10-01 Kabushiki Kaisha Riken Exhaust gas cleaner
US5744111A (en) * 1992-07-03 1998-04-28 Kabushiki Kaisha Riken Method for cleaning exhaust gas
EP0577438B1 (en) 1992-07-03 2001-05-16 Kabushiki Kaisha Riken Exhaust gas cleaner and method of cleaning exhaust gas
US5714432A (en) 1992-12-28 1998-02-03 Kabushiki Kaisha Riken Exhaust gas cleaner comprising supported silver or silver oxide particles
FR2723699B1 (fr) 1994-08-18 1996-10-25 Renault Catalyseurs pour la reduction d'oxydes d'azote
US6342191B1 (en) * 1994-12-07 2002-01-29 Apyron Technologies, Inc. Anchored catalyst system and method of making and using thereof
JP3889467B2 (ja) * 1996-09-25 2007-03-07 日本特殊陶業株式会社 窒素酸化物除去用触媒材料及び該材料を用いた窒素酸化物処理装置並びに窒素酸化物除去方法
JPH11119513A (ja) 1997-10-16 1999-04-30 Konica Corp 画像形成装置用帯電器
AUPP950199A0 (en) 1999-03-30 1999-04-22 University Of Queensland, The Catalysts for the reduction of nitrogen oxide emissions
US6706660B2 (en) 2001-12-18 2004-03-16 Caterpillar Inc Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems
US6703343B2 (en) 2001-12-18 2004-03-09 Caterpillar Inc Method of preparing doped oxide catalysts for lean NOx exhaust
US20030118960A1 (en) * 2001-12-21 2003-06-26 Balmer-Millar Mari Lou Lean NOx aftertreatment system
JP3738733B2 (ja) * 2002-01-18 2006-01-25 株式会社デンソー 車両用回転電機の固定子及びその製造方法
US7541010B2 (en) * 2003-12-19 2009-06-02 Caterpillar Inc. Silver doped catalysts for treatment of exhaust
US7399729B2 (en) * 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx

Also Published As

Publication number Publication date
GB2435594A (en) 2007-08-29
RU2007128066A (ru) 2009-01-27
CN101087649B (zh) 2012-11-28
CA2593500A1 (en) 2006-06-29
GB0711984D0 (en) 2007-08-01
GB2435594B (en) 2009-11-11
AU2005319468B2 (en) 2011-06-09
AU2005319468A1 (en) 2006-06-29
CA2593500C (en) 2014-01-28
DE112005003017T5 (de) 2007-12-13
US20060133976A1 (en) 2006-06-22
WO2006068850A1 (en) 2006-06-29
CN101087649A (zh) 2007-12-12
US8062991B2 (en) 2011-11-22
MX2007007562A (es) 2007-07-24

Similar Documents

Publication Publication Date Title
RU2355470C2 (ru) Каталитическая система и способ восстановления nox
CA2593499C (en) Catalyst system and method for the reduction of nox
US20070092421A1 (en) Catalyst system and method for the reduction of NOx
US7655203B2 (en) Multi-component catalyst system and method for the reduction of NOx
US7396517B2 (en) Reduction of NOx emissions using a staged silver/alumina catalyst system
US7399729B2 (en) Catalyst system for the reduction of NOx
US20060228283A1 (en) Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols
KR19990063627A (ko) 질소 산화물 방출 감소를 위한 고 산소 함량 가스의 촉매적 처리 방법
US11305266B2 (en) Catalyst and manufacturing method thereof
US6855303B1 (en) Method for selective catalytic reduction of nitrogen oxides
US6548032B1 (en) Process for the treatment of gases with high oxygen content, with a view to controlling nitrogen oxide emissions, using a catalytic composition comprising cerium oxide and/or zirconium oxide
Male et al. Catalyst system and method for the reduction of NO x
Rocha et al. Catalyst system for the reduction of NO x
JP2000117058A (ja) 酸化剤での化学量論超過媒質中における窒素酸化物排出量の低下方法
JP2004073921A (ja) 窒素酸化物の接触還元除去触媒
Hancu et al. Catalyst system and method for the reduction of NO x
JPH11319566A (ja) 窒素酸化物除去触媒および窒素酸化物除去方法
JPH08131829A (ja) 脱硝触媒およびそれを用いた脱硝方法
JP2005279371A (ja) 脱硝触媒およびそれを用いた脱硝方法
Dosumov et al. Methane deep oxidation thermally stable multicomponent manganese catalyst modified with oxides of rare and alkaline-earth elements
JPH0889813A (ja) 脱硝触媒およびそれを用いた脱硝方法
JPH07256103A (ja) 脱硝触媒の製造方法および脱硝方法
JPH08131827A (ja) 脱硝触媒およびそれを用いた脱硝方法
JPH07275707A (ja) 脱硝触媒の製造方法および脱硝方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191209