RU2320539C1 - Способ переработки содосульфатного раствора - Google Patents

Способ переработки содосульфатного раствора Download PDF

Info

Publication number
RU2320539C1
RU2320539C1 RU2006139843/15A RU2006139843A RU2320539C1 RU 2320539 C1 RU2320539 C1 RU 2320539C1 RU 2006139843/15 A RU2006139843/15 A RU 2006139843/15A RU 2006139843 A RU2006139843 A RU 2006139843A RU 2320539 C1 RU2320539 C1 RU 2320539C1
Authority
RU
Russia
Prior art keywords
solution
sodium sulfate
fluoride
sodium
sulfate solution
Prior art date
Application number
RU2006139843/15A
Other languages
English (en)
Inventor
Гакиф Закирович Насыров (RU)
Гакиф Закирович Насыров
Original Assignee
Открытое акционерное общество "РУСАЛ Всероссийский Алюминиево-магниевый Институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "РУСАЛ Всероссийский Алюминиево-магниевый Институт" filed Critical Открытое акционерное общество "РУСАЛ Всероссийский Алюминиево-магниевый Институт"
Priority to RU2006139843/15A priority Critical patent/RU2320539C1/ru
Application granted granted Critical
Publication of RU2320539C1 publication Critical patent/RU2320539C1/ru

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Treating Waste Gases (AREA)

Abstract

Изобретение относится к переработке содосульфатных растворов, получаемых после очистки содосульфатным раствором серосодержащих газов электролизных корпусов производства алюминия. Способ переработки содосульфатного раствора включает очистку газа от фтористых соединений и диоксида серы путем его орошения в мокрых скрубберах содосульфатным раствором, выделение из части циркулирующего содосульфатного раствора фтористого натрия в виде фтористого кальция. Из маточного содосульфатного раствора после его очистки от фтористого натрия выделяют в осадок очищенный от примесей крупнокристаллический безводный сульфат натрия упариванием маточного раствора с доведением концентрации титруемой карбонатной щелочи в упаренном растворе до 75-100 г/л в пересчете на Na2CO3 и плотности упаренного раствора 1,30-1,31 г/л при температуре 70-105°С. Изобретение позволяет снизить потери карбонатной соды. 1 ил.

Description

Изобретение относится к цветной металлургии, конкретно к переработке содосульфатных растворов, получаемых после очистки серосодержащих газов электролизных корпусов производства алюминия содосульфатным раствором.
Наиболее близким к заявленному способу является способ выделения сульфата натрия из содосульфатного раствора мокрой очистки газов электролизных корпусов производства алюминия (RU, патент №2254293, C01D 5/00, C01F 7/54, Опубл. 20.06.2005). Способ включает очистку отходящих газов электролизных корпусов при производстве алюминия от фтористых и сернистых соединений путем их орошения в мокрых скрубберах циркулирующим в системе газоочистки содосульфатным раствором. Часть циркулирующего раствора подвергают предварительной очистке от фтористых солей последовательно в две стадии. На первой стадии фтористую соль выделяют в виде криолита (Na3AlF6) путем дозировки в содосульфатный раствор расчетного количества алюминатного раствора. На второй стадии дополнительно очищают содосульфатный раствор от фтористого натрия путем дозировки в раствор известкового молока с выделением фтора в осадок в виде фтористого кальция (CaF2). Из очищенного от фтористых солей содосульфатного раствора выделяют сульфат натрия в виде берксизовой соли (Na2CO3·2Na2SO4) путем его концентрирующей выпарки до достижения плотности раствора до 1,37±0,02 и с дозировкой в упаренный раствор карбонатной соды до достижения концентрации титрируемой щелочи в маточном растворе 215-230 г/л, при плотности суспензии до 1,35±0,02 г/л путем перемешивания суспензии при t=95-100°C в течение 30-40 минут.
Основным недостатком этого способа является выделение сернокислого натрия из содосульфатного раствора в виде беркеитовой соли (Na2CO3·2Na2SO4), с которой теряется часть карбонатной соды. Это приводит к повышенному расходу карбонатной соды, требуемой для очистки отходящих газов электролизных корпусов производства алюминия от диоксида серы.
В основу изобретения положена задача, заключающаяся в исключении потерь карбонатной соды с беркеитовой солью в технологическом цикле при выделении сульфата натрия из содосульфатного раствора, получаемого в процессе очистки отходящих газов электролизных корпусов производства алюминия от диоксида серы, что позволит снизить карбонатной соды, требуемой для очистки отходящих газов электролизных корпусов производства алюминия от диоксида серы.
Достижение вышеуказанного технического результата обеспечивается тем, что в способе переработки содосульфатного раствора, получаемого после очистки отходящих газов электролизных корпусов при производстве алюминия, включающем очистку газа от фтористых соединений и диоксида серы путем его орошения в мокрых скрубберах содосульфатным раствором, выделение из части циркулирующего содосульфатного раствора фтористого натрия в виде фтористого кальция, из маточного содосульфатного раствора после его очистки от фтористого натрия выделяют в осадок очищенный от примесей крупнокристаллический безводный сульфат натрия путем упарки маточного раствора с доведением концентрации титруемой карбонатной щелочи в упаренном растворе до 75-100 г/л в пересчете на Na2CO3 и плотности упаренного раствора 1,30-1,31 г/л при температуре 70-105°С.
Пределы температуры, плотности и концентрации карбонатной соды в упаренном растворе выбираются в зависимости от величины остаточной концентрации фтористого натрия в содосульфатном растворе, которая после его очистки от фтористого натрия известковым молоком может колебаться в пределах 0,5-1,0 г/л в пересчете на NaF.
При остаточной концентрации фтористого натрия в очищенном известковым молоком содосульфатном растворе не выше 0,5 г/л NaF, плотность и концентрация карбонатной соды в упаренном растворе может быть допущена соответственно до 1,31 г/л и 100 г/л Na2CO3 при температуре раствора 70-80°С, что обеспечивает более глубокое выделение сульфата натрия из упаренного содосульфатного раствора, не допуская при этом его загрязнения карбонатной содой и фтористым натрием из-за возможного его выделения из упаренного раствора в осадок в виде двойной соли фтористого натрия с сульфатом натрия (NaF, Na2SO4).
При повышении остаточной концентрации фтористого натрия в очищенном известковым молоком содосульфатном растворе до одного и выше грамма на литр, для исключения возможности загрязнения выделяемого в осадок сульфата натрия фтористым натрием, требуется снизить плотность и концентрацию карбонатной соды в упаренном содосульфатном растворе до 1,30 г/л и 75 г/л Na2CO3 и повысить температуру раствора до 90-100°С.
В настоящее время на алюминиевых заводах начата реализация очистки отходящих газов электролизных корпусов от фтористого натрия "сухим" способом с помощью оксида алюминия. При этом содосульфатным раствором в мокрых скрубберах будет улавливаться из отходящих газов электролизных корпусов лишь диоксид серы и остатки фтористого натрия. Соответственно изменится ожидаемый химический состав циркулирующего в системе мокрой газоочистки содосульфатного раствора в следующих соотношениях: NaF - 3-4 г/л, NaHCO3 - 15-20 г/л, Na2CO3 - 5-10 г/л, Na2SO4 - более 200 г/л.
При этом из технологической схемы переработки содосульфатного раствора будет исключен передел очистки раствора от фтористого натрия методом выделения его в виде криолита путем дозировки в содосульфатный раствор алюминатного раствора.
Переработка содосульфатного раствора заявляемым способом при этом будет осуществляться по следующей схеме: исходный содосульфатный раствор очищают от фтористого натрия дозировкой в раствор расчетного стехиометрического количества известкового молока на связывание фтора в CaF2, с перемешиванием суспензии в течение 1,5-2,0 часа при температуре 90-100°С. Очищенный от фтористого натрия маточный содосульфатный раствор упаривают при конечной температуре упаренного раствора 70-100°С до достижения концентрации титруемой щелочи в упаренном растворе до 75-100 г/л в пересчете на Na2CO3 при плотности раствора в пределах 1,30-1,31 г/л с выделением в осадок очищенного от примесей крупнокристаллического безводного товарного сульфата натрия. Очищенный от основной массы сульфата натрия маточный содосульфатный раствор с остатком примесей фтористого натрия будет возвращаться в технологический цикл системы очистки газов электролизных корпусов от диоксида серы и остатков фтористого натрия в мокрых скрубберах циркулирующим содосульфатным раствором.
На чертеже приведена технологическая схема примера практического осуществления очистки газов электролизных корпусов в мокрых скрубберах предлагаемым способом с ожидаемым балансом материального потока в технологическом цикле при выпуске 900 тысяч тонн алюминия в год.
Ожидаемое снижение расхода карбонатной соды на очистку газов электролизных корпусов от диокида серы и фтористого натрия предлагаемым новым способом в сравнении с известным способом при выпуске 900 тысяч тонн алюминия в год согласно балансу составит
Figure 00000002
Figure 00000003
где 106 и 2·142 - соответствующие молекулярные веса Na2СО3 и Na2SO4 в беркеите (Na2CO3·2Na2SO4).
При этом ожидаемый экономический эффект составит 36 миллионов рублей в год при цене 2500 рублей за одну тонну карбонатной соды.

Claims (1)

  1. Способ переработки содосульфатного раствора, получаемого после очистки отходящих газов электролизных корпусов при производстве алюминия, включающий очистку газа от фтористых соединений и диоксида серы путем его орошения в мокрых скрубберах содосульфатным раствором, выделение из части циркулирующего содосульфатного раствора фтористого натрия в виде фтористого кальция, отличающийся тем, что из маточного содосульфатного раствора после его очистки от фтористого натрия выделяют в осадок очищенный от примесей крупнокристаллический безводный сульфат натрия путем упарки маточного раствора с доведением концентрации титруемой карбонатной щелочи в упаренном растворе до 75-100 г/л в пересчете на Na2СО3 и плотности упаренного раствора 1,30-1,31 г/л при температуре 70-105°С.
RU2006139843/15A 2006-11-02 2006-11-02 Способ переработки содосульфатного раствора RU2320539C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006139843/15A RU2320539C1 (ru) 2006-11-02 2006-11-02 Способ переработки содосульфатного раствора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006139843/15A RU2320539C1 (ru) 2006-11-02 2006-11-02 Способ переработки содосульфатного раствора

Publications (1)

Publication Number Publication Date
RU2320539C1 true RU2320539C1 (ru) 2008-03-27

Family

ID=39366191

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006139843/15A RU2320539C1 (ru) 2006-11-02 2006-11-02 Способ переработки содосульфатного раствора

Country Status (1)

Country Link
RU (1) RU2320539C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621334C1 (ru) * 2016-02-09 2017-06-02 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ мокрой очистки отходящих газов электролизных корпусов производства алюминия
RU2742987C1 (ru) * 2020-09-24 2021-02-12 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ обесфторивания и выделения безводного сульфата натрия из оборотных растворов газоочистки алюминиевых электролизеров

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621334C1 (ru) * 2016-02-09 2017-06-02 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ мокрой очистки отходящих газов электролизных корпусов производства алюминия
RU2742987C1 (ru) * 2020-09-24 2021-02-12 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ обесфторивания и выделения безводного сульфата натрия из оборотных растворов газоочистки алюминиевых электролизеров

Similar Documents

Publication Publication Date Title
CN1772345A (zh) 以软锰矿和pH缓冲剂为复合吸收剂进行废气脱硫的方法
CN103771459A (zh) 一种从含铅脱硫废液中回收硫酸钠的方法
PL216507B1 (pl) Sposób odsiarczania pasty akumulatorowej
EP0679426B1 (en) Magnesium-enhanced sulfur dioxide scrubbing with gypsum formation
CN106277005B (zh) 一种从氟化钙污泥资源中回收冰晶石、碳酸钙和硫酸钠的方法
JP3751340B2 (ja) 排ガスの脱硫方法
RU2320539C1 (ru) Способ переработки содосульфатного раствора
CN101774557A (zh) 一种钛白废酸用于生产磷酸的方法
EP0484637A1 (en) Sulfur dioxide removal from gases using a modified lime
CN114195174A (zh) 一种小苏打脱硫灰湿法制备硫酸钠的方法
RU2363525C1 (ru) Способ мокрой очистки отходящих газов электролизных корпусов производства алюминия
JP2017105651A (ja) 廃酸石膏の製造方法
EP3368192A1 (en) Process and system for removing sulfur dioxide from flue gas
CN108118143A (zh) 两段氯化焙烧-碱液浸出法从锂云母中提锂制备碳酸锂的方法
RU2627431C1 (ru) Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства
RU2667447C1 (ru) Способ обработки регенерационного криолита
RU2742987C1 (ru) Способ обесфторивания и выделения безводного сульфата натрия из оборотных растворов газоочистки алюминиевых электролизеров
RU2487082C1 (ru) Способ получения фторида кальция
JP4588045B2 (ja) 廃液の処理方法
CN106861432B (zh) 可再生脱硫吸收液的净化工艺
RU2621334C1 (ru) Способ мокрой очистки отходящих газов электролизных корпусов производства алюминия
RU2316473C1 (ru) Способ выделения безводного сульфата натрия из оборотных растворов газоочистки алюминиевых электролизеров
RU2326816C2 (ru) Способ переработки низкокалийного содопоташного раствора с высоким содержанием серы
RU2254293C2 (ru) Способ переработки содосульфатного раствора, получаемого после очистки газа электролизных корпусов при производстве алюминия
RU2624570C1 (ru) Способ переработки натрий-фтор-углеродсодержащих отходов электролитического производства алюминия

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091103