RU2348115C2 - Надежное обнаружение стирания и управление мощностью на основании частоты стирания в замкнутом контуре - Google Patents

Надежное обнаружение стирания и управление мощностью на основании частоты стирания в замкнутом контуре Download PDF

Info

Publication number
RU2348115C2
RU2348115C2 RU2007101708/09A RU2007101708A RU2348115C2 RU 2348115 C2 RU2348115 C2 RU 2348115C2 RU 2007101708/09 A RU2007101708/09 A RU 2007101708/09A RU 2007101708 A RU2007101708 A RU 2007101708A RU 2348115 C2 RU2348115 C2 RU 2348115C2
Authority
RU
Russia
Prior art keywords
codeword
received
erased
erasure
codewords
Prior art date
Application number
RU2007101708/09A
Other languages
English (en)
Other versions
RU2007101708A (ru
Inventor
Арак СУТИВОНГ (US)
Арак СУТИВОНГ
Авниш АГРАВАЛ (US)
Авниш АГРАВАЛ
Дэвид Джонатан ДЖУЛИАН (US)
Дэвид Джонатан ДЖУЛИАН
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2007101708A publication Critical patent/RU2007101708A/ru
Application granted granted Critical
Publication of RU2348115C2 publication Critical patent/RU2348115C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • H04W52/125Outer and inner loops cascaded outer loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate

Abstract

Описываются способы выполнения обнаружения стирания и управления мощностью для передачи без кодирования обнаружения ошибок. Для обнаружения стирания передатчик передает кодовые слова через канал беспроводной связи. Техническим результатом является надлежащая регулировка мощности передачи в отношении передач, когда не используется кодирование с обнаружением ошибок. Для этого приемник вычисляет метрику для каждого принятого кодового слова, сравнивает вычисленную метрику с пороговой величиной стирания и принимает решение, что принятое кодовое слово является "стертым" или "нестертым". Приемник динамически регулирует пороговую величину стирания на основании принятых известных кодовых слов для достижения целевого уровня рабочей характеристики. Для управления мощностью внутренний контур регулирует мощность передачи для поддержания качества (SNR) принятого сигнала на целевом SNR. Внешний контур регулирует целевое SNR на основании статуса принятых кодовых слов (стертое или нестертое) для достижения целевой частоты стирания. Третий контур регулирует пороговую величину стирания на основании статуса принятых известных кодовых слов ("хорошее", "плохое", или стертое) для достижения целевой условной частоты ошибок. 6 н. и 24 з.п. ф-лы, 6 ил.

Description

Притязание на приоритет согласно §119 Раздела 35 Кодекса законов США (U.S.C.)
Настоящая заявка на патент испрашивает приоритет предварительной заявки за номером №60/580819, озаглавленной "Reverse-Link Power Control Algorithm" (Алгоритм управления мощностью обратной линии связи), поданной 18 июня 2004 и переуступленной правопреемнику настоящего изобретения, тем самым полностью включенной в настоящий документ путем ссылки.
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение в целом относится к передаче данных и более конкретно - к способам для выполнения обнаружения стирания и управления мощностью в системе беспроводной связи.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Система беспроводной связи с множественным доступом может одновременно поддерживать связь с множеством терминалов беспроводной связи. Каждый терминал осуществляет связь с одной или более базовыми станциями через передачи по прямой и обратной линиям связи. Прямая линия связи (или нисходящая линия связи) относится к линии связи от базовых станций на терминалы, и обратная линия связи (или восходящая линия связи) относится к линии связи от терминалов на базовые станции.
Многие терминалы могут одновременно осуществлять передачу по обратной линии связи путем мультиплексирования своих передач, чтобы они были ортогональными по отношению друг к другу. Мультиплексирование направлено на достижение ортогональности между множеством передач обратной линии связи во временной, частотной и/или кодовой области. При достижении полной ортогональности передача от каждого терминала не создает помех передачам от других терминалов на принимающей базовой станции. Однако полная ортогональность между передачами от различных терминалов зачастую не реализуется вследствие состояний канала, несовершенства приемника и так далее. Потеря ортогональности приводит к тому, что каждый терминал вызывает некоторые величины помех другим терминалам. Рабочая характеристика каждого терминала тогда ухудшается ввиду помех от всех остальных терминалов.
В обратной линии связи может использоваться механизм управления мощностью, чтобы управлять мощностью передачи каждого терминала для обеспечения хорошей рабочей характеристики для всех терминалов. Такой механизм управления мощностью обычно осуществляется с помощью двух контуров управления мощностью с обратной связью, которые обычно называют "внутренним" контуром и "внешним" контуром. Внутренний контур регулирует мощность передачи терминала таким образом, чтобы качество его принятого сигнала (отношение сигнал/шум, SNR), измеряемое на принимающей базовой станции, поддерживалось на целевом значении SNR. Внешний контур регулирует целевое SNR, чтобы поддерживать желательную частоту появления ошибочных блоков (ЧОБ, BLER) или частоту появления ошибочных пакетов (ЧОП, PER).
Традиционный механизм управления мощностью регулирует мощность передачи каждого терминала для достижения желательной частоты появления ошибочных блоков/пакетов для передачи обратной линии связи от терминала. Обычно используется код обнаружения ошибок, такой как циклический избыточный код (ЦИК, CRC), чтобы определять, декодирован ли каждый принятый блок/пакет данных корректным образом или с ошибкой. Целевое SNR затем соответственно регулируется на основании результата декодирования с обнаружением ошибок. Однако код обнаружения ошибок может не использоваться для некоторых передач, например, если служебная информация для кода обнаружения ошибок считается чрезмерной. Для таких передач не может непосредственно использоваться традиционный механизм управления мощностью, который основывается на коде обнаружения ошибок.
Следовательно, в области техники имеется потребность в способах для надлежащей регулировки мощности передачи в отношении передач, когда не используется кодирование с обнаружением ошибок.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В данном документе описываются способы выполнения обнаружения стирания и управления мощностью для передачи на "физическом" канале (например, канале управления или информационном канале), который не применяет кодирование с обнаружением ошибок. Данные передаются в виде "кодовых слов" на физическом канале, причем каждое кодовое слово может быть блоком кодированных или некодированных данных.
Для обнаружения стирания передающий объект (например, терминал беспроводной связи) передает кодовые слова на физическом канале и через канал беспроводной связи - на принимающий объект (например, базовую станцию). Базовая станция вычисляет метрику для каждого принятого кодового слова, как описано ниже, и сравнивает вычисленную метрику с пороговой величиной стирания. Базовая станция оценивает каждое принятое кодовое слово как "стертое" кодовое слово или "нестертое" кодовое слово на основании результата сравнения. Базовая станция динамически регулирует пороговую величину стирания для достижения целевого уровня рабочей характеристики, которая может быть определена количественно посредством целевой условной частоты ошибок, указывающей вероятность, что принятое кодовое слово декодировано с ошибкой, хотя принято решение, что оно является нестертым кодовым словом. Пороговая величина стирания может регулироваться на основании принятых известных кодовых слов, которые являются принятыми кодовыми словами для известных кодовых слов, переданных терминалами, осуществляющими связь с базовой станцией, как описано ниже. Настраиваемая пороговая величина стирания может обеспечивать характеристику надежного обнаружения стирания при различных состояниях канала.
Может использоваться механизм управления мощностью с тремя контурами (внутренний контур, внешний контур и третий контур), чтобы управлять мощностью передачи для физического канала. Внутренний контур регулирует мощность передачи для физического канала, чтобы поддерживать принятое SNR на целевом или близком к нему значении SNR. Внешний контур регулирует целевое SNR на основании статуса принятых кодовых слов (“стертое” или “нестертое”) для достижения целевой частоты стирания, которая является вероятностью оценки принятого кодового слова как стертого кодового слова. Третий контур регулирует пороговую величину стирания на основании статуса принятых известных кодовых слов ("хорошее", "плохое" или "стертое") для достижения целевой условной частоты ошибок. Целевая частота стирания и целевая условная частота ошибок являются двумя мерами рабочей характеристики для физического канала.
Различные аспекты и варианты осуществления изобретения описаны ниже более подробно.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Признаки и сущность данного изобретения поясняются в нижеследующем подробном описании, иллюстрируемом чертежами, на которых одинаковые ссылочные позиции используются для соответствующего обозначения по всему описанию и на которых:
Фиг.1 - система беспроводной связи с множественным доступом;
Фиг.2 - механизм управления мощностью с тремя контурами;
Фиг.3A и 3B - процесс обновления второго и третьего контуров для механизма управления мощностью, показанного на Фиг.2;
Фиг.4 - каналы данных и управления для схемы передачи данных; и
Фиг.5 - блок-схема базовой станции и терминала.
ПОДРОБНОЕ ОПИСАНИЕ
Слово "примерный" используется в настоящем описании, чтобы означать "используемый в качестве примера, экземпляра или иллюстрации". Любой вариант осуществления или конструктивное решение, описанное в документе в качестве "примерного", не должно обязательно рассматриваться в качестве предпочтительного или преимущественного над другими вариантами осуществления или конструктивными решениями.
На Фиг.1 показана система 100 беспроводной связи с множественным доступом. Система 100 включает в себя ряд базовых станций 110, которые поддерживают обмен информацией для множества терминалов 120 беспроводной связи. Базовая станция является стационарной станцией, используемой для обмена информацией с терминалами, и может также именоваться как пункт доступа, Узел B или определяться некоторой другой терминологией. Терминалы 120 обычно рассредоточены по всей системе, и каждый терминал может быть неподвижным или мобильным. Терминал может также именоваться как мобильная станция, пользовательское устройство (ПУ, UE), устройство беспроводной связи или определяться некоторой другой терминологией. Каждый терминал может обмениваться информацией с одной или более базовыми станциями по прямой и обратной линиям связи в любой данный момент. Это зависит от того, является ли терминал активным, поддерживается ли гибкая передача обслуживания, и находится ли терминал в процессе гибкой передачи обслуживания. Для простоты на Фиг.1 показана только передача по обратной линии связи. Контроллер 130 системы соединен с базовыми станциями 110, обеспечивает координацию и управление для этих базовых станций и дополнительно управляет маршрутизацией данных для терминалов, обслуживаемых этими базовыми станциями.
Описанные способы обнаружения стирания и управления мощностью могут использоваться для различных систем беспроводной связи. Например, эти способы могут использоваться для системы множественного доступа с кодовым разделением каналов (CDMA), системы множественного доступа с временным разделением каналов (TDMA), системы множественного доступа с частотным разделением (FDMA), системы множественного доступа с ортогональным частотным разделением (OFDMA) и так далее. Система CDMA использует мультиплексирование с кодовым разделением, и передачи для различных терминалов ортогонализуются с использованием различных ортогональных кодов (например, кодов Уолша) для прямой линии связи. Терминалы используют различные последовательности псевдослучайных чисел (PN) для обратной линии связи в CDMA и не являются полностью ортогональными друг к другу. Система TDMA использует мультиплексирование с временным разделением, и передачи для различных терминалов ортогонализуются посредством передачи в различные временные интервалы. Система FDMA использует мультиплексирование с частотным разделением, и передачи для различных терминалов ортогонализуются посредством передачи в различных частотных поддиапазонах. Система OFDMA использует мультиплексирование (OFDM) с ортогональным частотным разделением, которое эффективно делит полную полосу частот системы на множество ортогональных поддиапазонов частот. Эти поддиапазоны обычно также именуются как тоны, поднесущие, элементы кодированного сигнала и частотные каналы. Система OFDMA может использовать различные схемы ортогонального мультиплексирования и может использовать любую комбинацию мультиплексирования из мультиплексирования с временным, частотным и/или кодовым разделением.
Описанные в документе способы могут использоваться для "физических" каналов различных типов, которые не используют кодирование с обнаружением ошибок. Физические каналы могут также именоваться как кодовые каналы, транспортные каналы или определяться некоторой другой терминологией. Физические каналы обычно включают в себя каналы "данных", используемые для посылки данных трафика/пакетов, и каналы "управления", используемые для посылки служебных/управляющих данных. Система может использовать различные каналы управления, чтобы посылать различные типы управляющей информации. Например, система может использовать (1) канал CQI для передачи указателей качества канала (CQI), указывающих качество канала беспроводной связи, (2) канал ACK для передачи подтверждения приема (ACK) для схемы гибридного протокола автоматической повторной передачи (H-ARQ), (3) канал REQ для передачи запроса передачи данных и так далее. Физические каналы могут использовать или могут не использовать другие типы кодирования, даже притом, что не используется кодирование с обнаружением ошибок. Например, физический канал может не использовать кодирование, и данные посылаются "в открытом виде" на физическом канале. Физический канал может также использовать блочное кодирование с тем, чтобы каждый блок данных был кодирован для получения соответствующего блока кодированных данных, который затем посылается на физическом канале. Описанные способы могут использоваться для любого и всех из этих различных физических каналов (каналов данных и управления).
Для ясности, способы обнаружения стирания и управления мощностью конкретно описываются ниже для примерного канала управления, используемого для обратной линии связи. Передачи от различных терминалов на этом канале управления могут быть ортогонально мультиплексированы в частотном, временном и/или кодовом пространстве. При полной ортогональности никаких помех не наблюдается каждым терминалом на канале управления. Однако в присутствии частотно-избирательного затухания (или изменений в частотной характеристике в ширине полосы системы) и доплеровского эффекта (вследствие перемещения) передачи от различных терминалов могут не быть ортогональными по отношению друг к другу на принимающей базовой станции.
Данные посылаются в виде блоков на примерном канале управления, причем каждый блок содержит заранее установленное количество (L) битов данных. Каждый блок данных кодируется с помощью блочного кода, чтобы получить соответствующее кодовое слово или кодированный блок данных. Поскольку каждый блок данных содержит L битов, существуют 2L возможных различных блоков данных, которые отображаются на 2L возможных кодовых слов в кодовом словаре, по одному кодовому слову для каждого отличающегося блока данных. Терминалы передают кодовые слова для блоков данных на канале управления.
Базовая станция принимает кодовые слова, передаваемые на канале управления различными терминалами. Базовая станция выполняет комплементарное декодирование блока над каждым принятым кодовым словом, чтобы получить декодированный блок данных, являющийся блоком данных, который принимается в качестве наиболее вероятно переданного для принятого кодового слова. Декодирование блока может быть выполнено различными способами. Например, базовая станция может вычислять эвклидово кодовое расстояние между принятым кодовым словом и каждым из 2L возможных действительных кодовых слов в кодовом словаре. Обычно эвклидово кодовое расстояние между принятым кодовым словом и данным действительным кодовым словом тем меньше, чем ближе принятое кодовое слово к действительному кодовому слову, и тем больше, чем далее принятое кодовое слово от действительного кодового слова. Блок данных, соответствующий действительному кодовому слову с самым малым эвклидовым кодовым расстоянием по отношению к принятому кодовому слову, предоставляется в качестве декодированного блока данных для принятого кодового слова.
В качестве примера L битов данных для блока данных могут быть отображены на кодовое слово, содержащее K символов модуляции, для конкретной схемы модуляции (например, двоичная фазовая манипуляция (ДФМ, BPSK), квадратурная фазовая манипуляция (КФМ, QPSK), фазовая манипуляция порядка М (М-PSK), квадратурная амплитудная модуляция порядка М (М-QAM) и так далее). Каждое действительное кодовое слово связано с отличающимся набором из K символов модуляции, и могут быть выбраны 2L наборов символов модуляции для 2L возможных действительных кодовых слов таким образом, чтобы они находились на максимально возможном разнесении (по эвклидовому кодовому расстоянию) друг от друга. Принятое кодовое слово тогда будет содержать K принятых символов, причем каждый принятый символ является версией с шумами для переданного символа модуляции. Эвклидово кодовое расстояние между принятым кодовым словом и данным действительным кодовым словом может быть вычислено как:
Figure 00000001
причем
Figure 00000002
является j-м принятым символом для принятого кодового слова k;
Figure 00000003
является j-м символом модуляции для действительного кодового слова i; и
Figure 00000004
является эвклидовым кодовым расстоянием между принятым кодовым словом k и действительным кодовым словом i.
Уравнение (1) вычисляет эвклидово кодовое расстояние в виде среднеквадратической ошибки между K принятыми символами для принятого кодового слова и K символами модуляции для действительного кодового слова. Блок данных, соответствующий действительному кодовому слову с наименьшим
Figure 00000005
предоставляется в качестве декодированного блока данных для принятого кодового слова.
Без кода обнаружения ошибок не имеется прямого способа определить, является ли корректным или имеет ошибку декодирование блока для данного принятого кодового слова, и что декодированный блок данных является действительно переданным блоком данных. Может определяться и использоваться метрика, чтобы обеспечивать указание достоверности результата декодирования. В варианте осуществления метрика может быть определена, как изложено ниже:
причем dn1(k) является эвклидовым кодовым расстоянием между принятым кодовым словом k и ближайшим действительным кодовым словом; dn2(k) является эвклидовым кодовым расстоянием между принятым кодовым словом k и следующим ближайшим действительным кодовым словом; и m(k) является метрикой для принятого кодового слова k.
Если принятое кодовое слово является намного более близким к ближайшему кодовому слову, чем следующее ближайшее кодовое слово, то метрика m(k) является малым значением, и имеется высокая степень достоверности, что декодированный блок данных является корректным. Напротив, если принятое кодовое слово имеет приблизительно равное расстояние по отношению к ближайшему кодовому слову и следующему ближайшему кодовому слову, то метрика m(k) приближается к единице, или
Figure 00000007
и имеется меньшая достоверность, что декодированный блок данных является корректным.
Уравнение (2) показывает одну примерную метрику, которая основана на отношении эвклидовых кодовых расстояний и которая может использоваться, чтобы определять, является ли корректным или имеет ошибку декодирование блока для данного принятого кодового слова. Другие метрики также могут использоваться для обнаружения стирания и также входят в объем изобретения. В общем, метрика может задаваться на основании любой подходящей функции надежности f(r,C), где r является принятым кодовым словом, и C является кодовым словарем или совокупностью всех возможных кодовых слов. Функция f(r,C) должна указывать качество/надежность принятого кодового слова и должна иметь надлежащую характеристику (например, монотонная в зависимости от надежности обнаружения).
Обнаружение стирания может выполняться, чтобы определять, удовлетворяет ли результат декодирования для каждого принятого кодового слова заранее установленной степени достоверности. Метрика m(k) для принятого кодового слова может сравниваться с пороговой величиной стирания, THerasure, чтобы получить решение о декодировании для принятого кодового слова, как изложено ниже:
m(k)<THerasure, решение о нестертом кодовом слове
m(k)≥THerasure, решение о стертом кодовом слове
(3)
Как показано в уравнении (3), принятое кодовое слово оценивается как (1) "стертое" кодовое слово, если метрика m(k) равна или больше пороговой величины стирания и (2) "нестертое" кодовое слово, если метрика m(k) меньше пороговой величины стирания. Базовая станция может обрабатывать декодированные блоки данных для нестертых и стертых кодовых слов различным образом. Например, базовая станция может использовать для последующей обработки декодированные блоки данных для нестертых кодовых слов и может отвергать декодированные блоки данных для стертых кодовых слов.
Вероятность оценки принятого кодового слова как стертого кодового слово называется частотой стирания и обозначается как Prerasure. Частота стирания зависит от пороговой величины стирания, используемой для обнаружения стирания, и качества (SNR) принятого сигнала для принятого кодового слова. Качество сигнала может быть определено количественно посредством отношения сигнал-шум, отношения сигнал-шум-и-помеха и так далее. Для данного принятого SNR низкая пороговая величина стирания повышает вероятность оценки принятого кодового слова как стертого кодового слова и обратно. Для данной пороговой величины стирания низкое принятое SNR также повышает вероятность оценки принятого кодового слова как стертого кодового слова и обратно. Для данной пороговой величины стирания принятое SNR может быть установлено (посредством регулировки мощности передачи для канала управления, как описано ниже), чтобы достичь требуемой частоты стирания.
Пороговая величина стирания может устанавливаться для достижения требуемой рабочей характеристики для канала управления. Например, для канала управления может использоваться вероятность ошибки, обусловленной нестертыми кодовыми словами, которая называется условной частотой ошибок. Эта условная частота ошибок обозначается Prerror и означает нижеследующее: если дано, что принятое кодовое слово оценивается как нестертое кодовое слово, то вероятность, что декодированный блок данных для принятого кодового слова некорректен, равна Prerror. Низкая Prerror (например, 1% или 0,1%) соответствует высокой степени достоверности результата декодирования в случае, когда принимается решение о нестертом кодовом слове. Низкая Prerror может быть желательной для многих типов передач, где является важным надежное декодирование. Пороговая величина стирания может быть установлена на надлежащий уровень для достижения требуемой Prerror.
Можно ожидать, что существует строго определенная взаимосвязь между частотой стирания Prerasure, условной частотой ошибок Prerror, пороговой величиной стирания THerasure и принятым SNR. В частности, для заданной пороговой величины стирания и заданного принятого SNR имеется конкретная частота стирания и конкретная условная частота ошибок. Путем изменения пороговой величины стирания может быть реализован компромисс между частотой стирания и условной частотой ошибок. Может быть выполнено компьютерное моделирование и/или могут быть выполнены эмпирические измерения для определения или прогнозирования взаимосвязи между частотой стирания и условной частотой ошибок для различных значений пороговой величины стирания и различных принятых SNR.
Однако, в практической системе, взаимосвязи между этими четырьмя параметрами могут не быть известными заранее и могут зависеть от сценариев реализации. Например, конкретная пороговая величина стирания, которая может достигать требуемой частоты стирания и условной частоты ошибок, может не быть известной априорно и может даже изменяться во времени, но вероятно медленно. Кроме того, не известно, будут ли "прогнозируемые" взаимосвязи между частотой стирания и условной частотой ошибок, полученные через моделирование или некоторыми другими средствами, оставаться справедливыми в реальных условиях использования.
Механизм управления мощностью может использоваться, чтобы динамически регулировать пороговую величину стирания и принятое SNR для реализации требуемой рабочей характеристики для канала управления. Рабочая характеристика канала управления может быть определена количественно посредством целевой частоты стирания Prerasure (например, частоты стирания в 10%, или Prerasure=0,1) и целевой условной частоты ошибок Prerror (например, условной частоты ошибок в 1%, или Prerror=0,01), то есть парой (Prerasure, Prerror).
На Фиг.2 показан механизм 200 управления мощностью передачи, который может использоваться для динамической регулировки пороговой величины стирания и управления мощностью передачи для передачи, посылаемой по каналу управления от терминала на базовую станцию. Механизм 200 управления мощностью включает в себя внутренний контур 210, внешний контур 220 и третий контур 230.
Внутренний контур 210 пытается поддерживать для передачи принятое SNR, как измерено на базовой станции, насколько возможно близким к целевому SNR. Для внутреннего контура 210 блок 242 оценки SNR на базовой станции оценивает принятое SNR для передачи и выдает принятое SNR на формирователь 244 управления мощностью передачи (УМП, TPC). Формирователь 244 TPC принимает также целевое SNR для канала управления, сравнивает принятое SNR с целевым SNR, и формирует команды TPC на основании результатов сравнения. Каждая команда TPC является либо (1) командой UP (повысить), предписывающий увеличение мощности передачи для канала управления, либо (2) командой DOWN (понизить), предписывающий уменьшение мощности передачи. Базовая станция передает на терминал команды TPC по прямой линии связи (блок 260).
Терминал принимает от базовой станции и обрабатывает передачу прямой линии связи и выдает принятые команды TPC на процессор 262 TPC. Каждая принятая команда TPC является версией с шумами команды TPC, посланной базовой станцией. Процессор 262 TPC выявляет каждую принятую команду TPC и получает решение TPC, которое может быть (1) решением UP, если принятая команда TPC рассматривается как команда UP или (2) решением DOWN, если принятая команда TPC рассматривается как команда DOWN.
Блок 264 регулировки мощности передачи (TX) регулирует мощность передачи для процесса передачи на канале управления на основании решений TPC от процессора 262 TPC. Блок 264 может регулировать мощность передачи, как изложено ниже:
Pcch(n+1)={Pcch(n)+ΔPup для решения UP
Pcch(n)-ΔPdn для решения DOWN
(4)
причем Pcch(n) является мощностью передачи для интервала n обновления (для) внутреннего контура;
ΔPup - размер шага повышения для мощности передачи; и
ΔPdn - размер шага понижения для мощности передачи.
Мощность передачи Pcch(n) и размеры ΔPup и ΔPdn шагов изменений представлены в децибеллах (дБ). Как показано в уравнении (4), мощность передачи увеличивается на ΔPup для каждого решения UP и уменьшается на ΔPdn для каждого решения DOWN. Хотя для простоты выше не описано, решение TPC также может быть решением "холостая-команда" (без операции), если принятая команда TPC считается слишком ненадежной, в этом случае мощность передачи может поддерживаться на том же уровне, или Pcch(n+1)=Pcch(n). Размеры ΔPup и ΔPdn шагов изменений обычно равны, и могут быть оба установлены в 1,0 дБ, 0,5 дБ или некоторое другое значение.
Вследствие потери в тракте передачи, затухания и эффекта многолучевого распространения на обратной линии связи (блок 240), которые обычно изменяются во времени и особенно для терминала мобильной связи, принятое SNR для процесса передачи на канале управления непрерывно флуктуирует. Внутренний контур 210 пытается поддерживать принятое SNR на целевом значении SNR или близком к нему в присутствии изменений в состоянии канала обратной линии связи.
Внешний контур 220 постоянно регулирует целевое SNR для достижения целевой частоты стирания для канала управления. Блок 252 вычисления метрики вычисляет метрику m(k) для каждого принятого кодового слова, полученного от канала управления, как описано выше. Блок 254 обнаружения стирания выполняет обнаружение стирания для каждого принятого кодового слова на основании вычисленной метрики m(k) для кодового слова и пороговой величины стирания и поставляет статус принятого кодового слова (либо стертое, либо нестертое) на блок 256 регулировки целевого SNR.
Блок 256 регулировки целевого SNR принимает статус каждого принятого кодового слова и регулирует целевое SNR для канала управления, как изложено ниже:
SNRtarget(k+1)={SNRtarget(k)+ΔSNR, для стертого кодового слова
SNRtarget(k)-ΔSNR, для нестертого кодового слова,
(5)
причем SNRtarget(k) является целевым SNR для интервала k обновления внешнего контура;
ΔSNRup является размером шага повышения для целевого SNR; и
ΔSNRdn является размером шага понижения для целевого SNR.
Целевое SNR SNRtarget(k) и размеры ΔSNRup и ΔSNRdn шагов изменений представлены в дБ. Как показано в уравнении (5), блок 256 уменьшает целевое SNR на ΔSNRdn, если принятое кодовое слово считается нестертым кодовым словом, что может указывать, что принятое SNR для канала управления является более высоким, чем необходимо. Напротив, блок 256 повышает целевое SNR на ΔSNRup, если принятое кодовое слово считается стертым кодовым словом, что может указывать, что принятое SNR для канала управления является более низким, чем необходимо.
Размеры изменений ΔSNRup и ΔSNRdn для регулировки целевого SNR могут быть установлены на основании нижеследующей взаимосвязи:
Figure 00000008
Например, если целевой частотой стирания для канала управления является 10% (или Prerasure=0,1), то размер шага повышения является 9-кратным размером шага понижения (или ΔSNRup=9∙ΔSNRdn). Если выбрано, что размер шага повышения должен быть 0,5 дБ, то размером шага понижения является приблизительно 0,056 дБ. Более большие значения для ΔSNRup и ΔSNRdn увеличивают скорость сходимости для внешнего контура 220. Большое значение для ΔSNRup также вызывает более большую флуктуацию или разброс значений целевого SNR в устойчивом состоянии.
Третий контур 230 динамически регулирует пороговую величину стирания, чтобы для канала управления достигалась целевая условная частота ошибок. Терминал может передавать известное кодовое слово на канале управления периодически или всякий раз, когда запускается. Базовая станция принимает переданное известное кодовое слово. Блок 252 вычисления метрики и обнаружитель 254 стирания выполняют обнаружение стирания для каждого принятого известного кодового слова на основании пороговой величины стирания и таким же образом, как для принятых кодовых слов. Поскольку каждое принятое известное кодовое слово считается нестертым, декодер 262 декодирует принятое известное кодовое слово и определяет, является ли декодированный блок данных корректным или имеет ошибку, что может быть выполнено, поскольку кодовое слово является известным. Декодер 262 выдает в блок 264 регулировки пороговой величины стирания статус каждого принятого известного кодового слова, которым может быть: (1) "стертое" кодовое слово, (2) "хорошее" кодовое слово, если принятое известное кодовое слово является нестертым кодовым словом и декодированным корректно, или (3) "плохое" кодовое слово, если принятое известное кодовое слово является нестертым кодовым словом, но декодированным с ошибкой.
Блок 264 регулировки пороговой величины стирания принимает статус принятых известных кодовых слов и регулирует пороговую величину стирания, как изложено ниже:
THerasure(l+1)={THerasure(l)+THup, для “хорошего” кодового слова
THerasure(l)-THdn, для “плохого” кодового слова, и
THerasure(l), для стертого кодового слова.
(7)
причем THerasure(l) является пороговой величиной стирания для интервала l обновления третьего контура;
THup является размером шага повышения для пороговой величины стирания; и
THdn является размером шага понижения для пороговой величины стирания.
Как показано в уравнении (7), пороговая величина стирания уменьшается на THdn для каждого принятого известного кодового слова, которое является “плохим” кодовым словом. Более низкая пороговая величина стирания соответствует более строгому критерию обнаружения стирания и приводит к тому, что принятые кодовые слова более вероятно будут считаться стертыми, что в свою очередь приводит к тому, что принятые кодовые слова более вероятно должны быть декодированы корректно, когда считаются нестертыми. Напротив, пороговая величина стирания увеличивается на THup для каждого принятого известного кодового слова, которое является “хорошим” кодовым словом. Более высокая пороговая величина стирания соответствует менее строгому критерию обнаружения стирания, вследствие чего принятое кодовое слово менее вероятно будет считаться стертым, что в свою очередь приводит к тому, что принятое кодовое слово более вероятно будет декодированным с ошибкой, когда считается нестертым. Пороговая величина стирания поддерживается на одинаковом уровне для принятых известных кодовых слов, которые являются стертыми.
Размеры изменений THup и THdn для регулировки пороговой величины стирания могут быть установлены на основании нижеследующей взаимосвязи:
Figure 00000009
Например, если целевой условной частотой ошибок для канала управления является 1%, то размером шага понижения является 99-кратный размер шага повышения. Величина THup и THdn может быть определена на основании ожидаемой величины для принятых символов, требуемой скорости сходимости для третьего контура, и возможно других факторов.
В общем, регулировка пороговой величины стирания зависит от задания метрики, используемой для обнаружения стирания. Уравнения (7) и (8) основаны на метрике, заданной, как показано в уравнении (2). Метрика также может задаваться другими способами (например, m(k)=dn2(k)/dn1(k) вместо m(k)=dn1(k)/dn2(k)), в каком случае регулировка пороговой величины стирания может быть модифицирована соответственно. Регулируемая пороговая величина стирания также может использоваться в комбинации с любой методикой обнаружения стирания для реализации надежной рабочей характеристики обнаружения стирания для различных состояний канала.
Пороговая величина стирания, THerasure(l), может динамически регулироваться различным образом. В одном варианте осуществления базовая станция поддерживает отдельный третий контур для каждого терминала, осуществляющего связь с базовой станцией. Это вариант осуществления позволяет регулировать пороговую величину стирания для каждого терминала индивидуально, что обеспечивает конкретное приспособление рабочей характеристики канала управления для терминала. Например, различные терминалы могут иметь различные целевые условные частоты ошибок, что может достигаться с использованием отдельных третьих контуров для этих терминалов. В другом варианте осуществления базовая станция поддерживает единственный третий контур для всех терминалов, осуществляющих связь с базовой станцией. Общая пороговая величина стирания затем используется для обнаружения стирания для всех этих терминалов, а также обновляется на основании известных кодовых слов, принятых базовой станцией от этих терминалов. Этот вариант осуществления обеспечивает хорошую рабочую характеристику для всех терминалов, если рабочая характеристика канала управления является устойчивой для этих терминалов для различных состояний канала. Этот вариант осуществления учитывает более высокую скорость сходимости для третьего контура, а также уменьшает служебную информацию, поскольку каждый терминал может передавать известное кодовое слово на более низкой скорости (например, один раз в каждые несколько сотен миллисекунд). В следующем варианте осуществления единственный третий контур поддерживается базовой станцией для каждой группы терминалов, имеющих одинаковую рабочую характеристику канала управления, и пороговая величина стирания обновляется на основании известных кодовых слов, принятых базовой станцией от всех терминалов в группе.
Внутренний контур 210, внешний контур 220 и третий контур 230 обычно обновляются с различными скоростями. Внутренний контур 210 является контуром с самой высокой скоростью из этих трех контуров, и мощность передачи для канала управления может обновляться с конкретной скоростью (например, 150 раз в секунду). Внешний контур 220 является контуром со следующей по величине скоростью, и целевое SNR может обновляться всякий раз, когда принимается кодовое слово на канале управления. Третий контур 230 является самым медленным по скорости контуром, и пороговая величина стирания может обновляться всякий раз, когда принимается известное кодовое слово на канале управления. Скорости обновления для этих трех контуров могут быть выбраны для достижения требуемой рабочей характеристики для обнаружения стирания и управления мощностью.
Для описанного выше варианта осуществления целевая условная частота ошибок Prerror используется в качестве одной из мер рабочей характеристики для канала управления, и третий контур проектируется для достижения этого значения Prerror. Также могут использоваться другие меры рабочей характеристики для канала управления, и третий контур может проектироваться соответственно. Например, для третьего контура может использоваться целевая вероятность, что принятое кодовое слово декодируется с ошибкой, когда оценивается как стертое.
На Фиг.3A и 3B показана блок-схема процесса 300 для обновления второго и третьего контуров механизма 300 управления мощностью. Принятое кодовое слово k первоначально получают от канала управления (этап 312). Для принятого кодового слова вычисляется метрика m(k), например, как описано выше, (этап 314) и сравнивается с пороговой величиной стирания (этап 316). Если вычисленная метрика m(k) больше или равна пороговой величине стирания, как определяется на этапе 320, и если принятое кодовое слово не является известным кодовым словом, как определяется на этапе 322, то принятое кодовое слово объявляется как стертое кодовое слово (этап 324). Целевое SNR увеличивается на ΔSNRup, размер шага, если вычисленная метрика m(k) больше или равна пороговой величине стирания, независимо от того, является ли известным принятое кодовое слово или нет (этап 326). После этапа 326 процесс возвращается на этап 312 для обработки следующего принятого кодового слова.
Если вычисленная метрика m(k) меньше пороговой величины стирания, как определяется на этапе 320, и если принятое кодовое слово не является известным кодовым словом, как определяется на этапе 332, то принятое кодовое слово оценивается как нестертое кодовое слово (этап 334), и целевое SNR уменьшается на размер шага THdn (этап 336). Процесс возвращается на этап 312 для обработки следующего принятого кодового слова.
Если вычисленная метрика m(k) меньше пороговой величины стирания, как определяется на этапе 320, и если принятое кодовое слово не является известным кодовым словом, как определяется на этапе 332, то (согласно Фиг.3B) принятое кодовое слово декодируется (этап 340). Если декодирование была корректным, как определяется на этапе 342, то принятое известное кодовое слово оценивается как “хорошее” кодовое слово (этап 344), и пороговая величина стирания увеличивается на размер шага THup (этап 346). Иначе, если имела место ошибка декодирования, как определяется на этапе 342, то принятое известное кодовое слово оценивается как “плохое” кодовое слово (этап 354), и пороговая величина стирания уменьшается на размер шага THdn (этап 356). От блоков 346 и 356 процесс возвращается на этап 312 по Фиг.3A для обработки следующего принятого кодового слова.
Как отмечено выше, описанные способы могут использоваться для различных типов физических каналов, которые не используют кодирование с обнаружением ошибок. Использование этих способов для примерной схемы передачи данных описано ниже. Для этой схемы передачи терминал, для которого желательно принимать передачу прямой линии связи, оценивает качество принятого сигнала прямой линии связи для его обслуживающей базовой станции (например, на основании пилот-сигнала, передаваемого базовой станцией). Оценка качества принятого сигнала может быть преобразована в L-битовое значение, которое называется указателем (CQI) качества канала. CQI может указывать принятое SNR для прямой линии связи, поддерживаемую скорость передачи данных для прямой линии связи и так далее. В любом случае, над CQI выполняется блочное кодирование, чтобы получить кодовое слово CQI. В качестве конкретного примера, L может быть равно 4, и кодовое слово CQI может содержать 16 символов модуляции QPSK, или [si(1) si(2)...1si(16)]. Терминал передает кодовое слово CQI на канале CQI (который является одним из каналов управления) на обслуживающую базовую станцию. Обслуживающая базовая станция принимает кодовое слово CQI, посланное на канале CQI, и выполняет обнаружение стирания над принятым кодовом слове CQI. Если принятое кодовое слово CQI не является стертым, то обслуживающая базовая станция декодирует принятое кодовое слово CQI и использует декодированное CQI, чтобы планировать передачу данных для терминала.
На Фиг.4 показан набор данных и каналов управления, используемых для примерной схемы передачи данных. Терминал измеряет качество принятого сигнала для прямой линии связи и передает кодовое слово CQI на канале CQI. Терминал постоянно измеряет качество прямой линии связи и посылает обновленные кодовые слова CQI на канале CQI. Таким образом, отбрасывание принятых кодовых слов CQI, считавшихся стертыми, не ухудшает рабочую характеристику системы. Однако принятые кодовые слова CQI, считавшиеся нестертыми, должны иметь высокое качество, поскольку передача прямой линии связи может планироваться на основании информации, содержащейся в этих нестертых кодовых словах CQI.
Если терминал спланирован для передачи прямой линии связи, то обслуживающая базовая станция обрабатывает пакеты данных, чтобы получить кодированные пакеты, и передает на терминал кодированные пакеты на информационном канале прямой линии связи. Для схемы гибридного протокола автоматической повторной передачи (H-ARQ), каждый кодированный пакет разделяется на множество подблоков и единовременно передается один подблок для кодированного пакета. Поскольку каждый подблок для данного кодированного пакета принимается на информационном канале прямой линии связи, терминал пытается декодировать и восстанавливать пакет на основании всех подблоков, принятых для пакета на текущий момент времени. Терминал способен восстанавливать пакет на основании частичной передачи, поскольку подблоки содержат избыточную информацию, которая является полезной для декодирования в случае, когда качество принятого сигнала является низким, но не требуется в случае хорошего качества принятого сигнала. Терминал затем передает подтверждение приема (ACK) на канале ACK, если пакет декодирован корректно, или отсутствие подтверждения приема (NAK) в противном случае. Процесс передачи для прямой линии связи продолжается таким образом до тех пор, пока все кодированные пакеты не будут переданы на терминал.
Описанные способы могут быть полезными для канала CQI. Обнаружение стирания может выполняться на каждом принятом кодовом слове CQI, как описано выше. Мощность передачи для канала CQI может регулироваться с использованием механизма 300 управления мощностью для реализации требуемой рабочей характеристики для канала CQI (например, требуемой частоты стирания и требуемой условной частоты ошибок). Мощность передачи для других каналов управления (например, канала ACK) и информационных каналов обратной линии связи также может быть установлена на основании управляемой-по-мощности мощности передачи для канала CQI.
Для ясности, способы обнаружение стирания и управления мощностью были описаны конкретно для обратной линии связи. Эти способы также могут использоваться для обнаружения стирания и управления мощностью для передачи, посылаемой по прямой линии связи.
На Фиг.5 показана блок-схема варианта выполнения базовой станции 110x и терминала 120x. В обратной линии связи, в терминале 120x, процессор 510 данных передачи (TX) принимает и обрабатывает (например, форматирует, кодирует, осуществляет перемежение и модулирует) данные трафика обратной линии связи (ОЛС, RL) и обеспечивает символы модуляции для данных трафика. Процессор 510 данных TX также обрабатывает управляющие данные (например, CQI) от контроллера 520 и обеспечивает символы модуляции для управляющих данных. Модулятор (MOD) 512 обрабатывает символы модуляции для данных трафика и управляющих данных и символы пилот-сигнала и обеспечивает последовательность комплексных значений элементарных сигналов. Обработка, выполняемая процессором 510 данных TX и модулятором 512, зависит от системы. Например, модулятор 512 может выполнять модуляцию OFDM, если система использует OFDM. Блок (TMTR) 514 передатчика формирует (например, преобразует в аналоговую форму, усиливает, фильтрует, и преобразует с повышением по частоте) последовательность элементарных сигналов и формирует сигнал обратной линии связи, который направляется через дуплексор (D) 516 и передается через антенну 518.
На базовой станции 110x сигнал обратной линии связи от терминала 120x принимается посредством антенны 552, проходит через дуплексор 554 и подается на блок (RCVR) 556 приемника. Блок 556 приемника формирует (например, фильтрует, усиливает и преобразует с понижением по частоте) принятый сигнал и дополнительно оцифровывает преобразованный сигнал, чтобы получить поток выборок данных. Демодулятор (DEMOD) 558 обрабатывает выборки данных, чтобы получить оценки символов. Процессор 560 данных приема (RX) затем обрабатывает (например, осуществляет обратное перемежение и декодирует) оценки символов, чтобы получить декодированные данные для терминала 120x. Процессор 560 данных RX выполняет также обнаружение стирания и выдает в контроллер 570 статус каждого принятого кодового слова, используемого для управления мощностью. Обработка посредством демодулятора 558 и процессора 560 данных RX является комплементарной по отношению к обработке, выполняемой посредством модулятора 512 и процессора 510 данных TX, соответственно.
Обработка для передачи прямой линии связи может быть выполнена подобно описанной выше для обратной линии связи. Обработка для передач обратной линии связи и прямой линии связи обычно определяется в соответствии с системой.
Для управления мощностью обратной линии связи блок 574 оценки SNR оценивает принятое отношение SNR для терминала 120x и выдает принятое отношение SNR в формирователь 576 TPC. Формирователь 576 TPC принимает также целевое SNR и формирует команды TPC для терминала 120x. Команды TPC обрабатываются процессором 582 данных TX, дополнительно обрабатываются модулятором 584, формируются блоком 586 передатчика, проходят через дуплексор 554 и передаются через антенну 552 на терминал 120x.
В терминале 120x сигнал прямой линии связи от базовой станции 110x принимается посредством антенны 518, проходит через дуплексор 516, преобразуется и оцифровывается посредством блока 540 приемника, обрабатывается демодулятором 542 и дополнительно обрабатывается процессором 544 данных RX, чтобы получить принятые команды TPC. Процессор 524 TPC затем обнаруживает принятые команды TPC, чтобы получить решения TPC, которые используются для осуществления регулировки управления мощностью передачи. Модулятор 512 принимает сигналы регулировки от процессора 524 TPC и регулирует мощность передачи для передачи обратной линии связи. Управление мощностью передачи для прямой линии связи может быть осуществлено подобным образом.
Контроллеры 520 и 570 управляют различными блоками обработки в терминале 120x и базовой станции 110x, соответственно. Контроллер 520 и 570 может также выполнять различные функции для обнаружения стирания и управления мощностью для прямой линии связи и обратной линии связи. Например, каждый контроллер может реализовать функции блока оценки SNR, формирователя TPC и блока регулировки целевого SNR для своей линии связи. Контроллер 570 и процессор 560 данных RX может также обеспечивать выполнение процесса 300 по Фиг.3A и 3B. Запоминающие устройства 522 и 572 хранят данные и программные коды для контроллеров 520 и 570, соответственно.
Описанные способы обнаружения стирания и управления мощностью могут быть реализованы с помощью различных средств. Например, эти способы могут быть осуществлены в виде аппаратных средств, программного обеспечения или их комбинации. Для аппаратного исполнения блоки обработки, используемые для выполнения обнаружения стирания, и/или управления мощностью могут быть осуществлены в рамках одной или нескольких проблемно-ориентированных интегральных микросхем (ASIC), цифровых процессоров (DSP) сигналов, устройств цифровой обработки сигналов (DSPD), программируемых логических устройств (PLD), программируемых вентильных матриц (FPGA), процессоров, контроллеров, микроконтроллеров, микропроцессоров, других электронных устройств, разработанных для выполнения описанных функций или их комбинации.
Для программного исполнения описанные способы могут быть осуществлены с помощью модулей (например, процедур, функций и так далее), которые выполняют описанные функции. Программные коды могут храниться в запоминающем устройстве (например, запоминающем устройстве 572 по Фиг.5) и исполняться процессором (например, контроллером 570). Запоминающее устройство может быть реализовано в рамках процессора или быть внешним по отношению к процессору. В этом случае оно может быть коммуникативно соединено с процессором через различные средства, как известно в данной области техники.
Предшествующее описание раскрытых вариантов осуществления предназначено для того, чтобы дать возможность любому специалисту в данной области техники реализовать или использовать настоящее изобретение. Различные модификации этих вариантов осуществления будут очевидны специалистам в данной области техники, а общие принципы, определенные при этом, могут применяться для других вариантов осуществления без изменения сущности или объема изобретения. Таким образом, настоящее изобретение не ограничивается описанными вариантами осуществления, а должно соответствовать самому широкому объему, совместимому с раскрытыми принципами и новыми признаками.

Claims (30)

1. Способ выполнения обнаружения стирания в системе связи, содержащий этапы, на которых получают принятые кодовые слова для кодовых слов, переданных через канал беспроводной связи, причем каждое переданное кодовое слово является блоком кодированных или некодированных данных, и каждое принятое кодовое слово является версией с шумами переданного кодового слова; вычисляют метрику для каждого кодового слова из принятых кодовых слов; сравнивают вычисленную метрику для каждого принятого кодового слова с пороговой величиной стирания; оценивают каждое принятое кодовое слово как стертое кодовое слово или нестертое кодовое слово на основании результата сравнения для принятого кодового слова и
динамически регулируют пороговую величину стирания для достижения целевого уровня рабочей характеристики для обнаружения стирания, для чего получают принятые известные кодовые слова для известных кодовых слов, переданных через канал беспроводной связи, причем каждое известное кодовое слово является блоком известных данных, и каждое принятое известное кодовое слово является версией с шумами переданного известного кодового слова, определяют статус каждого из принятых известных кодовых слов как хорошее кодовое слово, плохое кодовое слово или стертое кодовое слово, при этом хорошее кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово и декодированным корректно, а плохое кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово, но декодированное с ошибкой, и регулируют пороговую величину стирания на основании статуса каждого принятого известного кодового слова.
2. Способ по п.1, в котором известные кодовые слова передают в известные моменты времени посредством одного или нескольких передающих объектов.
3. Способ по п.1, в котором известные кодовые слова передают посредством передающего объекта, когда предписано.
4. Способ по п.1, в котором нестертое кодовое слово связано с конкретным уровнем достоверности корректного приема, а стертое кодовое слово связано с конкретным уровнем достоверности приема с ошибкой.
5. Способ по п.1, в котором целевой уровень рабочей характеристики для обнаружения стирания является целевой условной частотой ошибок, указывающей заранее установленную вероятность, что принятое кодовое слово декодировано с ошибкой, если оценено как нестертое кодовое слово.
6. Способ по п.1, в котором каждое переданное кодовое слово является одним из множества возможных действительных кодовых слов, при этом метрика основана на функции, указывающей надежность принятого кодового слова.
7. Способ по п.6, в котором метрикой для каждого принятого кодового слова является отношение эвклидова расстояния до ближайшего действительного кодового слова к эвклидову расстоянию до следующего ближайшего действительного кодового слова, причем эвклидово расстояние до ближайшего действительного кодового слова является эвклидовым расстоянием между принятым кодовым словом и действительным кодовым словом, ближайшим к принятому кодовому слову, и эвклидово расстояние до следующего ближайшего действительного кодового слова является эвклидовым расстоянием между принятым кодовым словом и действительным кодовым словом, следующим ближайшим к принятому кодовому слову.
8. Способ по п.1, в котором каждое переданное кодовое слово является блоком кодированных данных, полученных посредством выполнения блочного кодирования над блоком некодированных данных.
9. Способ по п.1, в котором каждое переданное кодовое слово не включает в себя код обнаружения ошибок.
10. Устройство для выполнения обнаружения стирания в системе беспроводной связи, содержащее блок вычисления метрики, предназначенный для получения принятых кодовых слов для кодовых слов, переданных через канал беспроводной связи, и вычисления метрики для каждого из принятых кодовых слов, при этом каждое переданное кодовое слово является блоком кодированных или некодированных данных, и каждое принятое кодовое слово является версией с шумами переданного кодового слова; обнаружитель стирания, предназначенный для сравнения вычисленной метрики для каждого принятого кодового слова с пороговой величиной стирания и оценивания каждого принятого кодового слова как стертого кодового слова или нестертого кодового слова на основании результата сравнения для принятого кодового слова; декодер, предназначенный для получения принятых известных кодовых слов для известных кодовых слов, переданных через канал беспроводной связи, причем каждое известное кодовое слово является блоком известных данных, и каждое принятое известное кодовое слово является версией с шумами переданного известного кодового слова, декодирования каждого принятого известного кодового слова, оцененного как нестертое кодовое слово, и определения статуса каждого принятого известного кодового слова как хорошее кодовое слово, плохое кодовое слово или стертое кодовое слово, при этом хорошее кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово и декодированное корректно, а плохое кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово, но декодированное с ошибкой, и блок регулировки, предназначенный для динамического регулирования пороговой величины стирания для достижения целевого уровня рабочей характеристики для обнаружения стирания, при этом блок регулировки обеспечивает регулирование пороговой величины стирания на основании статуса каждого принятого известного кодового слова.
11. Устройство для выполнения обнаружения стирания в системе беспроводной связи, содержащее средство для получения принятых кодовых слов для кодовых слов, переданных через канал беспроводной связи, причем каждое переданное кодовое слово является блоком кодированных или некодированных данных, и каждое принятое кодовое слово является версией с шумами переданного кодового слова; средство для вычисления метрики для каждого из принятых кодовых слов; средство для сравнения вычисленной метрики для каждого принятого кодового слова с пороговой величиной стирания; средство для оценивания каждого принятого кодового слова как стертое кодовое слово или нестертое кодовое слово на основании результата сравнения для принятого кодового слова; средство для получения принятых известных кодовых слов для известных кодовых слов, переданных через канал беспроводной связи, при этом каждое известное кодовое слово является блоком известных данных, и каждое принятое известное кодовое слово является версией с шумами переданного известного кодового слова; средство для определения статуса каждого из принятых известных кодовых слов как хорошее кодовое слово, плохое кодовое слово или стертое кодовое слово, при этом хорошее кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово и декодированное корректно, а плохое кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово, но декодированное с ошибкой; и средство для динамической регулировки пороговой величины стирания для достижения целевого уровня рабочей характеристики для обнаружения стирания путем регулировки пороговой величины стирания на основании статуса каждого принятого известного кодового слова.
12. Способ выполнения управления мощностью для передачи, посылаемой через канал беспроводной связи в системе беспроводной связи, содержащий этапы, на которых получают принятые кодовые слова для кодовых слов, переданных в передаче, причем каждое переданное кодовое слово является блоком кодированных или некодированных данных, и каждое принятое кодовое слово является версией с шумами переданного кодового слова; определяют статус каждого принятого кодового слова как стертое кодовое слово или нестертое кодовое слово на основании вычисленной для принятого кодового слова метрики и пороговой величины стирания; регулируют целевое качество (SNR) сигнала на основании статуса каждого принятого кодового слова, при этом мощность передачи для упомянутой передачи регулируют на основании целевого SNR; получают принятые известные кодовые слова для известных кодовых слов, переданных через канал беспроводной связи, причем каждое известное кодовое слово является блоком известных данных, и каждое принятое известное кодовое слово является версией с шумами переданного известного кодового слова; определяют статус каждого принятого известного кодового слова как хорошее кодовое слово, плохое кодовое слово или стертое кодовое слово, при этом хорошее кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово и декодированное корректно, а плохое кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово, но декодированное с ошибкой; и регулируют пороговую величину стирания на основании статуса каждого принятого известного кодового слова.
13. Способ по п.12, в котором регулировка целевого SNR включает в себя уменьшение целевого SNR на шаг понижения для каждого принятого кодового слова, оцененного как нестертое кодовое слово, и увеличение целевого SNR на шаг повышения для каждого принятого кодового слова, оцененного как стертое кодовое слово.
14. Способ по п.13, в котором шаг понижения и шаг повышения для регулировки целевого SNR определяют согласно целевой частоте стирания, указывающей заранее установленную вероятность оценивания принятого кодового слова как стертого кодового слова.
15. Способ по п.12, в котором более низкая пороговая величина стирания соответствует более высокой вероятности оценки принятого кодового слова как стертого кодового слова, и при этом регулировка пороговой величины стирания включает в себя уменьшение пороговой величины стирания на шаг понижения для каждого принятого известного кодового слова, оцененного как плохое кодовое слово, и увеличение пороговой величины стирания на шаг повышения для каждого принятого известного кодового слова, оцененного как хорошее кодовое слово.
16. Способ по п.15, в котором регулировка пороговой величины стирания дополнительно включает в себя поддержание пороговой величины стирания на одинаковом уровне для каждого принятого известного кодового слова, оцененного как стертое кодовое слово.
17. Способ по п.15, в котором шаг понижения и шаг повышения для регулировки пороговой величины стирания определяют согласно целевой условной частоте ошибок, указывающей заранее установленную вероятность того, что принятое кодовое слово декодировано с ошибкой, если оно оценено как нестертое кодовое слово.
18. Способ по п.12, в котором принятые известные кодовые слова получают от множества различных передающих объектов.
19. Способ по п.12, дополнительно содержащий этапы, на которых оценивают принятое SNR для передачи; сравнивают принятое SNR с целевым SNR и формируют команды на основании результатов сравнения, при этом команды используются для регулирования мощности передачи для упомянутой передачи.
20. Устройство для выполнения управления мощностью передачи для передачи, посылаемой через канал беспроводной связи в системе беспроводной связи, содержащее процессор данных, предназначенный для получения принятых кодовых слов для кодовых слов, переданных в передаче, причем каждое переданное кодовое слово является блоком кодированных или некодированных данных, и каждое принятое кодовое слово является версией с шумами переданного кодового слова, определения статуса каждого принятого кодового слова как стертого кодового слова или нестертого кодового слова на основании вычисленной для принятого кодового слова метрики и пороговой величины стирания, получения принятых известных кодовых слов для известных кодовых слов, переданных через канал беспроводной связи, причем каждое известное кодовое слово является блоком известных данных, и каждое принятое известное кодовое слово является версией с шумами переданного известного кодового слова, и определения статуса каждого принятого известного кодового слова как хорошее кодовое слово, плохое кодовое слово или стертое кодовое слово, при этом хорошее кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово и декодированным корректно, а плохое кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово, но декодированным с ошибкой; и контроллер, предназначенный для регулирования целевого качества (SNR) сигнала на основании статуса каждого принятого кодового слова, при этом мощность передачи для упомянутой передачи регулируется на основании целевого SNR, и регулирования пороговой величины стирания на основании статуса каждого принятого известного кодового слова.
21. Устройство по п.20, дополнительно содержащее блок оценки SNR, предназначенный для оценивания принятого SNR для передачи; и формирователь, предназначенный для сравнения принятого SNR с целевым SNR, и формирования команд, используемых для регулировки мощности передачи для упомянутой передачи.
22. Устройство по п.20, в котором контроллер предназначен для регулирования пороговой величины стирания для достижения целевой условной частоты ошибок, указывающей заранее установленную вероятность того, что принятое кодовое слово декодировано с ошибкой, если оно оценено как нестертое кодовое слово.
23. Устройство по п.20, в котором контроллер предназначен для регулирования целевого SNR для достижения целевой частоты стирания, указывающей заранее установленную вероятность оценки принятого кодового слова как стертого кодового слова.
24. Устройство по п.20, в котором передача предназначена для канала управления.
25. Устройство по п.24, в котором канал управления используется для передачи информации о качестве канала, и при этом каждое переданное кодовое слово предназначено для указателя качества канала.
26. Устройство по п.20, в котором принятые известные кодовые слова принимаются от множества различных передающих объектов.
27. Устройство по п.20, предназначенное для использования в базовой станции.
28. Устройство по п.20, предназначенное для использования в терминале беспроводной связи.
29. Устройство для выполнения управления мощностью передачи для передачи, посылаемой через канал беспроводной связи в системе беспроводной связи, содержащее средство для получения принятых кодовых слов для кодовых слов, переданных в передаче, причем каждое переданное кодовое слово является блоком кодированных или некодированных данных, и каждое принятое кодовое слово является версией с шумами переданного кодового слова; средство для определения статуса каждого принятого кодового слова как стертое кодовое слово или нестертое кодовое слово на основании вычисленной для принятого кодового слова метрики и пороговой величины стирания; средство для регулировки целевого качества (SNR) сигнала на основании статуса каждого принятого кодового слова, при этом мощность передачи для упомянутой передачи регулируется на основании целевого SNR; средство для получения принятых известных кодовых слов для известных кодовых слов, переданных через канал беспроводной связи, при этом каждое известное кодовое слово является блоком известных данных, и каждое принятое известное кодовое слова является версией с шумами переданного известного кодового слова; средство для определения статуса каждого принятого известного кодового слова как хорошее кодовое слово, плохое кодовое слово или стертое кодовое слово, при этом хорошее кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово и декодированным корректно, а плохое кодовое слово является принятым известным кодовым словом, оцененным как нестертое кодовое слово, но декодированным с ошибкой; и средство для регулировки пороговой величины стирания на основании статуса каждого принятого известного кодового слова.
30. Устройство по п.29, дополнительно содержащее средство для оценки принятого SNR для передачи; средство для сравнения принятого SNR с целевым SNR и средство для формирования команд на основании результатов сравнения, при этом команды используются для регулирования мощности передачи для упомянутой передачи.
RU2007101708/09A 2004-06-18 2005-06-07 Надежное обнаружение стирания и управление мощностью на основании частоты стирания в замкнутом контуре RU2348115C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US58081904P 2004-06-18 2004-06-18
US60/580,819 2004-06-18
US10/890,717 2004-07-13
US10/890,717 US7197692B2 (en) 2004-06-18 2004-07-13 Robust erasure detection and erasure-rate-based closed loop power control

Publications (2)

Publication Number Publication Date
RU2007101708A RU2007101708A (ru) 2008-07-27
RU2348115C2 true RU2348115C2 (ru) 2009-02-27

Family

ID=34972195

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007101708/09A RU2348115C2 (ru) 2004-06-18 2005-06-07 Надежное обнаружение стирания и управление мощностью на основании частоты стирания в замкнутом контуре

Country Status (17)

Country Link
US (3) US7197692B2 (ru)
EP (1) EP1766829B1 (ru)
JP (1) JP4575442B2 (ru)
CN (1) CN101006672B (ru)
AR (1) AR049926A1 (ru)
AU (1) AU2005262561C1 (ru)
BR (1) BRPI0512201B1 (ru)
CA (1) CA2570343C (ru)
ES (1) ES2642587T3 (ru)
HK (1) HK1104725A1 (ru)
HU (1) HUE035959T2 (ru)
IL (1) IL180120A (ru)
NO (1) NO343267B1 (ru)
NZ (1) NZ552149A (ru)
RU (1) RU2348115C2 (ru)
TW (1) TWI360976B (ru)
WO (1) WO2006007317A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2642460C1 (ru) * 2014-01-27 2018-01-25 Сан Пэтент Траст Беспроводное устройство и способ управления мощностью
RU2668112C1 (ru) * 2014-12-22 2018-09-26 Хуавэй Текнолоджиз Ко., Лтд. Устройство и способ передачи информации указания

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7730381B2 (en) * 2004-06-09 2010-06-01 Qualcomm Incorporated Erasure detection and power control for a transport channel with unknown format in a wireless communication system
KR100682330B1 (ko) * 2004-06-14 2007-02-15 삼성전자주식회사 다중 송수신 안테나를 사용하는 이동통신시스템에서송신모드를 제어하기 위한 장치 및 방법
US8068530B2 (en) * 2004-06-18 2011-11-29 Qualcomm Incorporated Signal acquisition in a wireless communication system
US8452316B2 (en) 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US7594151B2 (en) 2004-06-18 2009-09-22 Qualcomm, Incorporated Reverse link power control in an orthogonal system
US7724777B2 (en) 2004-06-18 2010-05-25 Qualcomm Incorporated Quasi-orthogonal multiplexing for a multi-carrier communication system
US7197692B2 (en) 2004-06-18 2007-03-27 Qualcomm Incorporated Robust erasure detection and erasure-rate-based closed loop power control
US20050286566A1 (en) * 2004-06-23 2005-12-29 Po Tong Versatile erasure forecasting system for impulse noise mitigation
US8477710B2 (en) * 2004-07-21 2013-07-02 Qualcomm Incorporated Method of providing a gap indication during a sticky assignment
US8432803B2 (en) 2004-07-21 2013-04-30 Qualcomm Incorporated Method of providing a gap indication during a sticky assignment
US8891349B2 (en) 2004-07-23 2014-11-18 Qualcomm Incorporated Method of optimizing portions of a frame
KR20060013466A (ko) * 2004-08-07 2006-02-10 삼성전자주식회사 소프트 핸드오프 영역에서 역방향 패킷 전송을 위한단말들의 상태 정보 시그널링 방법
US9084199B2 (en) * 2004-09-30 2015-07-14 Alcatel Lucent Utilization of overhead channel quality metrics in a cellular network
US8074158B2 (en) * 2005-02-02 2011-12-06 Qualcomm Incorporated Erasure detection for a transport channel with an unknown format
US8693540B2 (en) * 2005-03-10 2014-04-08 Qualcomm Incorporated Method and apparatus of temporal error concealment for P-frame
DE602006011865D1 (de) * 2005-03-10 2010-03-11 Qualcomm Inc Decoder-architektur für optimiertes fehlermanagement in multimedia-strömen
US7925955B2 (en) * 2005-03-10 2011-04-12 Qualcomm Incorporated Transmit driver in communication system
US8942639B2 (en) * 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US8848574B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US7742444B2 (en) * 2005-03-15 2010-06-22 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
US8634432B2 (en) * 2005-05-06 2014-01-21 Samsung Electronics Co., Ltd. System and method for subcarrier allocation in a multicarrier wireless network
US8254360B2 (en) 2005-06-16 2012-08-28 Qualcomm Incorporated OFDMA control channel interlacing
US7983674B2 (en) * 2005-06-16 2011-07-19 Qualcomm Incorporated Serving base station selection in a wireless communication system
US9055552B2 (en) * 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8750908B2 (en) * 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US7965789B2 (en) * 2005-08-22 2011-06-21 Qualcomm Incorporated Reverse link power control for an OFDMA system
US20090207790A1 (en) * 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
US20070097935A1 (en) * 2005-10-27 2007-05-03 Alexei Gorokhov In-band rate control for an orthogonal frequency division multiple access communication system
US20070147226A1 (en) * 2005-10-27 2007-06-28 Aamod Khandekar Method and apparatus for achieving flexible bandwidth using variable guard bands
US7855976B2 (en) * 2005-10-27 2010-12-21 Qualcomm Incorporated Method and apparatus for reporting CQI in a wireless communication system
IN2013MN00252A (ru) * 2005-10-27 2015-06-05 Qualcomm Inc
US8315226B2 (en) * 2006-01-05 2012-11-20 Qualcomm Incorporated Power control and handoff with power control commands and erasure indications
JP2007195076A (ja) * 2006-01-20 2007-08-02 Nec Corp 無線通信システムとその送信電力制御方法および装置
KR101220560B1 (ko) * 2006-03-24 2013-01-18 삼성전자주식회사 동기식 고속 패킷 데이터 서비스와 직교 주파수 분할 다중시스템을 동시에 지원하는 이동통신시스템에서 제어채널을효율적으로 운용하는 송수신 장치 및 방법
US8738056B2 (en) * 2006-05-22 2014-05-27 Qualcomm Incorporation Signal acquisition in a wireless communication system
US8929353B2 (en) * 2007-05-09 2015-01-06 Qualcomm Incorporated Preamble structure and acquisition for a wireless communication system
BRPI0712926B1 (pt) * 2006-06-13 2019-11-12 Qualcomm Inc estrutura de preâmbulo e aquisição para um sistema de comunicação sem fio
US20080117849A1 (en) * 2006-09-08 2008-05-22 Qualcomm Incorporated Method and apparatus for interaction of fast other sector interference (osi) with slow osi
US8670777B2 (en) * 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US8442572B2 (en) 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
AU2007316434B2 (en) * 2006-11-06 2011-08-04 Qualcomm Incorporated Methods and apparatus for power allocation and/or rate selection for UL MIMO/SIMO operations with par considerations
US8825099B2 (en) * 2007-01-09 2014-09-02 Qualcomm Incorporated CQI reporting for MIMO transmission in a wireless communication system
WO2008105422A1 (ja) * 2007-03-01 2008-09-04 Ntt Docomo, Inc. 基地局装置及び通信制御方法
US7885342B2 (en) * 2007-03-05 2011-02-08 Cisco Technology, Inc. Managing bit error rates on point-to-point wireless links in a network
US8428175B2 (en) * 2007-03-09 2013-04-23 Qualcomm Incorporated Quadrature modulation rotating training sequence
US8064550B2 (en) 2007-03-09 2011-11-22 Qualcomm, Incorporated Quadrature imbalance estimation using unbiased training sequences
US8290083B2 (en) * 2007-03-09 2012-10-16 Qualcomm Incorporated Quadrature imbalance mitigation using unbiased training sequences
JP4574659B2 (ja) * 2007-10-01 2010-11-04 株式会社エヌ・ティ・ティ・ドコモ 移動局装置、上りリンク送信方法、および通信システム
US8386892B1 (en) * 2007-11-05 2013-02-26 Massachusetts Institute Of Technology Partial packet recovery for wireless networks
DE602007003106D1 (de) * 2007-11-23 2009-12-17 Alcatel Lucent Adaptive Leistungssteuerung für EDCH
US20100195553A1 (en) * 2008-03-18 2010-08-05 Myers Theodore J Controlling power in a spread spectrum system
US8958460B2 (en) * 2008-03-18 2015-02-17 On-Ramp Wireless, Inc. Forward error correction media access control system
US8520721B2 (en) 2008-03-18 2013-08-27 On-Ramp Wireless, Inc. RSSI measurement mechanism in the presence of pulsed jammers
US8477830B2 (en) 2008-03-18 2013-07-02 On-Ramp Wireless, Inc. Light monitoring system using a random phase multiple access system
US8576733B2 (en) * 2008-08-27 2013-11-05 Qualcomm Incorporated Control of access terminal operation based on interference information
US8275408B2 (en) 2008-08-27 2012-09-25 Qualcomm, Incorporated Power control in a wireless communication system
WO2010025568A1 (en) * 2008-09-05 2010-03-11 Icera Canada ULC A method and system for dynamic signal to noise ratio adjustment in a transceiver
CN101765195B (zh) * 2008-12-25 2013-01-30 财团法人工业技术研究院 发射功率控制方法与系统
US8363699B2 (en) 2009-03-20 2013-01-29 On-Ramp Wireless, Inc. Random timing offset determination
CN102884826A (zh) * 2010-03-12 2013-01-16 高通股份有限公司 用于管理上行链路干扰的方法和装置
US9166834B2 (en) * 2012-06-20 2015-10-20 MagnaCom Ltd. Method and system for corrupt symbol handling for providing high reliability sequences
US9215726B1 (en) 2012-07-24 2015-12-15 Spectranet, Inc. Low latency wireless messaging
CN103634833B (zh) * 2013-11-18 2017-05-24 京信通信系统(中国)有限公司 一种链路差错预测方法及装置
EP3190717B1 (en) * 2014-09-30 2019-01-09 Huawei Technologies Co., Ltd. Data communication method and related device and communication system
US10128870B2 (en) * 2015-05-12 2018-11-13 Lockheed Martin Corporation Methods and systems for maximizing read performance of error detection code
US10084487B2 (en) * 2016-06-27 2018-09-25 Micron Technology, Inc. Apparatuses and methods for erasure-assisted ECC decoding
US20190357150A1 (en) * 2018-05-17 2019-11-21 Qualcomm Incorporated Transmission power configuration

Family Cites Families (266)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577080A (en) 1968-12-20 1971-05-04 Motorola Inc Remote control system for operation over same audiochannel providing voice signals between remote station and base station
US4225976A (en) 1978-02-28 1980-09-30 Harris Corporation Pre-calibration of gain control circuit in spread-spectrum demodulator
US4539684A (en) * 1983-01-07 1985-09-03 Motorola, Inc. Automatic frame synchronization recovery utilizing a sequential decoder
FR2556532B1 (fr) 1983-12-09 1986-10-24 Trt Telecom Radio Electr Procede de radiocommunication bidirectionnelle entre des stations fixes et des stations mobiles
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US4908827A (en) * 1987-07-27 1990-03-13 Tiw Systems, Inc. Forward error correction system
US5301364A (en) * 1988-11-30 1994-04-05 Motorola, Inc. Method and apparatus for digital automatic gain control in a receiver
US5267262A (en) * 1989-11-07 1993-11-30 Qualcomm Incorporated Transmitter power control system
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
WO1994018756A1 (en) * 1993-02-11 1994-08-18 Motorola, Inc. Method and apparatus for controlling a power level of a subscriber unit of a wireless communication system
US5396516A (en) * 1993-02-22 1995-03-07 Qualcomm Incorporated Method and system for the dynamic modification of control paremeters in a transmitter power control system
US5669066A (en) 1993-05-14 1997-09-16 Telefonaktiebolaget Lm Ericsson Dynamic control of transmitting power at a transmitter and attenuation at a receiver
US5406613A (en) * 1993-06-29 1995-04-11 Pacific Communication Sciences, Inc. Method and apparatus for reducing power consumption in cellular telephone by adaptively determining the reliability of the reception of a received message block
JP3457357B2 (ja) 1993-07-23 2003-10-14 株式会社日立製作所 スペクトル拡散通信システム、送信電力制御方法、移動端末装置及び基地局
CN1068477C (zh) 1993-08-06 2001-07-11 Ntt移运通信网株式会社 扩频通信的接收机和中继器
EP0673125B1 (en) 1993-08-11 2001-10-31 NTT DoCoMo, Inc. Automatic gain control apparatus and method for a spread spectrum signal receiver
FR2709028B1 (fr) 1993-08-13 1995-10-20 Matra Communication Procédé de sélection des trajets de propagation retenus pour recevoir des messages transmis par radiocommunication AMRC.
SE503548C2 (sv) * 1993-10-01 1996-07-01 Telia Ab Anordning i OFDM fleranvändarsystem
US5469471A (en) * 1994-02-01 1995-11-21 Qualcomm Incorporated Method and apparatus for providing a communication link quality indication
US5548812A (en) 1994-07-21 1996-08-20 Qualcomm Incorporated Method and apparatus for balancing the forward link handoff boundary to the reverse link handoff boundary in a cellular communication system
US5727033A (en) 1994-11-30 1998-03-10 Lucent Technologies Inc. Symbol error based power control for mobile telecommunication system
US6226529B1 (en) 1994-12-08 2001-05-01 Itt Manufacturing Enterprises, Inc. System for providing a simultaneous data and voice channel within a single channel of a portable cellular telephone to provide position-enhanced cellular services (PECS)
US5722063A (en) * 1994-12-16 1998-02-24 Qualcomm Incorporated Method and apparatus for increasing receiver immunity to interference
US5754533A (en) 1995-08-23 1998-05-19 Qualcomm Incorporated Method and system for non-orthogonal noise energy based gain control
AU3260195A (en) 1995-08-31 1997-03-19 Nokia Telecommunications Oy Method and device for controlling transmission power of a radio transmitter in a cellular communication system
US5675629A (en) 1995-09-08 1997-10-07 At&T Cordless cellular system base station
US5734646A (en) 1995-10-05 1998-03-31 Lucent Technologies Inc. Code division multiple access system providing load and interference based demand assignment service to users
US5961588A (en) * 1996-02-22 1999-10-05 Alcatel Usa Sourcing, L.P. Handling of commands passed between the server and client stations of a telecommunications system
US5815507A (en) 1996-04-15 1998-09-29 Motorola, Inc. Error detector circuit for digital receiver using variable threshold based on signal quality
JP3173565B2 (ja) 1996-06-20 2001-06-04 日本電気株式会社 Cdmaシステムにおけるアクセス規制装置
US5774785A (en) * 1996-06-20 1998-06-30 Telefonaktiebolaget Lm Ericsson Adaptive quality adjustment
US5996103A (en) * 1996-07-31 1999-11-30 Samsung Information Systems America Apparatus and method for correcting errors in a communication system
US6236365B1 (en) * 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US5859383A (en) 1996-09-18 1999-01-12 Davison; David K. Electrically activated, metal-fueled explosive device
US5995488A (en) * 1996-10-08 1999-11-30 Advanced Micro Devices, Inc. Method and apparatus for regulating data flow in networks
US6047189A (en) 1996-10-11 2000-04-04 Arraycomm, Inc. Adaptive method for channel assignment in a cellular communication system
US5933462A (en) * 1996-11-06 1999-08-03 Qualcomm Incorporated Soft decision output decoder for decoding convolutionally encoded codewords
DE19646371A1 (de) * 1996-11-09 1998-05-14 Bosch Gmbh Robert Verfahren und Anordnung zum Verbessern der Übertragungsqualität in einem Punkt-zu-Mehrpunkt Funkübertragungssystem
US6075974A (en) * 1996-11-20 2000-06-13 Qualcomm Inc. Method and apparatus for adjusting thresholds and measurements of received signals by anticipating power control commands yet to be executed
US5956642A (en) * 1996-11-25 1999-09-21 Telefonaktiebolaget L M Ericsson Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system
FI102023B (fi) 1996-11-26 1998-09-30 Nokia Telecommunications Oy Menetelmä kuormitustavoitteen muodostamiseksi ja radiojärjestelmä
US5996110A (en) * 1996-12-16 1999-11-30 Motorola, Inc. Method and apparatus for decoding a data packet
EP1320276B1 (en) 1996-12-27 2004-11-10 NTT DoCoMo, Inc. Call admission control method and mobile station device for cdma mobile communication system.
US6028699A (en) * 1997-01-13 2000-02-22 Exotic Electrooptics Electromagnetically shielded window, sensor system using the window, and method of manufacture
US6128339A (en) * 1997-02-13 2000-10-03 Samsung Electronics Co., Ltd. Apparatus and method for masking video data errors
US5933768A (en) * 1997-02-28 1999-08-03 Telefonaktiebolaget L/M Ericsson Receiver apparatus, and associated method, for receiving a receive signal transmitted upon a channel susceptible to interference
JP4279806B2 (ja) 1997-04-24 2009-06-17 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び移動通信システム
TW454339B (en) 1997-06-20 2001-09-11 Hitachi Ltd Semiconductor integrated circuit apparatus and its fabricating method
KR100259839B1 (ko) * 1997-06-30 2000-06-15 윤종용 삭제 지시자 비트를 이용한 순방향 전력 제어 방법
US6405043B1 (en) 1997-07-02 2002-06-11 Scoreboard, Inc. Method to characterize the prospective or actual level of interference at a point, in a sector, and throughout a cellular system
KR100243425B1 (ko) 1997-07-10 2000-02-01 곽치영 씨디엠에이 무선가입자망 시스템의 순방향 트래픽 채널 전력제어 방법 및 장치
KR19990012755A (ko) 1997-07-30 1999-02-25 윤종용 간섭을 줄이기 위한 역전력 제어장치 및 방법
US6904110B2 (en) * 1997-07-31 2005-06-07 Francois Trans Channel equalization system and method
US6188678B1 (en) * 1997-08-07 2001-02-13 Qualcomm Inc. Method and apparatus for adaptive closed loop power control using open loop measurements
CA2239201C (en) * 1997-08-12 2003-08-05 Nec Corporation Mobile station and a method of reducing interference among radio channels in the mobile station
US6101179A (en) * 1997-09-19 2000-08-08 Qualcomm Incorporated Accurate open loop power control in a code division multiple access communication system
US6012160A (en) 1997-10-03 2000-01-04 Ericsson Inc. Method for protecting important data bits using less important data bits
US6353907B1 (en) * 1997-10-29 2002-03-05 At&T Corp. Incremental redundancy radio link protocol
US6216006B1 (en) 1997-10-31 2001-04-10 Motorola, Inc. Method for an admission control function for a wireless data network
US6574211B2 (en) * 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6061339A (en) 1997-12-10 2000-05-09 L-3 Communications Corporation Fixed wireless loop system having adaptive system capacity based on estimated signal to noise ratio
CN100486391C (zh) 1997-12-10 2009-05-06 西尔可穆无线公司 通信系统
US6154659A (en) * 1997-12-24 2000-11-28 Nortel Networks Limited Fast forward link power control in a code division multiple access system
US6175587B1 (en) 1997-12-30 2001-01-16 Motorola, Inc. Communication device and method for interference suppression in a DS-CDMA system
US6175588B1 (en) 1997-12-30 2001-01-16 Motorola, Inc. Communication device and method for interference suppression using adaptive equalization in a spread spectrum communication system
US6112325A (en) * 1998-01-23 2000-08-29 Dspc Technologies, Ltd. Method and device for detecting rate
US6181738B1 (en) * 1998-02-13 2001-01-30 Northern Telecom Limited Reverse link power control using a frame quality metric
US6226336B1 (en) * 1998-02-20 2001-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for detecting a frequency synchronization signal
US6895245B2 (en) * 1998-03-06 2005-05-17 Telefonaktiebolaget Lm Ericssion(Publ) Telecommunications interexchange measurement transfer
US6233222B1 (en) 1998-03-06 2001-05-15 Telefonaktiebolaget Lm Ericsson Telecommunications inter-exchange congestion control
US6144841A (en) 1998-03-10 2000-11-07 Nortel Networks Corporation Method and system for managing forward link power control within a code-division multiple access mobile telephone communication network
KR19990088052A (ko) 1998-05-06 1999-12-27 다니엘 태그리아페리, 라이조 캐르키, 모링 헬레나 다중반송파광대역시디엠에이시스템에서의전력제어를제공하는방법및장치
KR20000013025A (ko) * 1998-08-01 2000-03-06 윤종용 이동통신 시스템의 순방향 초기 송신전력 제어장치 및 방법
US6597705B1 (en) 1998-09-10 2003-07-22 Qualcomm Incorporated Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system
KR200228664Y1 (ko) 1998-09-15 2001-10-25 윤종용 공기조화기용실내기
JP2955285B1 (ja) 1998-09-30 1999-10-04 松下電器産業株式会社 デジタルオーディオ受信機
US6449463B1 (en) * 1998-10-29 2002-09-10 Qualcomm, Incorporated Variable loop gain in double loop power control systems
US6757422B1 (en) 1998-11-12 2004-06-29 Canon Kabushiki Kaisha Viewpoint position detection apparatus and method, and stereoscopic image display system
US6192249B1 (en) 1998-12-03 2001-02-20 Qualcomm Inc. Method and apparatus for reverse link loading estimation
US6717976B1 (en) * 1998-12-21 2004-04-06 Nortel Networks Ltd. Method and apparatus for signal to noise power ratio estimation in a multi sub-channel CDMA receiver
KR100276814B1 (ko) 1998-12-31 2001-01-15 윤종용 이동통신시스템에서 구성복호기의 상태값 정규화 장치 및방법
RU2163053C2 (ru) 1999-01-26 2001-02-10 Государственное унитарное предприятие Воронежский научно-исследовательский институт связи Линия радиосвязи
KR100651457B1 (ko) 1999-02-13 2006-11-28 삼성전자주식회사 부호분할다중접속 이동통신시스템의 불연속 전송모드에서 연속적인 외부순환 전력제어장치 및 방법
JP3968190B2 (ja) * 1999-03-06 2007-08-29 松下電器産業株式会社 送受信装置
US6628956B2 (en) * 1999-03-15 2003-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power control in a radio communications systems
US6334047B1 (en) 1999-04-09 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power control in a mobile radio communications system
FI991127A (fi) 1999-05-18 2000-11-19 Nokia Networks Oy Vakaa ja tehokas menetelmä mittaustulosten tasoittamiseksi
GB9913697D0 (en) * 1999-06-11 1999-08-11 Adaptive Broadband Ltd Dynamic channel allocation in a wireless network
US6603746B1 (en) 1999-06-18 2003-08-05 Nortel Networks Limited Method and apparatus for controlling transmitted power in a wireless communications system
BR0006848A (pt) 1999-06-28 2001-07-03 Samsung Electronics Co Ltd Aparelho e método para controle de potência de link avançado quando no modo de transmissão contìnua em um sistema de comunicação móvel
KR100609128B1 (ko) 1999-07-12 2006-08-04 에스케이 텔레콤주식회사 이동 통신 시스템의 통화 품질 측정 장치 및 방법
US6397070B1 (en) 1999-07-21 2002-05-28 Qualcomm Incorporated Method and apparatus for estimating reverse link loading in a wireless communication system
US6611507B1 (en) * 1999-07-30 2003-08-26 Nokia Corporation System and method for effecting information transmission and soft handoff between frequency division duplex and time division duplex communications systems
US6208699B1 (en) * 1999-09-01 2001-03-27 Qualcomm Incorporated Method and apparatus for detecting zero rate frames in a communications system
US6560774B1 (en) * 1999-09-01 2003-05-06 Microsoft Corporation Verifier to check intermediate language
US6807164B1 (en) 1999-09-14 2004-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Power control in a CDMA mobile communication system
EP1212846B1 (en) 1999-09-14 2010-01-13 Telefonaktiebolaget LM Ericsson (publ) Power control in a cdma mobile communication system
WO2001024402A1 (en) 1999-09-30 2001-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power control
US6968201B1 (en) * 1999-10-06 2005-11-22 Lucent Technologies, Inc. Method and apparatus for controlling reverse link interference rise and power control instability in a wireless system
US6446236B1 (en) * 1999-10-13 2002-09-03 Maxtor Corporation Reading encoded information subject to random and transient errors
US6519705B1 (en) 1999-12-15 2003-02-11 At&T Corp. Method and system for power control in wireless networks using interference prediction with an error margin
US6393276B1 (en) * 2000-01-12 2002-05-21 Telefonaktiebolaget Lm Ericsson Mobile station assisted forward link open loop power and rate control in a CDMA system
US7590095B2 (en) 2000-02-14 2009-09-15 Qualcomm Incorporated Method and apparatus for power control of multiple channels in a wireless communication system
EP1257192A1 (en) * 2000-02-18 2002-11-20 Argose, Inc. Generation of spatially-averaged excitation-emission map in heterogeneous tissue
JP3480710B2 (ja) 2000-03-28 2003-12-22 松下電器産業株式会社 送信電力制御装置及び送信電力制御方法
US6721373B1 (en) * 2000-03-29 2004-04-13 Tioga Technologies Ltd. Multi-tone receiver and a method for operating the same
JP2001285193A (ja) 2000-03-29 2001-10-12 Oki Electric Ind Co Ltd 送信電力制御方式
US6493331B1 (en) * 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
US6711150B1 (en) 2000-04-07 2004-03-23 Telefonktiebolaget L.M. Ericsson System and method for data burst communications in a CDMA network
SE516727C2 (sv) 2000-04-11 2002-02-19 Ericsson Telefon Ab L M Förfarande och anordning för att minska mängden handover- relaterad signaltrafik i ett telekommunikationssystem
FR2808158B1 (fr) 2000-04-19 2002-06-07 Mitsubishi Electric Inf Tech Methode de controle de puissance dans un systeme de telecommunication
US20020036958A1 (en) * 2000-07-24 2002-03-28 Hidenori Wada Optical element, optical head, optical recording/reproducing apparatus and optical recording/reproducing method
AU2001261070A1 (en) 2000-05-01 2001-11-12 Interdigital Technology Corporation Downlink power control for multiple downlink time slots in tdd communication systems
US6791954B1 (en) 2000-06-12 2004-09-14 Lucent Technologies Inc. Method for enhanced power control by adaptively adjusting an amount of change in a target signal-to-noise ratio
KR100434459B1 (ko) * 2000-06-27 2004-06-05 삼성전자주식회사 이동통신 시스템에서 패킷의 전송 제어방법 및 장치
KR100387057B1 (ko) 2000-07-04 2003-06-12 삼성전자주식회사 이동 통신시스템의 역방향 데이터 전송율 결정 방법 및 장치
US6950669B2 (en) 2000-07-05 2005-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Power control algorithm for packet data based on queue/channel utilization
JP2002026747A (ja) 2000-07-13 2002-01-25 Matsushita Electric Ind Co Ltd 無線通信端末装置及び送信電力制御方法
AU7593601A (en) * 2000-07-14 2002-01-30 Atabok Inc Controlling and managing digital assets
DE10040228A1 (de) 2000-08-17 2002-02-28 Siemens Ag Verfahren zur Regelung der Sendeleistung in einem Funksystem
JP3622649B2 (ja) 2000-08-29 2005-02-23 Kddi株式会社 Cdma移動通信システムのセルカバレッジ評価方法
US6801759B1 (en) * 2000-09-25 2004-10-05 Qualcomm, Incorporated Method and apparatus for power control in a wireless communication system
WO2002032179A1 (en) 2000-10-09 2002-04-18 Nokia Corporation Radio resource management
GB0114965D0 (en) 2001-06-19 2001-08-08 Nokia Corp Radio resource management
US7072315B1 (en) * 2000-10-10 2006-07-04 Adaptix, Inc. Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks
US6597923B1 (en) 2000-10-23 2003-07-22 Telefonaktiebolaget L.M. Ericsson (Publ.) Method and apparatus for transmitter power control
US6609008B1 (en) 2000-11-09 2003-08-19 Qualcomm Incoporated Method and apparatus for controlling signal power level in a communication system
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
US7324785B2 (en) 2001-01-11 2008-01-29 Broadcom Corporation Transmit power control of wireless communication devices
KR100433893B1 (ko) 2001-01-15 2004-06-04 삼성전자주식회사 협대역 시분할 듀플렉싱 부호분할다중접속 통신시스템의전력 제어 방법 및 장치
US7236793B2 (en) * 2001-01-31 2007-06-26 Ipr Licensing, Inc. Queuing far/far service requests in wireless network
US7245922B2 (en) * 2001-02-01 2007-07-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for controlling quality of service for multiple services through power setting
KR100797460B1 (ko) 2001-09-18 2008-01-24 엘지전자 주식회사 역방향 링크 데이터 레이트 제어 방법
EP1811804B1 (en) * 2001-02-12 2011-04-27 LG Electronics Inc. Controlling data transmission rate on the reverse link for each mobile station in a dedicated manner
US7151740B2 (en) 2001-02-28 2006-12-19 Cingular Wireless Ii, Llc Transmit power control for an OFDM-based wireless communication system
JP4326711B2 (ja) 2001-02-28 2009-09-09 富士フイルム株式会社 カーテン塗布方法
US6763244B2 (en) 2001-03-15 2004-07-13 Qualcomm Incorporated Method and apparatus for adjusting power control setpoint in a wireless communication system
US8199696B2 (en) * 2001-03-29 2012-06-12 Qualcomm Incorporated Method and apparatus for power control in a wireless communication system
US7042856B2 (en) 2001-05-03 2006-05-09 Qualcomm, Incorporation Method and apparatus for controlling uplink transmissions of a wireless communication system
US6621454B1 (en) 2001-05-10 2003-09-16 Vectrad Networks Corporation Adaptive beam pattern antennas system and method for interference mitigation in point to multipoint RF data transmissions
US6587697B2 (en) 2001-05-14 2003-07-01 Interdigital Technology Corporation Common control channel uplink power control for adaptive modulation and coding techniques
US7158504B2 (en) * 2001-05-21 2007-01-02 Lucent Technologies, Inc. Multiple mode data communication system and method and forward and/or reverse link control channel structure
US7379513B2 (en) * 2001-05-23 2008-05-27 Chao Wang, legal representative Channel estimation in CDMA communications systems using both lower power pilot channel and higher power date channel
US6751444B1 (en) * 2001-07-02 2004-06-15 Broadstorm Telecommunications, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
JP3730885B2 (ja) 2001-07-06 2006-01-05 株式会社日立製作所 誤り訂正ターボ符号の復号器
JP3607643B2 (ja) 2001-07-13 2005-01-05 松下電器産業株式会社 マルチキャリア送信装置、マルチキャリア受信装置、およびマルチキャリア無線通信方法
GB2378858B (en) 2001-08-18 2005-07-13 Motorola Inc Minimisation of interference in cellular communications systems
US7212822B1 (en) * 2001-09-21 2007-05-01 Verizon Laboratories Inc. Method and techniques for penalty-based channel assignments in a cellular network
US20030081538A1 (en) * 2001-10-18 2003-05-01 Walton Jay R. Multiple-access hybrid OFDM-CDMA system
US7349667B2 (en) 2001-10-19 2008-03-25 Texas Instruments Incorporated Simplified noise estimation and/or beamforming for wireless communications
KR100547847B1 (ko) 2001-10-26 2006-01-31 삼성전자주식회사 이동통신 시스템에서 역방향 링크의 제어 장치 및 방법
US7164649B2 (en) 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
KR100915275B1 (ko) * 2001-11-05 2009-09-03 가부시키가이샤 히타치세이사쿠쇼 무선 통신 시스템 및 그 통신 제어 방법 및 무선 통신기
US6952591B2 (en) * 2001-11-20 2005-10-04 Lucent Technologies Inc. Uplink power control algorithm
JP3788506B2 (ja) 2001-11-21 2006-06-21 日本電気株式会社 無線基地局、移動局と無線受信装置およびsir推定方法と送信電力制御方法およびプログラム
RU2214690C2 (ru) 2001-12-26 2003-10-20 Государственное конструкторское бюро аппаратно-программных систем "Связь" Всероссийского НИИ "Градиент" Способ восстановления переданных информационных сигналов после прохождения их через канал связи
KR100747464B1 (ko) 2002-01-05 2007-08-09 엘지전자 주식회사 고속하향링크패킷접속(hsdpa)시스템을 위한타이머를 이용한 교착상황 회피방법
KR100630128B1 (ko) * 2002-03-23 2006-09-27 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 이동통신시스템에서 역방향 전력 제어를 위한 파일럿 신호필드 위치정보 결정장치 및 방법
US7012978B2 (en) 2002-03-26 2006-03-14 Intel Corporation Robust multiple chain receiver
JP2003318818A (ja) 2002-04-23 2003-11-07 Nec Corp 携帯電話装置とその送信電力制御方法
US7660277B2 (en) 2002-06-07 2010-02-09 Nokia Corporation Apparatus and an associated method for facilitating communications in a radio communication system that provides for data communications at multiple data rates
JP2004064142A (ja) 2002-07-24 2004-02-26 Ntt Docomo Inc 送信電力制御方法、これに用いて好適な無線通信システム、無線基地局及び移動局
US7418241B2 (en) * 2002-08-09 2008-08-26 Qualcomm Incorporated System and techniques for enhancing the reliability of feedback in a wireless communications system
JP2004080340A (ja) 2002-08-16 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> マルチキャリア送受信方法およびその送信機と受信機
US7151755B2 (en) 2002-08-23 2006-12-19 Navini Networks, Inc. Method and system for multi-cell interference reduction in a wireless communication system
US7366200B2 (en) * 2002-08-26 2008-04-29 Qualcomm Incorporated Beacon signaling in a wireless system
US7388845B2 (en) 2002-08-26 2008-06-17 Qualcomm Incorporated Multiple access wireless communications system using a multisector configuration
JP4043322B2 (ja) 2002-09-06 2008-02-06 三菱電機株式会社 再送制御方法および通信装置
US8504054B2 (en) 2002-09-10 2013-08-06 Qualcomm Incorporated System and method for multilevel scheduling
US6933967B2 (en) 2002-09-10 2005-08-23 Sony Corporation Color reference system for display monitor
US7426176B2 (en) 2002-09-30 2008-09-16 Lucent Technologies Inc. Method of power allocation and rate control in OFDMA systems
GB0222999D0 (en) 2002-10-04 2002-11-13 Ip Access Ltd Cellular radio telecommunication systems
KR100461543B1 (ko) 2002-10-14 2004-12-16 한국전자통신연구원 다중 안테나 고속패킷전송 시스템에서 신호대 간섭비 측정장치 및 그 방법
TW200733596A (en) 2002-10-17 2007-09-01 Interdigital Tech Corp Power control for communications systems utilizing high speed shared channels
US7477920B2 (en) * 2002-10-25 2009-01-13 Intel Corporation System and method for automatically configuring and integrating a radio base station into an existing wireless cellular communication network with full bi-directional roaming and handover capability
US7058421B2 (en) 2002-10-29 2006-06-06 Qualcomm Incorporated Wireless terminal operating under an aggregate transmit power limit using multiple modems having fixed individual transmit power limits
US8107885B2 (en) 2002-10-30 2012-01-31 Motorola Mobility, Inc. Method and apparatus for providing a distributed architecture digital wireless communication system
JP4102738B2 (ja) * 2002-12-17 2008-06-18 日本電気株式会社 光ディスクの信号品質評価方法、品質評価装置、および、光ディスク装置
CN100459755C (zh) 2002-12-27 2009-02-04 Nxp股份有限公司 具有功率控制的移动终端与方法
JP2004215914A (ja) 2003-01-15 2004-08-05 Abilit Corp 遊技機
ITMI20030107A1 (it) 2003-01-24 2004-07-25 Primm Srl Peptidi derivati da rantes.
US7756002B2 (en) 2003-01-30 2010-07-13 Texas Instruments Incorporated Time-frequency interleaved orthogonal frequency division multiplexing ultra wide band physical layer
US7493132B2 (en) 2003-02-14 2009-02-17 Qualcomm Incorporated System and method for uplink rate selection
JP3816450B2 (ja) 2003-02-18 2006-08-30 Kddi株式会社 送信機及び受信機
US9544860B2 (en) 2003-02-24 2017-01-10 Qualcomm Incorporated Pilot signals for use in multi-sector cells
US7218948B2 (en) 2003-02-24 2007-05-15 Qualcomm Incorporated Method of transmitting pilot tones in a multi-sector cell, including null pilot tones, for generating channel quality indicators
JP4178055B2 (ja) 2003-02-25 2008-11-12 株式会社エヌ・ティ・ティ・ドコモ 無線パケット通信システム、無線パケット通信方法、基地局及び移動局
KR20040086490A (ko) 2003-04-02 2004-10-11 삼성전자주식회사 이동통신 시스템에서 패킷 데이터의 역방향 데이터 전송률제어 장치 및 방법
KR100969777B1 (ko) 2003-04-14 2010-07-13 삼성전자주식회사 이동통신 시스템에서 순방향 데이터 전송률 제어 방법
US7254158B2 (en) * 2003-05-12 2007-08-07 Qualcomm Incorporated Soft handoff with interference cancellation in a wireless frequency hopping communication system
US7012912B2 (en) 2003-05-14 2006-03-14 Qualcomm Incorporated Power control and scheduling in an OFDM system
US8477592B2 (en) 2003-05-14 2013-07-02 Qualcomm Incorporated Interference and noise estimation in an OFDM system
US7224993B2 (en) * 2003-05-15 2007-05-29 Lucent Technologies Inc. Power control method with DTX frame detection for a communication channel
US7522919B2 (en) 2003-07-14 2009-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Enhancements to periodic silences in wireless communication systems
US7565152B2 (en) * 2003-07-31 2009-07-21 Alcatel-Lucent Usa Inc. Method of controlling overload over the reverse link
AU2003265480A1 (en) * 2003-08-13 2005-03-10 Flarion Technologies, Inc. Methods and apparatus of power control in wireless communication systems
US7346314B2 (en) * 2003-08-15 2008-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Forward link transmit power control based on observed command response
JP4322593B2 (ja) 2003-08-20 2009-09-02 Necインフロンティア株式会社 無線端末制御方法
US7564819B2 (en) 2003-09-12 2009-07-21 Alcatel-Lucent Usa Inc. Method of interlacing frames
US7103316B1 (en) 2003-09-25 2006-09-05 Rfmd Wpan, Inc. Method and apparatus determining the presence of interference in a wireless communication channel
WO2005034545A1 (ja) 2003-09-30 2005-04-14 Mitsubishi Denki Kabushiki Kaisha 通信モード制御方法、移動体通信システム、基地局制御装置、基地局及び移動通信端末
US7808895B2 (en) 2003-10-30 2010-10-05 Intel Corporation Isochronous device communication management
US9585023B2 (en) 2003-10-30 2017-02-28 Qualcomm Incorporated Layered reuse for a wireless communication system
US7573856B2 (en) 2003-11-25 2009-08-11 Telefonaktiebolaget Lm Ericsson (Publ) Power-based rate adaptation of wireless communication channels
US7302276B2 (en) * 2003-11-25 2007-11-27 Telefonaktiebolaget L M Ericsson (Publ) Method and system for determining uplink/downlink path-loss difference
US7359727B2 (en) * 2003-12-16 2008-04-15 Intel Corporation Systems and methods for adjusting transmit power in wireless local area networks
US20050135457A1 (en) 2003-12-19 2005-06-23 Molisch Andreas F. Ultra wide bandwidth transmitter with tone grouping and spreading
US7181170B2 (en) * 2003-12-22 2007-02-20 Motorola Inc. Apparatus and method for adaptive broadcast transmission
US7079494B2 (en) 2004-01-08 2006-07-18 Interdigital Technology Corporation Wireless communication method and apparatus for determining the minimum power level of access point transmissions
KR100797501B1 (ko) 2004-01-08 2008-01-24 인터디지탈 테크날러지 코포레이션 액세스 포인트의 성능을 최적화하는 무선 통신 방법 및장치
US7493133B2 (en) * 2004-02-05 2009-02-17 Qualcomm, Incorporated Power control in ad-hoc wireless networks
US7310526B2 (en) 2004-02-06 2007-12-18 Nec Laboratories America, Inc. Load-aware handoff and site selection scheme
US7668561B2 (en) * 2004-02-27 2010-02-23 Qualcomm Incorporated Apparatus and method for controlling reverse link interference among access terminals in wireless communications
US7730381B2 (en) * 2004-06-09 2010-06-01 Qualcomm Incorporated Erasure detection and power control for a transport channel with unknown format in a wireless communication system
US7594151B2 (en) 2004-06-18 2009-09-22 Qualcomm, Incorporated Reverse link power control in an orthogonal system
US8452316B2 (en) 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US7536626B2 (en) 2004-06-18 2009-05-19 Qualcomm Incorporated Power control using erasure techniques
US7197692B2 (en) * 2004-06-18 2007-03-27 Qualcomm Incorporated Robust erasure detection and erasure-rate-based closed loop power control
CN1998247B (zh) * 2004-06-30 2012-05-30 桥扬科技有限公司 用于多载波无线系统中功率控制的方法和装置
US8432803B2 (en) 2004-07-21 2013-04-30 Qualcomm Incorporated Method of providing a gap indication during a sticky assignment
US8477710B2 (en) 2004-07-21 2013-07-02 Qualcomm Incorporated Method of providing a gap indication during a sticky assignment
JP4266360B2 (ja) 2004-07-26 2009-05-20 株式会社神戸製鋼所 半導体装置のCu系配線形成方法
EP1786128A1 (en) * 2004-08-30 2007-05-16 Matsushita Electric Industrial Co., Ltd. Peak power suppressing apparatus and peak power suppressing method
KR101168002B1 (ko) * 2004-09-16 2012-07-26 프랑스 텔레콤 잡음 신호 처리 방법 및 상기 방법을 구현하기 위한 장치
CN101023613A (zh) * 2004-09-17 2007-08-22 松下电器产业株式会社 发送控制帧生成装置以及发送控制装置
US7233800B2 (en) 2004-10-14 2007-06-19 Qualcomm, Incorporated Wireless terminal location using apparatus and methods employing carrier diversity
US7548752B2 (en) * 2004-12-22 2009-06-16 Qualcomm Incorporated Feedback to support restrictive reuse
US7623490B2 (en) * 2004-12-22 2009-11-24 Qualcomm Incorporated Systems and methods that utilize a capacity-based signal-to-noise ratio to predict and improve mobile communication
US8422955B2 (en) 2004-12-23 2013-04-16 Qualcomm Incorporated Channel estimation for interference cancellation
EP1835647A4 (en) * 2004-12-28 2012-08-15 Sharp Kk WIRELESS TRANSMITTER, WIRELESS RECEIVER AND WIRELESS COMMUNICATION SYSTEM
US20060171326A1 (en) * 2005-02-03 2006-08-03 Autocell Laboratories, Inc. Remedial actions for interference in wireless LANs
DE602006000276T2 (de) 2005-02-09 2008-11-06 Ntt Docomo, Inc. Verfahren zur Funkmittelzuteilung für die Aufwärtsverbindung, Funkbasisstation, und Funknetzsteuerungseinheit
JP4640855B2 (ja) 2005-02-18 2011-03-02 富士通株式会社 基地局及び該基地局における干渉低減方法
US8085733B2 (en) * 2005-02-23 2011-12-27 Interdigital Technology Corporation Wireless communication method and apparatus for dynamically adapting packet transmission rates
US8942639B2 (en) * 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US8848574B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US7512412B2 (en) * 2005-03-15 2009-03-31 Qualcomm, Incorporated Power control and overlapping control for a quasi-orthogonal communication system
US7742444B2 (en) * 2005-03-15 2010-06-22 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
US7400887B2 (en) * 2005-03-17 2008-07-15 Lucent Technologies Inc. Method for estimating the downlink capacity in a spread spectrum wireless communications system
US7609789B2 (en) 2005-05-19 2009-10-27 MetaLink, Ltd. Phase noise compensation for MIMO WLAN systems
US8660095B2 (en) 2005-07-21 2014-02-25 Qualcomm Incorporated Reverse link transmit power control in a wireless communication system
US7965789B2 (en) 2005-08-22 2011-06-21 Qualcomm Incorporated Reverse link power control for an OFDMA system
KR100714945B1 (ko) * 2005-10-12 2007-05-07 엘지노텔 주식회사 오에프디엠에이 시스템에서의 부채널 할당 장치 및 방법
IN2013MN00252A (ru) 2005-10-27 2015-06-05 Qualcomm Inc
US7855976B2 (en) 2005-10-27 2010-12-21 Qualcomm Incorporated Method and apparatus for reporting CQI in a wireless communication system
US7783317B2 (en) 2005-11-04 2010-08-24 M-Stack Limited Method and apparatus for calculating an initial transmission power in universal mobile telecommunications system user equipment
US7639943B1 (en) 2005-11-15 2009-12-29 Kalajan Kevin E Computer-implemented system and method for automated image uploading and sharing from camera-enabled mobile devices
US7593738B2 (en) * 2005-12-29 2009-09-22 Trueposition, Inc. GPS synchronization for wireless communications stations
US8700082B2 (en) 2006-01-05 2014-04-15 Qualcomm Incorporated Power control utilizing multiple rate interference indications
CN102638330B (zh) 2006-04-25 2015-05-20 Lg电子株式会社 在无线通信系统中传送信号的方法
US8023574B2 (en) * 2006-05-05 2011-09-20 Intel Corporation Method and apparatus to support scalability in a multicarrier network
KR200427165Y1 (ko) 2006-07-03 2006-09-20 이영래 복층식 화분 정리대
US20080045260A1 (en) * 2006-08-15 2008-02-21 Tarik Muharemovic Power Settings for the Sounding Reference signal and the Scheduled Transmission in Multi-Channel Scheduled Systems
US7885616B2 (en) 2006-08-16 2011-02-08 Research In Motion Limited Method and system for coordinating necessary radio transmission events with unrelated opportunistic events to optimize battery life and network resources
US8442572B2 (en) 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US20080117849A1 (en) 2006-09-08 2008-05-22 Qualcomm Incorporated Method and apparatus for interaction of fast other sector interference (osi) with slow osi
MX2009005592A (es) 2006-11-30 2009-08-13 Qualcomm Inc Control de potencia de trafico de enlace inverso para lbc fdd.
US7693031B2 (en) 2007-01-09 2010-04-06 Futurewei Technologies, Inc. Method and apparatus for achieving system acquisition and other signaling purposes using the preamble in an OFDM based communications system
US7917164B2 (en) * 2007-01-09 2011-03-29 Alcatel-Lucent Usa Inc. Reverse link power control
US8095166B2 (en) 2007-03-26 2012-01-10 Qualcomm Incorporated Digital and analog power control for an OFDMA/CDMA access terminal
US20080267067A1 (en) 2007-04-30 2008-10-30 Gabriel Salazar Controlling the flow of data updates between a receiving station and a sending station
US8412255B2 (en) 2007-09-20 2013-04-02 Qualcomm Incorporated Reverse link traffic power control
US8811198B2 (en) 2007-10-24 2014-08-19 Qualcomm Incorporated Pilot report based on interference indications in wireless communication systems
US8260341B2 (en) * 2007-11-02 2012-09-04 Interdigital Patent Holdings, Inc. Power control for combined dynamically and persistently scheduled PUSCH in E-UTRA
JP5278806B2 (ja) 2009-02-25 2013-09-04 株式会社エネルギア・コミュニケーションズ 通線装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2642460C1 (ru) * 2014-01-27 2018-01-25 Сан Пэтент Траст Беспроводное устройство и способ управления мощностью
RU2669915C1 (ru) * 2014-01-27 2018-10-17 Сан Пэтент Траст Беспроводное устройство и способ управления мощностью
RU2690015C1 (ru) * 2014-01-27 2019-05-30 Сан Пэтент Траст Беспроводное устройство и способ управления мощностью
RU2668112C1 (ru) * 2014-12-22 2018-09-26 Хуавэй Текнолоджиз Ко., Лтд. Устройство и способ передачи информации указания
US10470188B2 (en) 2014-12-22 2019-11-05 Huawei Technologies Co., Ltd. Transmission of one or more codebooks between network and terminal devices

Also Published As

Publication number Publication date
JP4575442B2 (ja) 2010-11-04
AU2005262561A1 (en) 2006-01-19
CA2570343A1 (en) 2006-01-19
RU2007101708A (ru) 2008-07-27
CA2570343C (en) 2012-01-31
US7197692B2 (en) 2007-03-27
ES2642587T3 (es) 2017-11-16
CN101006672A (zh) 2007-07-25
BRPI0512201B1 (pt) 2019-02-19
US20070150799A1 (en) 2007-06-28
AR049926A1 (es) 2006-09-13
US20050283715A1 (en) 2005-12-22
NZ552149A (en) 2008-09-26
NO20070270L (no) 2007-01-16
AU2005262561B2 (en) 2009-07-23
EP1766829A1 (en) 2007-03-28
US20110296279A1 (en) 2011-12-01
EP1766829B1 (en) 2017-07-19
HUE035959T2 (en) 2018-05-28
HK1104725A1 (en) 2008-01-18
AU2005262561C1 (en) 2010-04-29
CN101006672B (zh) 2011-02-23
TWI360976B (en) 2012-03-21
NO343267B1 (no) 2019-01-14
BRPI0512201A (pt) 2008-02-19
US8516314B2 (en) 2013-08-20
JP2008503924A (ja) 2008-02-07
IL180120A (en) 2011-01-31
WO2006007317A1 (en) 2006-01-19
IL180120A0 (en) 2007-06-03
TW200614724A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
RU2348115C2 (ru) Надежное обнаружение стирания и управление мощностью на основании частоты стирания в замкнутом контуре
RU2371862C2 (ru) Управление мощностью с помощью методик стирания
KR101139092B1 (ko) Ofdma 시스템을 위한 역방향 링크 전력 제어
RU2349033C2 (ru) Регулирование мощности в системе беспроводной связи, использующей ортогональное мультиплексирование
IL148069A (en) Method and device for detecting zero rate of frames in a communication system
KR100887299B1 (ko) 강건한 소거 검출 및 소거율 기반 폐루프 전력 제어
ZA200700182B (en) Robust arasure detection and erasure-rate-based close loop power control
MXPA06014940A (en) Robust erasure detection and erasure-rate-based closed loop power control
MXPA06014944A (en) Power control using erasure techniques