RU2344098C1 - Способ получения защитного покрытия на изделии из бериллия и его сплавов - Google Patents
Способ получения защитного покрытия на изделии из бериллия и его сплавов Download PDFInfo
- Publication number
- RU2344098C1 RU2344098C1 RU2007117557/03A RU2007117557A RU2344098C1 RU 2344098 C1 RU2344098 C1 RU 2344098C1 RU 2007117557/03 A RU2007117557/03 A RU 2007117557/03A RU 2007117557 A RU2007117557 A RU 2007117557A RU 2344098 C1 RU2344098 C1 RU 2344098C1
- Authority
- RU
- Russia
- Prior art keywords
- beryllium
- alloys
- temperature
- protective coating
- during
- Prior art date
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
Abstract
Изобретение относится к области машиностроения и к технике производства изделий из цветных сплавов, в частности к защитным покрытиям от газовой коррозии в процессах длительной эксплуатации и при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из бериллия и его сплавов при термической и термомеханической обработке давлением. Способ включает подготовку поверхности изделия и последующую ее пассивацию путем нанесения на поверхность изделия водного раствора, содержащего бихромат калия 170-250 г/л, фтористоводородную кислоту 7,5-11,5 г/л, фторид натрия 3-12 г/л, бериллий 0,1-0,5 г/л и окись хрома 0,1-0,5 г/л с последующей термической обработкой этой поверхности и нанесением на нее неорганического эмалевого покрытия системы В2О3-PbO-СаО-MgO-Al2О3-Cr2О3-СоО-SiO2. Пассивацию проводят в течение 30-80 мин при температуре 45-70°С, а термическую обработку пассивирующей поверхности проводят при температуре 550-650°С в течение 0,5-1,5 ч. Формирование неорганического эмалевого покрытия системы B2O3-PbO-CaO-MgO-Al2O3-Cr2O3-CoO-SiO2 проводят при температуре 520-600°С в течение 0,1-0,5 ч. Технический результат - создание защитного покрытия, обладающего повышенной температуроустойчивостью до 1200°С и высокой термостойкостью на изделиях из бериллия и его сплавов. 3 з.п. ф-лы, 3 табл.
Description
Изобретение относится к области машиностроения и к технике производства изделий из цветных сплавов, в частности к защитным покрытиям от газовой коррозии в процессах длительной эксплуатации и при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из бериллия и его сплавов при термической и термомеханической обработке давлением.
Бериллий при воздействии высоких температур подвергается поверхностному окислению с выделением токсичных соединений в атмосферу. Общепринятым, наиболее перспективным способом защиты от окисления является применение органических и неорганических защитных покрытий.
Известен способ пассивирования бериллия, включающий погружение бериллиевой детали в ванну с водным раствором, содержащим хромовую кислоту (CrO3) и фтористый натрий (NaF). Процесс ведут при рН (1,6-2,0), температуре (15-30)°С в течение (5-15) мин в ванне с ультразвуковым перемешиванием (патент США №4328047).
Недостатком указанного способа является низкая температуроустойчивость и термостойкость покрытия к бериллию и его сплавам при рабочих температурах до 1200°С.
Известны способы защиты поверхностей алюминия и его сплавов от коррозии в растворах, содержащих, например, азотную кислоту, ионы фторидов и хроматы (патент Великобритании №740805) или растворимый шестивалентный хром, фторсодержащий компонент, растворимую соль редкоземельных металлов и марганец (патент Великобритании №1363438).
Недостатком указанного состава является низкая температуроустойчивость и термостойкость покрытия к бериллию и его сплавам при рабочих температурах до 1200°С.
Наиболее близким техническим решением, принятым за прототип, является способ получения защитного покрытия на изделиях из бериллия, включающий подготовку поверхности и последующую его пассивацию путем нанесения на поверхность изделия водного раствора, содержащего 200 г/л дигидрат бихромата натрия (Na2Cr2O7·2H2O) и 0,3-9,6 г/л фтористоводородной кислоты (HF). Процесс ведут от 20 сек до 9 мин (патент США №3485682).
Недостатками прототипа являются низкая температуроустойчивость и термостойкость покрытия к бериллию и его сплавам при рабочих температурах до 1200°С.
Низкая температуроустойчивость и термостойкость покрытия приводят к трещинам покрытия в процессе работы и сопровождаются нежелательным окислением изделия из бериллия и его сплавов при эксплуатации деталей при повышенных температурах.
Технической задачей изобретения является создание защитного покрытия на изделии из бериллия и его сплавов, обладающего повышенной температуроустойчивостью до 1200°С и высокой термостойкостью к изделию из бериллия и его сплавам.
Поставленная техническая задача достигается тем, что предложен способ получения защитного покрытия на изделии из бериллия и его сплавов, включающий подготовку поверхности изделия и последующую пассивацию путем нанесения на поверхность изделия водного раствора, содержащего бихромат щелочного металла и фтористоводородную кислоту, отличающийся тем, что в раствор дополнительно вводят фторид натрия, бериллий и окись хрома, при следующем соотношении компонентов (г/л):
Бихромат калия | 170-250 |
Фтористоводородная | |
кислота | 7,5-11,5 |
Фторид натрия | 3-12 |
Бериллий | 0,1-0,5 |
Окись хрома | 0,1-0,5 |
Вода | До 1 л |
а после пассивации проводят термическую обработку поверхности и нанесение на нее неорганического эмалевого покрытия системы В2О3-PbO-CaO-MgO-Al2O3-Cr2O3-CoO-SiO2.
Пассивацию поверхности предпочтительно проводить в течение 30-80 мин при температуре 45-70°С, а термическую обработку пассивирующего слоя - при температуре 550-650°С в течение 0,5-1,5 ч.
Формирование неорганического эмалевого покрытия системы В2О3-PbO-CaO-MgO-Al2O3-Cr2O3-CoO-SiO2 предпочтительно проводить при температуре 520-600°С в течение 0,1-0,5 ч.
Авторами экспериментально установлено, что применение пассивации изделий из бериллия и его сплавов в предлагаемом водном растворе с последующей термической обработкой пассивирующей поверхности и нанесением неорганического эмалевого защитного покрытия системы B2O3-PbO-CaO-MgO-Al2O3-Cr2O3-CoO-SiO2 привело к повышению температуроустойчивости до 1200°С и высокой термостойкости покрытия к изделиям из бериллия и бериллиевых сплавов.
Рентгеноструктурный и микроспектральный анализы показали, что пассивная пленка после термической обработки по всей поверхности содержит соединения хрома CrO, Cr2O3, окись бериллия, как на образцах бериллия Б-1, так и на его сплавах ТГП, ТГШ. Наличие окислов CrO, Cr2O3 и окиси бериллия на поверхности изделия обеспечивает высокую температуроустойчивость и термостойкость комплексной системы защитного покрытия к поверхности исследуемых образцов при длительных нагревах образцов до 1200°С вследствие их частичного растворения в защитном покрытии.
Результаты спектрального и микролазерного анализа свидетельствует о том, что на границе поверхности бериллия и его сплавов, пассивной пленки и неорганического эмалевого покрытия системы В2О3-PbO-CaO-MgO-Al2O3-Cr2O3-CoO-SiO2 происходят процессы взаимодействия с образованием тугоплавких мелкокристаллических фаз 3Ве·Al2О3·6SiO2, ВеО, MgO·Cr2О3, обеспечивающих высокую температуроустойчивость и термостойкость покрытия.
Примеры осуществления
Пример 1
В опытных условиях были изготовлены изделия из бериллия и из его сплавов.
Приготовление защитного покрытия для изделий из бериллия и его сплавов осуществлялось по следующей схеме:
Приготовление пассивирующего раствора осуществляли следующим образом: брали (таблица 1) K2Cr2O7 - 170 г, HF - 7,5 г, NaF - 12 г, порошок Be - 0,1 г, окись хрома - 0,5 г и помещали в опарафиненый 1-литровый мерный стеклянный стакан и доливали в него дистиллированную воду до 1 л. Полученный раствор выливали в ванну, подогревали раствор до температуры 45°С, после чего в подогретый раствор в приспособлении погружали образцы и выдерживали их в течение 30 мин.
Изделия из бериллия Б-1 и сплава ТГП с пассивной пленкой подвергали последующей термической обработке по режиму: температура 550°С, выдержка 1,5 ч.
На изделие с нанесенным пассивирующим покрытием, прошедшим термическую обработку, наносили эмалевое покрытие состава, мас.%: В2O3 - 38, PbO - 6, CaO - 3, MgO - 0,5, Al2О3 - 1, Cr2О3 - 5, СоО - 0,5, SiO2 - остальное.
Изделия из бериллия и его сплавов с пассивирующим покрытием и с нанесенным неорганическим защитным покрытием подвергали сушке, а затем проводили формирование покрытия при температуре 550°С при выдержке- 15 мин.
Примеры 2,3 получения защитных покрытий для изделия из бериллия и его сплавов осуществляли аналогично примеру 1.
Составы предлагаемых защитных покрытий, прототипа и их свойства приведены в таблицах 1, 2, 3.
Изделия из бериллия и его сплавов с предлагаемым защитным покрытием и покрытием прототипа подвергались испытаниям на температуроустойчивость и термостойкость. Эффективность применения предложенного защитного покрытия определялась по полученным результатам в сравнении с защитным покрытием прототипа.
Окисляемость изделий с защитным покрытием определялась путем непрерывного взвешивания без извлечения их из печи при заданных температурах 900, 1050, 1200°С в течение 50 часов.
Термостойкость предлагаемого защитного покрытия к изделиям из бериллия Б-1 и сплава бериллия ТГП определялось по количеству теплосмен до появления первой трещины и по внешнему виду изделий с защитным покрытием после нагревов по режимам 20↔900°С, 20↔1050°С, 20↔1200°С, с выдержкой при заданных температурах 0,5 часа.
Из таблицы 3 видно, что окисляемость изделий из бериллия Б-1 и сплава ТГП с защитным покрытием при режимах нагрева, соответствующих эксплуатации деталей при температурах 900, 1050, 1200°С с выдержкой в течение 50 ч меньше в 20; 50; 130 раз для изделий из бериллия Б-1 и в 16,6; 30; 90 раз меньше для изделий из сплава ТГП по сравнению с изделиями с защитной пассивирующей пленкой прототипа.
Термостойкость изделий из бериллия Б-1 и сплава ТГП с защитным покрытием, испытанных по режимам 20↔900°С, 20↔1050°С, 20↔1200°С, с выдержкой при заданных температурах 0,5 часа выше в 16,6; 50; 100 раз для изделий из бериллия Б-1 и так же выше в 16,6; 50; 100 раз для изделий из сплава ТГП по сравнению с изделиями с защитной пленкой прототипа.
Предлагаемое защитное покрытие обладает высокой термостойкостью как на бериллии Б-1, так и сплаве ТГП. Защитное покрытие не скалывается с поверхности изделий, сохраняется плотным ровным слоем без трещин по всей поверхности изделия.
Высокая температуроустойчивость и термостойкость изделий из бериллия Б-1 и сплава ТГП с предлагаемым защитным покрытием объясняется образованием в процессе нагревов тугоплавких мелкокристаллических фаз соединений хрома (CrO, Cr2O3), бериллия (BeAl2O4, 3BeAl2О3·6SiO2), MgO·Cr2О3, которые, постепенно растворяясь в процессе нагревов, повышают защитные свойства защитного покрытия для изделия из бериллия и его сплавов.
Следовательно, предлагаемое защитное покрытие обеспечивает защиту изделий, выполненных из бериллия и его сплавов, от окисления и сублимации токсичных окислов бериллия в процессе длительных нагревов до 1200°С.
Таким образом, применение предлагаемого защитного покрытия позволит получить высококачественные изделия из бериллия и его сплавов, обеспечить стабильные механические и физико-химические свойства, получить экономию дорогостоящих сплавов бериллия до 10%, увеличить ресурс эксплуатации, улучшить условия труда, исключить окисление и сублимацию токсичных окислов бериллия в процессе длительной эксплуатации при термической и горячей обработке давлением.
Claims (4)
1. Способ получения защитного покрытия на изделии из бериллия и его сплавов, включающий подготовку поверхности изделия и последующую пассивацию путем нанесения на поверхность изделия водного раствора, содержащего бихромат щелочного металла и фтористо-водородную кислоту, отличающийся тем, что в раствор дополнительно вводят фторид натрия, бериллий и окись хрома, при следующем соотношении компонентов, г/л:
Бихромат калия 170-250
Фтористоводородная кислота 7,5-11,5
Фторид натрия 3-12
Бериллий 0,1-0,5
Окись хрома 0,1-0,5
Вода До 1 л,
а после пассивации проводят термическую обработку поверхности и нанесение на нее неорганического эмалевого покрытия системы В2Оз-PbO-CaO-MgO-Al2O3-Cr2O3-CoO-SiO2.
а после пассивации проводят термическую обработку поверхности и нанесение на нее неорганического эмалевого покрытия системы В2Оз-PbO-CaO-MgO-Al2O3-Cr2O3-CoO-SiO2.
2. Способ по п.1, отличающийся тем, что пассивацию проводят в течение 30-80 мин при температуре 45-70°С.
3. Способ по п.1, отличающийся тем, что термическую обработку пассивирующей поверхности проводят при температуре 550-650°С в течение 0,5-1,5 ч.
4. Способ по п.1, отличающийся тем, что формирование неорганического эмалевого покрытия системы В2О3-PbO-СаО-MgO-Al2О3-Cr2О3-CoO-SiO2 проводят при температуре 520-600°С в течение 0,1-0,5 ч.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007117557/03A RU2344098C1 (ru) | 2007-05-11 | 2007-05-11 | Способ получения защитного покрытия на изделии из бериллия и его сплавов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007117557/03A RU2344098C1 (ru) | 2007-05-11 | 2007-05-11 | Способ получения защитного покрытия на изделии из бериллия и его сплавов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2344098C1 true RU2344098C1 (ru) | 2009-01-20 |
Family
ID=40375992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007117557/03A RU2344098C1 (ru) | 2007-05-11 | 2007-05-11 | Способ получения защитного покрытия на изделии из бериллия и его сплавов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2344098C1 (ru) |
-
2007
- 2007-05-11 RU RU2007117557/03A patent/RU2344098C1/ru active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101362969B1 (ko) | 금속용 보호 코팅 | |
CN110499484B (zh) | 一种钛合金原位自生铝硅梯度热浸镀涂层及其制备方法 | |
KR100943840B1 (ko) | 마그네슘 제품의 표면처리방법 | |
CN109928780A (zh) | 一种陶瓷型芯表面惰性涂覆层的制造方法 | |
Wang et al. | Improved oxidation performance of TiAl alloy by a novel Al–Si composite coating | |
CN108559942A (zh) | 一种在锆基合金表面制备黑色陶瓷层的方法 | |
TWI259218B (en) | Method for removing a dense ceramic thermal barrier coating from a surface | |
JP4786576B2 (ja) | 耐テンパーカラー性に優れたステンレス鋼材およびその製造法 | |
JP2015516928A (ja) | 表面酸化された窒化チタンアルミガラス離型コーティングを有するガラス成形鋳型の再調整 | |
RU2344098C1 (ru) | Способ получения защитного покрытия на изделии из бериллия и его сплавов | |
JPH04232246A (ja) | 高温度酸化にさらされるγ−アルミナイド合金試料を保護するための方法および組成物 | |
KR20180038965A (ko) | 알루미늄 합금판, 및 양극산화 처리 알루미늄 합금판 | |
RU2345963C1 (ru) | Защитное технологическое покрытие для сталей и сплавов | |
CN108913944A (zh) | 一种含锆tb7钛合金及其制备方法 | |
CN117340173B (zh) | 抑制镍铜合金锻造过程中开裂的方法 | |
KR20010019769A (ko) | 금속표면에 알루미늄과 크롬 동시 코팅용 분말조성 및 코팅방법 | |
Frolenkov et al. | High-temperature oxidation of low-alloyed steel under glass coatings | |
WO2024214430A1 (ja) | 表面処理アルミニウム材、その製造方法及び半導体処理装置用部材 | |
JPH06228721A (ja) | 耐溶融金属侵食性シール材およびその製造方法 | |
EP4069786B1 (en) | Protective coatings for metals | |
GB2117374A (en) | Process for annealing steel strip | |
RU2468113C1 (ru) | Способ обработки изделий из алюминиевых сплавов (варианты) | |
Mutombo et al. | Chemically milled alpha-case layer from Ti-6Al-4V alloy investment cast | |
KR102078700B1 (ko) | 고내식성 용융 알루미늄 도금 강판 제조 설비 중 포트롤 및 그 제조방법 | |
JP2024150085A (ja) | 表面処理アルミニウム材、その製造方法及び半導体処理装置用部材 |