RU2352025C1 - Способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника - Google Patents
Способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника Download PDFInfo
- Publication number
- RU2352025C1 RU2352025C1 RU2007129115/28A RU2007129115A RU2352025C1 RU 2352025 C1 RU2352025 C1 RU 2352025C1 RU 2007129115/28 A RU2007129115/28 A RU 2007129115/28A RU 2007129115 A RU2007129115 A RU 2007129115A RU 2352025 C1 RU2352025 C1 RU 2352025C1
- Authority
- RU
- Russia
- Prior art keywords
- thick
- layer
- temperature
- intermediate layer
- film
- Prior art date
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 229910052745 lead Inorganic materials 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 4
- 229910002480 Cu-O Inorganic materials 0.000 claims abstract description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 10
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 2
- 230000004927 fusion Effects 0.000 abstract 1
- 238000012423 maintenance Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 14
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Изобретение относится к отрасли криоэлектроники и может быть использовано при изготовлении толстопленочных структур на основе высокотемпературных сверхпроводников (ВТСП) и элементов, использующих эффект высокотемпературной сверхпроводимости. Сущность изобретения: способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника включает нанесение на подложку промежуточного слоя и толстой пленки высокотемпературного сверхпроводника висмутовой системы (Bi,Pb)-Sr-Ca-Cu-O. В качестве промежуточного слоя используется слой, совпадающий по составу с толстой пленкой высокотемпературного сверхпроводника, прошедший стадии предварительной сушки и термообработки при температуре 886°С до его полного расплавления. Технический результат изобретения состоит в улучшении качественных характеристик толстопленочной ВТСП структуры и уменьшении времени отжига основного ВТСП слоя, в результате которого происходит формирование его сверхпроводящих свойств, путем введения в структуру промежуточного слоя того же состава при обеспечении адгезии промежуточного слоя к подложке и основного слоя к промежуточному. 1 ил.
Description
Изобретение относится к отрасли криоэлектроники и может быть использовано при изготовлении толстопленочных структур на основе высокотемпературных сверхпроводников (ВТСП) и элементов, использующих эффект высокотемпературной сверхпроводимости.
Известен способ получения буферного слоя Zr(Y)O2 для тонкопленочных ВТСП структур [1]. Буферный слой формируется методом высокочастотного (ВЧ) магнетронного распыления мишеней, представляющих собой смесь оксидов циркония ZrO2 и иттрия Y2О3, на подложки сапфира. Недостатками указанного способа являются:
- сложность аппаратурного оформления процесса получения;
- трудоемкость процесса;
- зависимость качества буферного слоя от большого числа операционных и технологических параметров.
Для толстопленочных ВТСП структур системы Bi(Pb)-Sr-Ca-Cu-O буферные слои Zr(Y)O2 непригодны, во-первых, из-за слабой адгезии ВТСП слоя, и, во-вторых, из-за возможного загрязнения ВТСП слоя иттрием в процессе высокотемпературной обработки структур и нарушения вследствие этого сверхпроводящих свойств.
Известен способ изготовления сверхпроводящих покрытий на керамических подложках MgO [2], где в качестве промежуточного слоя между подложкой и покрытием используется слой серебра. Недостатком указанного способа является то, что подслой серебра не обеспечивает необходимой адгезии в многослойной структуре как со стороны подложки, так и со стороны сверхпроводящего слоя и приводит к разрушению структуры при термоциклировании.
Наиболее близким к заявляемому является способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника, при котором в качестве промежуточного слоя используется слой Bi2О3, нанесенный на подложку поликристаллического MgO методом осаждения из спиртовой взвеси и подвергнутый высокотемпературной термообработке при температуре плавления Bi2O3, составляющей 825°С [3]. Далее на подложку с промежуточным слоем Bi2O3 методом шелкографии наносится слой высокотемпературного сверхпроводника состава (Bi, Pb)2Sr2Ca2Cu2Ox, который проходит стадии предварительной сушки при температуре 145°С в течение 2 часов и высокотемпературного отжига при температуре 860°С. Причем окончательное формирование кристаллической структуры и сверхпроводящих свойств происходят при указанной температуре в течение 40 часов.
Основным недостатком указанного способа является отличие состава промежуточного слоя от состава основного слоя, которое влечет за собой ряд негативно влияющих на толстопленочную структуру факторов. А именно: отличие кристаллических структур этих слоев; наличие протяженной границы раздела промежуточный слой - основной слой с отличными от обоих слоев структурными и физическими свойствами; усложнение картины механических напряжений толстопленочной структуры, компенсация только одного из легколетучих компонентов многокомпонентной системы.
Технический результат изобретения состоит в улучшении качественных характеристик толстопленочной ВТСП структуры и уменьшении времени отжига основного ВТСП слоя, в результате которого происходит формирование его сверхпроводящих свойств, путем введения в структуру промежуточного слоя того же состава при обеспечении адгезии промежуточного слоя к подложке и основного слоя к промежуточному.
Предложенный способ изготовления толстопленочной структуры на основе высокотемпературных сверхпроводников позволяет решить эту задачу.
На подложке поликристаллического MgO методом осаждения из спиртовой взвеси осаждается слой (Bi, Pb)2Sr2Са2Cu3Ох. Слой (Bi, Pb)2Sr2Ca2Cu3Ox сушится с целью удаления спирта и подвергается высокотемпературной термообработке для его полного расплавления.
На поверхности подложки образуется гладкая однородная пленка (Bi, Pb)2Sr2Са2Cu3Ох, хорошо сцепленная с поверхностью подложки, благодаря проникновению расплава в поры поликристаллической подложки.
Качественные характеристики промежуточного слоя (Bi, Pb)2Sr2Ca2Cu3Ох зависят от температуры термообработки.
Оптимальная температура термообработки промежуточного слоя (Вi, Pb)2Sr2Са2Cu3Ох составляет 886°С.
При температуре термообработки менее 886°С процесс расплавления промежуточного слоя проходит не до конца. В результате не обеспечивается необходимая плотность и адгезия слоя (Bi, Pb)2Sr2Ca2Cu3Ox к подложке.
При более высоких температурах возможно неконтролируемое растекание промежуточного слоя на торцы и обратную сторону подложки и его полное или частичное испарение, что нарушает целостность и состав промежуточного слоя. Кроме того, более высокие температуры нецелесообразны.
На подложку с промежуточным слоем методом шелкографии наносится основной слой высокотемпературного сверхпроводника состава (Bi, Pb)2Sr2Са2Cu3Ох. Для удаления органической связки полученная структура подвергается сушке в термошкафу. Затем проводится отжиг для окончательного формирования требуемой кристаллической структуры и сверхпроводящих свойств.
В результате формируется толстопленочная ВТСП структура на основе высокотемпературного сверхпроводника системы Bi(Pb)-Sr-Ca-Cu-O. ВТСП слой хорошо сцеплен с поверхностью подложки, плотный, не отслаивается. Имеет поликристаллическую структуру.
Пример.
На подложку поликристаллического MgO методом осаждения из спиртовой взвеси осаждается слой Bi1,7Pb0,4Sr2Са2Cu3Ох. Взвесь готовится из изопропилового спирта марки «осч 13-5» ТУ-6-09-07-1718-91 и порошка Bi1,7Pb0,4Sr2Са2Cu3Ох. Взвесь заливается в сосуд, на дне которого располагается подложка MgO. После выпаривания спирта подложка MgO со слоем Вi1,7Pb0,4Sr2Са2Cu3Ох подвергается сушке в термошкафу при температуре 145°С в течение 2 часов.
Затем проводится термообработка. Подложка со слоем Bi1,7Pb0,4Sr2Ca2Cu3Ox помещается в печь и нагревается до температуры Т=886°С. Выдерживается при этой температуре в течение времени, достаточном для его полного расплавления. В нашем случае время термообработки составляло 10 мин.
Расплавленный промежуточный слой Bi1,7Pb0,4Sr2Са2Cu3Ох образует на поверхности подложки гладкую, однородную, хорошо сцепленную с поверхностью подложки пленку. На поверхность промежуточного слоя Bi1,7Pb0,4Sr2Ca2Cu3Ox методом шелкографии наносится слой высокотемпературного сверхпроводника того же состава Bi1,7Pb0,4Sr2Ca2Cu3Ox. Проводится сушка при температуре 145°С в течение 2 часов и термообработка на воздухе при температуре 860°С в течение 16 часов.
Проведено измерение температурной зависимости относительного сопротивления (R/R(300)) толстопленочной структуры MgO/(Bi1,7Pb0,4Sr2Ca2Cu3Ox)распл/Bi1,7Pb0,4Sr2Ca2Cu3Ox, изготовленной по описанному способу. Толщина промежуточного слоя (Вi1,7Pb0,4Sr2Са2Cu3Ох)распл составляла 50 мкм. Толщина основного слоя Вi1,7Pb0,4Sr2Са2Cu3Ох составляла 100 мкм.
В качестве контрольных образцов из порошка той же партии были изготовлены толстопленочные структуры MgO/Bi1,7Pb0,4Sr2Ca2Cu3Ox без промежуточного слоя и MgO/Bi2O3/Bi1,7Pb0,4Sr2Ca2Cu3Ox с промежуточным слоем Вi2O3, полученным по методике, описанной в [3]. Высокотемпературная термообработка контрольных образцов проводилась на воздухе при температуре 860°С в течение 40 часов.
В толстопленочной структуре MgO/Bi1,7Pb0,4Sr2Са2Cu3Ох без промежуточного слоя после термообработки при температуре 860°С в течение 40 часов слои Bi1,7Pb0,4Sr2Са2Cu3Ох имели недостаточную адгезию к подложке, легко царапались и отслаивались после первого термоцикла при погружении в жидкий азот. При времени термообработки 16 часов слои Bi1,7Pb0,4Sr2Ca2Cu3Ox имели неприемлемое качество для их дальнейшего использования: практически не имели адгезии к поверхности подложки, были рыхлыми и разрушались при формировании на них контактов.
В толстопленочной структуре MgO/Bi2O3/Bi1,7Pb0,4Sr2Ca2Cu3Ox с промежуточным слоем Bi2О3 после термообработки при температуре 860°С в течение 40 часов слои Bi1,7Pb0,4Sr2Ca2Cu3Ox имели хорошую адгезию к подложке, были плотные и не отслаивались. При продолжительности термообработки 16 часов не наблюдалось существенного ухудшения адгезии и плотности слоя Bi1,7Pb0,4Sr2Ca2Cu3Ox.
Однако продолжительность термообработки при данной температуре 860°С имеет определяющее значение для формирования сверхпроводящих свойств. При времени термообработки 16 часов при температуре 860°С обе контрольные толстопленочные структуры не обладали сверхпроводимостью.
Результаты экспериментальных исследований температурной зависимости относительного сопротивления приведены на чертеже.
Результаты исследований показали наличие сверхпроводящих свойств в толстопленочных структурах MgO/Bi1,7Pb0,4Sr2Ca2Cu3Ox без промежуточного слоя, MgO/Bi2O3/B1,7Pb0,4Sr2Ca2Cu3Ox с промежуточным слоем Bi2O3, полученных при термообработке на воздухе при температуре 860°С в течение 40 часов (фиг.1а, 1б соответственно), и в структурах MgO/(Bi1,7Pb0,4Sr2Ca2Cu3Ox)распл/Bi1,7Pb0,4Sr2Ca2Cu3Ox с промежуточным слоем того же состава, что и состав основного слоя, после термообработки при температуре 860°С в течение 16 часов (фиг.1в).
Наличие промежуточного слоя Bi1,7Pb0,4Sr2Ca2Cu3Ox улучшает критические параметры толстопленочной сверхпроводниковой структуры в части температуры начала перехода в сверхпроводящее состояние по сравнению с прототипом [3] и в части достижения нулевого сопротивления по сравнению со структурой без промежуточного слоя при обеспечении адгезии промежуточного слоя к подложке и основного слоя к промежуточному.
Экспериментальные данные подтверждают достижение заявляемого технического результата.
Использование предложенного способа изготовления толстопленочных структур на основе высокотемпературного сверхпроводника обеспечивает следующие преимущества:
- улучшаются критические параметры сверхпроводникового перехода;
- снижается время термообработки основного ВТСП слоя;
- упрощается технологии получения толстопленочных ВТСП структур с промежуточным слоем в связи с использованием в качестве промежуточного слоя того же состава, что и основной;
- обеспечивается необходимая адгезия ВТСП слоя;
- способ характеризуется простотой аппаратурного оформления и технологичностью процесса получения промежуточного слоя.
Источники информации
1. Нанотехнологии в электронике. Под ред. Ю.А.Чаплыгина. - М.: Техносфера, 2005, с.362-363.
2. Технология толстых и тонких пленок. Под ред. А.Рейсмана, К.Роуза. - М.: Мир, 1972, с.9-13; 83-87.
3. Способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника. Волик Н.Н., Григорашвили Ю.Е. Решение о выдаче патента на изобретение по заявке №2006111822 от 12.04.2006 г. - прототип.
Claims (1)
- Способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника, включающий нанесение на подложку промежуточного слоя и толстой пленки высокотемпературного сверхпроводника висмутовой системы (Bi, Pb)-Sr-Ca-Cu-O, отличающийся тем, что в качестве промежуточного слоя используется слой, совпадающий по составу с толстой пленкой высокотемпературного сверхпроводника, прошедший стадии предварительной сушки и термообработки при температуре 886°С до его полного расплавления.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007129115/28A RU2352025C1 (ru) | 2007-07-31 | 2007-07-31 | Способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007129115/28A RU2352025C1 (ru) | 2007-07-31 | 2007-07-31 | Способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2352025C1 true RU2352025C1 (ru) | 2009-04-10 |
Family
ID=41015088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007129115/28A RU2352025C1 (ru) | 2007-07-31 | 2007-07-31 | Способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2352025C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2567021C2 (ru) * | 2009-10-02 | 2015-10-27 | АМБАЧЕР Эл.Эл.Си. | Пленки с чрезвычайно низким сопротивлением и способы их модифицирования или создания |
-
2007
- 2007-07-31 RU RU2007129115/28A patent/RU2352025C1/ru not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2567021C2 (ru) * | 2009-10-02 | 2015-10-27 | АМБАЧЕР Эл.Эл.Си. | Пленки с чрезвычайно низким сопротивлением и способы их модифицирования или создания |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0304061B1 (en) | Superconducting ceramics elongated body and method of manufacturing the same | |
RU2352025C1 (ru) | Способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника | |
RU2308789C1 (ru) | Способ изготовления толстопленочной структуры на основе высокотемпературного сверхпроводника | |
JPS63239742A (ja) | 薄膜超電導体の製造方法 | |
JPH0451407A (ja) | 強誘電体薄膜の製造方法 | |
Yoo et al. | Synthesis and optimization of fluorine-free Y & Cu precursor solution for MOD processing of YBCO coated conductor | |
JP2590142B2 (ja) | 超伝導体 | |
JPH01208327A (ja) | 薄膜超電導体の製造方法 | |
CN1020992C (zh) | 一种制造固态器件的方法及其产品 | |
Langlet et al. | High Tc superconducting films prepared by pyrolysis of an ultrasonic-generated aerosol | |
CN112011773B (zh) | 一种硅酸钇涂层及其制备方法与应用 | |
US20020165099A1 (en) | Dip coating of YBCO precursor films on substrates | |
JPH01286920A (ja) | 超電導体 | |
SU1823932A3 (ru) | Способ формирования тонкой высокотемпературной сверхпроводящей пленки на основе иттрия | |
JPS63274018A (ja) | 超電導体の構造およびその製造方法 | |
EP0497503B1 (en) | Process for producing single phase TlCaBaCuO thin films | |
KR960006246B1 (ko) | 씨앗층을 이용한 plzt 박막의 제조방법 | |
Remiens et al. | Structural and electrical properties of PbTiO3 thin films grown on silicon substrates | |
US5126320A (en) | Method for manufacturing an oxide superconducting thin-film | |
JP2821885B2 (ja) | 超伝導薄膜の形成方法 | |
Sanchez et al. | Deposition of YBa2Cu3Ox by laser ablation on Si (100) using different buffer layers | |
US20020173426A1 (en) | Dip coating of phase pure YBCO films on substrates | |
JPH01132008A (ja) | 超電導体およびその製造方法 | |
JP2001053235A (ja) | 薄膜抵抗およびその製造方法 | |
Rautioaho et al. | Studies To Prepare Superconducting Thick Films On Aluminium Oxide And Zirconium Oxide Substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160801 |