RU2329316C2 - Способ получения сплава меди с фосфором - Google Patents
Способ получения сплава меди с фосфором Download PDFInfo
- Publication number
- RU2329316C2 RU2329316C2 RU2006126839/02A RU2006126839A RU2329316C2 RU 2329316 C2 RU2329316 C2 RU 2329316C2 RU 2006126839/02 A RU2006126839/02 A RU 2006126839/02A RU 2006126839 A RU2006126839 A RU 2006126839A RU 2329316 C2 RU2329316 C2 RU 2329316C2
- Authority
- RU
- Russia
- Prior art keywords
- alloy
- phosphorus
- copper
- aluminum
- charge
- Prior art date
Links
- 229910052698 phosphorus Inorganic materials 0.000 title claims abstract description 91
- 239000011574 phosphorus Substances 0.000 title claims abstract description 90
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title description 11
- 229910052782 aluminium Chemical group 0.000 claims abstract description 56
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 53
- 239000000956 alloy Substances 0.000 claims abstract description 53
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000010949 copper Substances 0.000 claims abstract description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052802 copper Inorganic materials 0.000 claims abstract description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 150000001875 compounds Chemical class 0.000 claims abstract description 15
- 238000002844 melting Methods 0.000 claims abstract description 12
- 230000008018 melting Effects 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 5
- 239000002893 slag Substances 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 13
- -1 phosphorus compound Chemical class 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 9
- 238000011084 recovery Methods 0.000 claims description 3
- URRHWTYOQNLUKY-UHFFFAOYSA-N [AlH3].[P] Chemical compound [AlH3].[P] URRHWTYOQNLUKY-UHFFFAOYSA-N 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 abstract description 19
- 229910052586 apatite Inorganic materials 0.000 abstract description 18
- 238000000605 extraction Methods 0.000 abstract description 14
- 239000012141 concentrate Substances 0.000 abstract description 13
- 230000009467 reduction Effects 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 238000004090 dissolution Methods 0.000 abstract description 3
- 238000005272 metallurgy Methods 0.000 abstract description 2
- 239000004411 aluminium Chemical group 0.000 abstract 5
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000002367 phosphate rock Substances 0.000 description 13
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 13
- 230000008569 process Effects 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910001096 P alloy Inorganic materials 0.000 description 2
- RIRXDDRGHVUXNJ-UHFFFAOYSA-N [Cu].[P] Chemical compound [Cu].[P] RIRXDDRGHVUXNJ-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052589 chlorapatite Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- PROQIPRRNZUXQM-ZXXIGWHRSA-N estriol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CCC2=C1 PROQIPRRNZUXQM-ZXXIGWHRSA-N 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 229910052587 fluorapatite Inorganic materials 0.000 description 1
- 229940077441 fluorapatite Drugs 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000013056 hazardous product Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к металлургии, в частности к получению сплава меди с фосфором. Может использоваться для вовлечения в промышленное производство апатитового и фосфоритового концентратов, вторичной меди и алюминия. Готовят однородную по составу порошкообразную шихту, содержащую порошок сплава меди с алюминием крупностью не более 0,315 мм и кислородсодержащее соединение фосфора. Содержание алюминия в сплаве соответствует стехиометрически необходимому для полного восстановления фосфора. Шихту нагревают до температуры расплавления сплава меди с алюминием и обеспечивают восстановление фосфора алюминием, растворение фосфора в меди с образованием соединения Cu3Р. Способ обеспечивает высокую степень извлечения фосфора из концентратов и получение сплава с содержанием фосфора до 14 мас.%. 2 з.п. ф-лы.
Description
Настоящее изобретение относится к металлургии, в частности к получению сплава меди с фосфором, и может быть использовано для вовлечения в рентабельное промышленное производство апатитового и фосфоритового концентратов, вторичной меди и алюминия.
Известен способ получения сплава медь-фосфор (см. Истрин М.А., Базилевский В.М., Качалов А.Б. и др. Вторичные цветные металлы (Справочник), ч.II. - М.: Металлургиздат, 1951, с.205-209), согласно которому в ковш загружают красный фосфор, в отдельном тигле расплавляют медь и заливают ее в ковш с фосфором, при этом фосфор растворяется в расплавленной меди. Степень извлечения фосфора в сплав составляет 70-80%, выход металла - 95-97%. Содержание фосфора в сплаве 7-10 мас.%.
Недостатком этого способа является необходимость использования красного фосфора, который является дорогостоящим и экологически опасным продуктом, работа с которым производится вручную. При осуществлении способа значительная часть фосфора теряется в виде паров, что приводит к дополнительным затратам и загрязнению окружающей среды.
Известен также способ получения сплава медь-фосфор (см. патент РФ №2080405, МПК6 С22С 1/10, С22В 5/04, 1997), включающий формирование однородной по составу шихты, состоящей из кислородсодержащего соединения фосфора, алюминия, меди и оксида меди с размером частиц менее 1 мм, загрузку ее в графитовый тигель, нагрев шихты с помощью экзотермической реакции во внепечном металлотермическом процессе, одновременное осуществление восстановления фосфора из его кислородсодержащего соединения, расплавления меди и растворения восстановленного фосфора в расплавленной меди с образованием соединения Cu3Р, расслоение по плотности полученного расплава на шлак и целевой сплав, представляющий сплав меди с фосфором, охлаждение тигля с продуктами горения и извлечение шлака и целевого сплава из тигля. В качестве кислородсодержащего соединения фосфора используют апатитовый или фосфоритовый концентрат. Содержание фосфора в сплаве - 10 мас.%, степень извлечения фосфора в сплав составляет 74-88%, выход целевого сплава - 94-95%.
Основным недостатком известного способа является то, что в качестве исходных компонентов при формировании шихты используют дорогие продукты в виде порошков меди, оксида меди и алюминия с высокой долей энергетических затрат и человеческого труда в структуре их себестоимости. Это не позволяет создать экономически рентабельное производство сплава.
Настоящее изобретение направлено на решение задачи повышения экономичности способа получения сплава меди с фосфором за счет вовлечения в производство дешевых вторичных меди и алюминия при обеспечении высокой степени извлечения в сплав фосфора из апатита или фосфорита и получении целевого сплава с содержанием фосфора до 14 мас.%.
Решение поставленной задачи обеспечивается тем, что в способе получения сплава меди с фосфором, включающем приготовление однородной по составу порошкообразной шихты, содержащей медь, алюминий и кислородсодержащее соединение фосфора, нагрев шихты, восстановление фосфора алюминием, растворение фосфора в меди с образованием соединения Cu3Р и разделение на шлак и целевой сплав, согласно изобретению медь и алюминий вводят в шихту в виде сплава меди с алюминием, предвартельно диспергированного до крупности не более 0,315 мм, при содержании алюминия в сплаве в количестве, равном стехиометрически необходимому для полного восстановления фосфора, а нагрев шихты ведут до температуры, обеспечивающей расплавление сплава меди с алюминием.
Технический результат достигается также тем, что используют сплав меди с алюминием, содержащий не более 19,1 мас.% алюминия.
Технический результат достигается и тем, что нагрев шихты ведут до температуры 1580-1620°С.
Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют нижеследующие функции и соотносятся с результатом следующим образом.
Использование сплава меди с алюминием в качестве компонента шихты делает возможным осуществление печного способа получения сплава меди с фосфором.
Предварительное диспергирование сплава меди с алюминием вызвано необходимостью формирования однородной по составу шихты для обеспечения одинаковых условий протекания процесса во всем объеме шихты. Диспергирование может быть осуществлено как из расплава меди и алюминия с использованием газовых или водяных форсунок, так и путем измельчения сплава в шаровых или стержневых мельницах. Диспергирование сплава меди с алюминием до крупности не более 0,315 мм обусловлено тем, что при проведении алюминотермической плавки с использованием восстановителя различной крупности, в роли которого выступает алюминий в сплаве алюминия с медью, может изменяться не только скорость проплавления шихты, но и выход целевого сплава. Оптимальное соотношение между крупностью кислородсодержащего соединения фосфора и восстановителя определяется как условиями, обеспечивающими формирование наиболее однородной шихты, так и необходимостью достижения стехиометрического соотношения компонентов в каждой локальной области взаимодействующих реагентов. Это достигается при использовании частиц кислородсодержащего соединения фосфора и сплава меди с алюминием одинаковой крупности. Размер частиц апатита и фосфорита при этом не превышает 0,315 мм, что соответствует ГОСТ 22275-90. Поэтому размер частиц сплава меди с алюминием выбран также не превышающим 0,315 мм.
Количество алюминия в сплаве меди с алюминием выбирают равным стехиометрически необходимому для полного восстановления фосфора из апатита или фосфорита с образованием алюминатов кальция. Количество меди в сплаве меди с алюминием определяется требуемой концентрацией фосфора в получаемом сплаве меди с фосфором. Это позволяет, с одной стороны, максимально полно восстановить фосфор алюминием сплава из кислородсодержащего соединения фосфора, в качестве которого используют апатит или фосфорит, и практически полностью растворить восстановленный фосфор в расплавленной меди - оставшейся части сплава с образованием термодинамически устойчивого вплоть до высоких температур соединения Cu3Р. В результате исключаются потери восстановленного фосфора как в окружающую газовую среду, так и в шлак. С другой стороны, стоимость апатита и фосфорита многократно ниже стоимости чистого красного фосфора, а использование для осуществления способа доступных компактных вторичных цветных металлов: меди и алюминия позволяет избежать использования относительно дорогих порошков алюминия, меди и оксида меди и обеспечивает существенное сокращение производственных расходов.
Нагрев шихты до температуры, обеспечивающей расплавление сплава меди с алюминием, восстановление фосфора и его растворение обусловлено тем, что расплавление сплава меди с алюминием приводит к соприкосновению исходных компонентов шихты и смачиванию полученным металлическим расплавом поверхности частиц кислородсодержащего соединения фосфора, а восстановление фосфора алюминием, входящим в состав сплава меди с алюминием, позволяет обеспечить высокую степень извлечения фосфора из апатита или фосфорита. Растворение восстановленного фосфора, осуществляемое в медной части сплава с образованием соединения Cu3Р, позволяет обеспечить высокую степень усвоения фосфора целевым сплавом.
Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении экономичности способа получения сплава меди с фосфором за счет вовлечения в производство дешевых вторичных меди и алюминия при обеспечении высокой степени извлечения в сплав фосфора из апатита или фосфорита и выхода целевого сплава с содержанием фосфора 14 мас.% и менее.
В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.
Выбор максимальной концентрации алюминия в сплаве не более 19,1 мас.% обусловлен требованиями ГОСТ-4515-81 к составу сплавов меди с содержанием фосфора не более 14 мас.%.
Нагрев шихты до температуры 1580-1620°С обусловлен необходимостью обеспечения таких условий процесса, при которых извлечение фосфора из его кислородсодержащего соединения в сплав будет осуществлено в кинетическом режиме, разделение полученного расплава на шлак и целевой сплав будет полным, а потери фосфора в газовую фазу - минимальными. Кинетический режим извлечения фосфора из его кислородсодержащего соединения имеет место только при расплавлении всех исходных компонентов шихты, промежуточных и конечных продуктов восстановления фосфора. Расплавленное состояние конечных продуктов восстановления, которыми являются шлак и целевой сплав, необходимо также для обеспечения их пространственного разделения. Температура плавления сплава меди с алюминием находится в интервале 1020-1083°С. Самыми тугоплавкими компонентами шихты являются кислородсодержащие соединения фосфора. Это исходные соединения в виде фторапатита Ca5(PO4)F, хлорапатита Са5(PO4)3Cl, трикальцийфосфата Са3(PO4)2 и промежуточное соединение в виде тетракальцийфосфата Са4(PO4)2О с температурами плавления 1660, 1530, 1777 и 1710°С соответственно. При восстановлении исходных соединений фосфора образуется эвтектика Са3(PO4)2 - Са4(РО4)2О с температурой плавления 1580°С. Восстановление фосфора при температуре ниже 1580°С приводит к диффузионному режиму процесса и неполному извлечению фосфора из его кислородсодержащего соединения. Температура плавления конечных продуктов восстановления фосфора в виде сплава меди с фосфором и шлака существенно ниже и не превышает 1100°С и 1290°С соответственно, что гарантирует качественное разделение полученного расплава на шлак и целевой сплав. Соединение Cu3Р, как основа получаемого сплава, при температуре процесса должно быть устойчивым. При температурах более высоких, чем 1620°С, соединение Cu3Р перестает быть устойчивым и разлагается с потерей фосфора в газовую фазу. Это приводит к снижению степени извлечения фосфора в сплав и уменьшению выхода сплава меди с фосфором.
Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения обеспечения высокой степени извлечения фосфора из его кислородсодержащего соединения в сплав и получения сплава меди с фосфором с содержанием фосфора до 14 мас.% при сохранении экономичности способа.
Указанные выше особенности и преимущества предлагаемого способа могут быть проиллюстрированы нижеследующими Примерами 1-3.
Пример 1.
Сплав меди с алюминием Cu - 16,5 мас.% Al, полученный из вторичного сырья, диспергируют в шаровой мельнице до крупности - 0,200 мм. В качестве кислородсодержащего соединения фосфора используют апатитовый концентрат с содержанием Р2O5 - 39,32 мас.%. Диспергированный сплав в количестве 3,008 кг и апатитовый концентрат в количестве 1,992 кг помещают в смеситель и перемешивают в течение 15 мин. Получают шихту, содержащую, в мас.%: 39,84 апатитового концентрата и 60,16 сплава меди с алюминием. Навеску шихты в количестве 5 кг помещают в графитовый тигель с крышкой и подвергают нагреву в высокочастотной индукционной печи в течение 30 мин. Нагрев ведут до температуры 1600°С. В процессе нагрева осуществляют расплавление диспергированного сплава меди с алюминием, восстановление фосфора алюминием сплава и растворение восстановленного фосфора в медной части сплава с образованием соединения Cu3Р. Полученный расплав разделяют на шлак и целевой сплав, представляющий сплав меди с фосфором. Шлак и целевой сплав раздельно выливают из тигля в изложницы. После охлаждения сплав меди с фосфором имеет вид монолитного слитка. Степень извлечения фосфора из апатита в сплав составляет 96%, выход металла - 97%. Содержание фосфора в сплаве 11,8 мас.%.
Пример 2.
Сплав меди с алюминием Cu - 19,1 мас.% Al, полученный из вторичного сырья, диспергируют в установке распыления инертным газом до крупности - 0,315 мм. В качестве кислородсодержащего соединения фосфора используют фосфоритовый концентрат с содержанием P2O5 - 35 мас.%. Диспергированный сплав в количестве 2,867 кг и фосфоритовый концентрат в количестве 2,133 кг помещают в смеситель и перемешивают в течение 15 мин. Получают шихту, содержащую, в мас.%: 42,66 фосфоритового концентрата и 57,34 сплава меди с алюминием. Навеску шихты в количестве 5 кг помещают в графитовый тигель с крышкой и подвергают нагреву в высокочастотной индукционной печи в течение 30 мин. Нагрев ведут до температуры 1580°С. В процессе нагрева осуществляют расплавление диспергированного сплава меди с алюминием, восстановление фосфора алюминием сплава и растворение восстановленного фосфора в медной части сплава с образованием соединения Cu3Р. Полученный расплав разделяют на шлак и целевой сплав, представляющий сплав меди с фосфором. Шлак и целевой сплав раздельно выливают из тигля в изложницы. После охлаждения сплав меди с фосфором имеет вид монолитного слитка. Степень извлечения фосфора из фосфорита в сплав составляет 95%, выход металла - 99%. Содержание фосфора в сплаве - 14 мас.%.
Пример 3.
Сплав меди с алюминием Cu - 17,8 мас.% Al, полученный из вторичного сырья, диспергируют в стержневой мельнице до крупности - 0,315 мм. В качестве кислородсодержащего соединения фосфора используют апатитовый концентрат с содержанием Р2O5 - 39,32 мас.%. Диспергированный сплав в количестве 2,917 кг и апатитовый концентрат в количестве 2,083 кг помещают в смеситель и перемешивают в течение 15 мин. Получают шихту, содержащую, в мас.%: 41,67 апатитового концентрата и 58,33 сплава меди с алюминием. Навеску шихты в количестве 5 кг помещают в графитовый тигель с крышкой и подвергают нагреву в высокочастотной индукционной печи в течение 30 мин. Нагрев ведут до температуры 1620°С. В процессе нагрева осуществляют расплавление диспергированного сплава меди с алюминием, восстановление фосфора алюминием сплава и растворение восстановленного фосфора в медной части сплава с образованием соединения Cu3Р. Полученный расплав разделяют на шлак и целевой сплав, представляющий сплав меди с фосфором. Шлак и целевой сплав раздельно выливают из тигля в изложницы. После охлаждения сплав меди с фосфором имеет вид монолитного слитка. Степень извлечения фосфора из апатита в сплав составляет 95%, выход металла - 94%. Содержание фосфора в сплаве 13 мас.%.
Как видно из приведенных примеров вовлечение в производство дешевых вторичных меди и алюминия позволяет решить задачу повышения экономичности способа получения сплава меди с фосфором при обеспечении высокой степени (95-96%) извлечения фосфора из кислородсодержащего соединения фосфора в сплав, высокого выхода целевого сплава (94-99%) и получении сплава меди с фосфором при его содержании в сплаве до 14 мас.%. Заявляемый способ относительно прост и может быть реализован с привлечением стандартного печного и мельничного оборудования.
Claims (3)
1. Способ получения сплава меди с фосфором, включающий приготовление однородной по составу порошкообразной шихты, содержащей медь, алюминий и кислородсодержащее соединение фосфора, нагрев шихты, восстановление фосфора алюминием, растворение фосфора в меди с образованием соединения Cu3Р и разделение на шлак и целевой сплав, отличающийся тем, что медь и алюминий вводят в шихту в виде сплава меди с алюминием, предварительно диспергированного до крупности не более 0,315 мм, при содержании алюминия в сплаве в количестве, равном стехиометрически необходимому для полного восстановления фосфора, а нагрев шихты ведут до температуры, обеспечивающей расплавление сплава меди с алюминием.
2. Способ по п.1, отличающийся тем, что используют сплав меди с алюминием, содержащий не более 19,1 мас.% алюминия.
3. Способ по п.1, отличающийся тем, что нагрев шихты ведут до температуры 1580-1620°С.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006126839/02A RU2329316C2 (ru) | 2006-07-24 | 2006-07-24 | Способ получения сплава меди с фосфором |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006126839/02A RU2329316C2 (ru) | 2006-07-24 | 2006-07-24 | Способ получения сплава меди с фосфором |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006126839A RU2006126839A (ru) | 2008-01-27 |
RU2329316C2 true RU2329316C2 (ru) | 2008-07-20 |
Family
ID=39109740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006126839/02A RU2329316C2 (ru) | 2006-07-24 | 2006-07-24 | Способ получения сплава меди с фосфором |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2329316C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020225760A1 (en) | 2019-05-07 | 2020-11-12 | Axpip B.V. | A process for recovering elemental phosphorus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2080405C1 (ru) * | 1995-06-13 | 1997-05-27 | Институт химии и технологии редких элементов и минерального сырья Кольского научного центра РАН | Способ получения фосфорсодержащего сплава |
RU2098497C1 (ru) * | 1996-05-06 | 1997-12-10 | Институт химии и технологии редких элементов и минерального сырья Кольского научного центра РАН | Способ получения сплава металл-фосфор |
RU2108403C1 (ru) * | 1996-07-01 | 1998-04-10 | Институт металлургии Уральского отделения РАН | Способ получения медно-фосфорной лигатуры |
KR20030012584A (ko) * | 2001-08-01 | 2003-02-12 | 주식회사삼화합금사 | 용가재용 합금 조성물 및 그 제조방법 |
CN1540011A (zh) * | 2003-10-27 | 2004-10-27 | 山东大学 | 一种低熔点铜-磷基中间合金及其制备方法 |
JP2005081371A (ja) * | 2003-09-08 | 2005-03-31 | Ykk Corp | 電極材料及びその製造方法 |
-
2006
- 2006-07-24 RU RU2006126839/02A patent/RU2329316C2/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2080405C1 (ru) * | 1995-06-13 | 1997-05-27 | Институт химии и технологии редких элементов и минерального сырья Кольского научного центра РАН | Способ получения фосфорсодержащего сплава |
RU2098497C1 (ru) * | 1996-05-06 | 1997-12-10 | Институт химии и технологии редких элементов и минерального сырья Кольского научного центра РАН | Способ получения сплава металл-фосфор |
RU2108403C1 (ru) * | 1996-07-01 | 1998-04-10 | Институт металлургии Уральского отделения РАН | Способ получения медно-фосфорной лигатуры |
KR20030012584A (ko) * | 2001-08-01 | 2003-02-12 | 주식회사삼화합금사 | 용가재용 합금 조성물 및 그 제조방법 |
JP2005081371A (ja) * | 2003-09-08 | 2005-03-31 | Ykk Corp | 電極材料及びその製造方法 |
CN1540011A (zh) * | 2003-10-27 | 2004-10-27 | 山东大学 | 一种低熔点铜-磷基中间合金及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020225760A1 (en) | 2019-05-07 | 2020-11-12 | Axpip B.V. | A process for recovering elemental phosphorus |
NL2023083B1 (en) * | 2019-05-07 | 2020-11-30 | Axpip Bv | A process for recovering elemental phosphorus |
Also Published As
Publication number | Publication date |
---|---|
RU2006126839A (ru) | 2008-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2733772C1 (ru) | Способ изготовления сплавов феррованадия на основе алюминотермического самораспространяющегося градиентного восстановления и рафинирования шлаком | |
KR102616983B1 (ko) | 저질소, 본질적으로 질화물을 함유하지 않는 크롬 및 크롬과 니오븀-함유 니켈계 합금의 제조 방법 및 수득된 크롬 및 니켈계 합금 | |
CN112281014A (zh) | 一种稀土合金化的镁锂合金或铝锂合金的制备方法 | |
EP2945764B1 (en) | Process for producing tantalum alloys | |
JPH0364574B2 (ru) | ||
JPH0465137B2 (ru) | ||
JPH06145836A (ja) | アルミニウム滓を利用した合金の製法 | |
CN103131921A (zh) | 一种碳化镍处理的高强度铝合金及其制备方法 | |
CN109112333B (zh) | 一种采用碳热还原-自蔓延制备钛铁合金的方法 | |
RU2329316C2 (ru) | Способ получения сплава меди с фосфором | |
RU2697122C1 (ru) | Способы получения танталовых сплавов и ниобиевых сплавов | |
CA2127121C (en) | Master alloys for beta 21s titanium-based alloys and method of making same | |
RU2244025C2 (ru) | Спеченные агломераты и способ их изготовления | |
RU2455379C1 (ru) | Способ выплавки низкоуглеродистых марганецсодержащих сплавов | |
RU2335564C2 (ru) | Высокотитановый ферросплав, получаемый двухстадийным восстановлением из ильменита | |
RU2599464C2 (ru) | Шихта и способ алюминотермического получения сплава на основе хрома с ее использованием | |
RU2148102C1 (ru) | Способ получения ферромарганца | |
RU2080405C1 (ru) | Способ получения фосфорсодержащего сплава | |
RU2196843C2 (ru) | Способ печной выплавки ферротитана из окислов титана | |
CN107779604B (zh) | 一种处理铝钒夹合金渣的方法 | |
Safronov et al. | SHS ferroaluminum obtained from the disperse waste of engineering | |
RU2206628C2 (ru) | Шихта для получения азотсодержащих лигатур на основе тугоплавких металлов | |
EP0950454A1 (en) | Nickel alloy for hydrogen battery electrodes | |
RU2754862C1 (ru) | Способ получения силуминов с использованием аморфного микрокремнезема | |
RU2017583C1 (ru) | Способ получения брикетов для модифицирования сталей и сплавов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20120725 |