RU2314367C1 - Способ электрохимической обработки информационных изделий - Google Patents

Способ электрохимической обработки информационных изделий Download PDF

Info

Publication number
RU2314367C1
RU2314367C1 RU2006109002/02A RU2006109002A RU2314367C1 RU 2314367 C1 RU2314367 C1 RU 2314367C1 RU 2006109002/02 A RU2006109002/02 A RU 2006109002/02A RU 2006109002 A RU2006109002 A RU 2006109002A RU 2314367 C1 RU2314367 C1 RU 2314367C1
Authority
RU
Russia
Prior art keywords
dielectric
thickness
layer
metallic covering
template
Prior art date
Application number
RU2006109002/02A
Other languages
English (en)
Other versions
RU2006109002A (ru
Inventor
Владислав Павлович Смоленцев (RU)
Владислав Павлович Смоленцев
Олег Николаевич Кириллов (RU)
Олег Николаевич Кириллов
Михаил Григорьевич Поташников (RU)
Михаил Григорьевич Поташников
Наталь Игнатьевна Воронова (RU)
Наталья Игнатьевна Воронова
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority to RU2006109002/02A priority Critical patent/RU2314367C1/ru
Publication of RU2006109002A publication Critical patent/RU2006109002A/ru
Application granted granted Critical
Publication of RU2314367C1 publication Critical patent/RU2314367C1/ru

Links

Images

Landscapes

  • Manufacturing Optical Record Carriers (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Изобретение относится к области машиностроения, радиоэлектроники и приборостроения и может быть использовано при изготовлении плат печатного монтажа, циферблатов, указателей, текстовых, цифровых и других информационных материалов (схем, карт и др.). Способ включает нанесение на изделие, состоящее из диэлектрического материала с металлическим покрытием, диэлектрического шаблона, при этом на не защищенные диэлектрическим шаблоном участки металлического покрытия при минимальном зазоре между диэлектрическим шаблоном и токопроводящим инструментом, в который подают поливом электролит, наносят слой металла переменной толщины, с наибольшей толщиной, равной толщине диэлектрического шаблона на его границах, затем меняют полярность на противоположную, увеличивают зазор между диэлектрическим шаблоном и токопроводящим инструментом до верхнего предела, включают прокачку электролита и выполняют съем металлического покрытия и осажденного слоя на участках, незащищенных диэлектрическим шаблоном, до стабилизации тока на уровне, близком к нулевому. Изобретение позволяет получить требуемую информационной схему с сохранением толщины металлического покрытия на нерабочих участках и с полным удалением металлического покрытия на нерабочих участках заготовки. 3 ил.

Description

Изобретение относится к области машиностроения, радиоэлектроники и приборостроения. Оно может быть использовано при изготовлении плат печатного монтажа, циферблатов, указателей, текстовых, цифровых и других информационных материалов (схем, карт и др.).
Известен способ электрохимической обработки по катодным диэлектрическим шаблонам металлических материалов, в котором обработка выполняется по всей глубине за счет подвода тока через металлическую заготовку [1]. К недостатку способа относится невозможность обработки участков, электрически не связанных с заготовкой, что исключает использование способа для обработки металлических покрытий на диэлектрических подложках.
Наиболее близким к заявленному изобретению является способ электрохимической обработки металлических покрытий на диэлектриках, в котором на всю обрабатываемую поверхность наносят слой серебра, через который подводят ток ко всем участкам покрытия [2]. Недостатком способа является неравномерность слоя наносимого серебра, утонение слоя металлического покрытия во время обработки участков покрытия, не связанных с токоподводами.
Изобретение направлено на получение требуемой информационной схемы с сохранением толщины металлического покрытия на рабочих участках и с полным удалением металлического покрытия на нерабочих участках заготовки.
Это достигается тем, что в способе электрохимической обработки информационных изделий, включающем нанесение на изделие, состоящее из диэлектрического материала с металлическим покрытием, диэлектрического шаблона, на не защищенные диэлектрическим шаблоном участки металлического покрытия при минимальном зазоре между диэлектрическим шаблоном и токопроводящим инструментом, в который подают поливом электролит, наносят слой металла переменной толщины, с наибольшей толщиной, равной толщине диэлектрического шаблона на его границах, затем меняют полярность на противоположную, увеличивают зазор между диэлектрическим шаблоном и токопроводящим инструментом до верхнего предела, включают прокачку электролита и выполняют съем металлического покрытия и осажденного слоя на участках, не защищенных диэлектрическим шаблоном, до стабилизации тока на уровне, близком к нулевому.
На фигуре 1 показано исходное положение заготовки и инструмента перед обработкой; на фигуре 2 - форма осажденного слоя в конце операции его нанесения; на фигуре 3 - форма получаемого контура в конце периода удаления металлического покрытия и осажденного слоя.
Способ осуществляют следующим образом: на заготовку (фиг.1), состоящую из диэлектрического материала 1 и металлического покрытия 2, неподвижно закрепленного на материале 1, накладывают диэлектрический шаблон 3, повторяющий контуры информационного участка токопроводящего материала покрытия. Толщина шаблона из фотожелатинового слоя составляет 50-80 мкм. На расстоянии рекомендуемого минимального межэлектродного зазора S1 от шаблона 3 устанавливают токопроводящий инструмент 4. Величина S1 для размерной обработки неподвижными электродами составляет 0,1-0,3 мм.
В межэлектродный зазор поливом (фиг.2) подают стандартный электролит 5 для нанесения слоя 6 из того же материала, как и покрытие 2. Подключают ток от источника постоянного тока (на фигуре 2 не показан) по схеме, в которой металлическое покрытие 2 является катодом. Токоподвод к покрытию 2 осуществляют в местах выхода на наружный контур участков шаблона 3. За счет перераспределения электрического поля на границе диэлектрического шаблона 3 плотность тока выше, чем на удаленных от шаблона 3 участках металлического покрытия 2, и происходит неравномерное нанесение слоя 6 с наибольшей толщиной на границах диэлектрического шаблона 3. Скорость наращивания слоя металла регулируют величиной зазора и напряжения, подаваемого на металлическое покрытие 2 и инструмент 4. Для рассматриваемого случая скорость наращивания слоя 6 составляет 1-1,2 мкм/мин. Толщина слоя 6 изменяется в сторону уменьшения по мере удаления от шаблона 3, как показано на фигуре 2. Толщину наносимого слоя 6 контролируют по времени обработки, которое находят как отношение толщины шаблона 3 к скорости наращивания слоя 6.
После достижения слоем 6 толщины шаблона 3 в месте их сопряжения процесс нанесения слоя 6 прекращают, разводят инструмент 4 и заготовку на межэлектродный зазор S2 (фиг.3), включают подачу электролита через зазор S2 со скоростью, которая составляет 1,5-2 м/с. Межэлектродный зазор S2 выбирают около 0,3 мм. Подключают к токоподводам ток, при котором металлическое покрытие 2 и металлический слой 6 являются анодом. За счет увеличения зазора S2 относительно S1 и прокачки электролита электрическое поле на слое 6 выравнивается и начинается достаточно равномерный съем материала со слоя 6 и покрытия 2, что позволяет вначале удалить материал слоя 6 в местах, наиболее удаленных от токоподводов, а на границе контура шаблона 3 съем протекает после очистки участков покрытия 2, которые могли остаться на заготовке. Процесс прекращают после полного удаления участков покрытия 2, не защищенных слоем диэлектрического шаблона 3, что контролируется по величине тока, который стабилизируется на уровне, близком к нулю.
После визуального осмотра обработанной части заготовки шаблон 3 удаляется механически или химическим растворением.
Пример конкретного осуществления способа. На заготовку из стеклопластика с покрытием 2 медью (полученного методом плакирования) толщиной 60±2 мкм фотохимическим методом в соответствии с рекомендациями для минимального межэлектродного зазора [с.33, Смоленцев В.П., Смоленцев Г.П., Садыков З.Б. Электрохимическое маркирование деталей. М.: Машиностроение, 1983. 72 с.] наносят информационную схему печатной платы в форме диэлектрического шаблона 3 толщиной 55±5 мкм. По наружному контуру заготовки на границах выхода участков шаблона 3 устанавливают токоподводы к покрытию 2 (например, их прижимом к неизолированным участкам шаблона 3). Соединяют токоподводы с отрицательным полюсом источника тока, а инструмент 4 - с положительным. Устанавливают зазор S1 в соответствии с рекомендациями для безразмерной обработки неподвижным электродом [с.281, Машиностроение. Энциклопедия. Технологии изготовления деталей машин. Т.III-3/ A.M.Дальский, А.Г.Суслов и др.; Под общ. ред. А.Г.Суслова. М.: Машиностроение, 2000. 840 с.] между шаблоном 3 и инструментом 4 равным 0,1±0,01 мм. Помещают систему, приведенную на фигуре 1, над ванной с возможностью пролива через зазор S1 электролита (в данном случае раствора медного купороса и серной кислоты рн 3-4). Подают электролит, ток с напряжением 5-6 В. Сила тока на амперметре установилась 7-7,2 А. Из опыта нанесения таких покрытий известно, что скорость осаждения меди составляет 0,9-1,1 мкм/мин. Для компенсации роста тока по мере увеличения слоя 6 напряжение снижали до 4,0-4,2 В. Время нанесения слоя 6 составило 57 мин. После отключения тока, полива электролита систему, приведенную на фигуре 1 с нанесенным слоем 6, устанавливают над ванной, увеличивают зазор S2 до 0,3±0,01 мм, подключают к зазору S2 насос ПА-45 и регулируют расходом среднюю скорость прокачки 1,6-1,7 м/с, рекомендованную для обработки с трафаретом [с.21, Смоленцев В.П., Смоленцев Г.П., Садыков З.Б. Электрохимическое маркирование деталей. М.: Машиностроение, 1983. 72 с.]. Изменяют полярность на инструменте 4 (минус) и слое 6 (плюс), подают напряжение 5-6 В и наблюдают за процессом по амперметру, где сила тока в начале процесса составила 200 А, а через 3 минуты снизилась до 2-3 А и стабилизировалась. Заготовка после обработки не имела изолированных от токоподвода необработанных участков, разрывов над шаблоном и соответствовала требованиям отдела технического контроля. Таким образом, поставленная цель достигнута.
Источники информации
1. А.с. №1839126 А1, В23Н 3/00, В23Н 9/06, 1993, Бюл. №48.
2. А.с. №1299719 А1, В23Н 3/08, Н05К 3/18, 1987, Бюл. №12.
3. Смоленцев В.П., Смоленцев Г.П., Садыков З.Б. Электрохимическое маркирование деталей. М.: Машиностроение, 1983. 72 с.
4. Машиностроение. Энциклопедия. Технологии изготовления деталей машин. Т.III-3/ A.M.Дальский, А.Г.Суслов и др.; Под общ. ред. А.Г.Суслова. М.: Машиностроение, 2000. 840 с.

Claims (1)

  1. Способ электрохимической обработки информационных изделий, включающий нанесение на изделие, состоящее из диэлектрического материала с металлическим покрытием, диэлектрического шаблона, при этом на незащищенные диэлектрическим шаблоном участки металлического покрытия при минимальном зазоре между диэлектрическим шаблоном и токопроводящим инструментом, в который подают поливом электролит, наносят слой металла переменной толщины, с наибольшей толщиной, равной толщине диэлектрического шаблона на его границах, затем меняют полярность на противоположную, увеличивают зазор между диэлектрическим шаблоном и токопроводящим инструментом до верхнего предела, включают прокачку электролита и выполняют съем металлического покрытия и осажденного слоя на участках, незащищенных диэлектрическим шаблоном, до стабилизации тока на уровне близком к нулевому.
RU2006109002/02A 2006-03-21 2006-03-21 Способ электрохимической обработки информационных изделий RU2314367C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006109002/02A RU2314367C1 (ru) 2006-03-21 2006-03-21 Способ электрохимической обработки информационных изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006109002/02A RU2314367C1 (ru) 2006-03-21 2006-03-21 Способ электрохимической обработки информационных изделий

Publications (2)

Publication Number Publication Date
RU2006109002A RU2006109002A (ru) 2007-09-27
RU2314367C1 true RU2314367C1 (ru) 2008-01-10

Family

ID=38953831

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006109002/02A RU2314367C1 (ru) 2006-03-21 2006-03-21 Способ электрохимической обработки информационных изделий

Country Status (1)

Country Link
RU (1) RU2314367C1 (ru)

Also Published As

Publication number Publication date
RU2006109002A (ru) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4257203B2 (ja) 電解処理システム用のセグメント化した対向電極
JP3913782B2 (ja) 処理液体で被処理物を電気化学的に処理するための方法と装置
KR880701066A (ko) 도체회로판의 제조방법.
DE59801021D1 (de) Wässriges bad und verfahren zum elektrolytischen abscheiden von kupferschichten
MY144932A (en) Production apparatus for electro-deposited metal foil, production method of thin plate insoluble metal electrode used in production apparatus for electro-deposited metal foil, and electro-deposited metal foil produced by using production apparatus for electro-deposited metal foil
US3374159A (en) Marking of steel strip electrolytically using electrolyte adhering to the strip
CN108080782B (zh) 微小孔电解加工电极的侧壁绝缘方法及应用
RU2314367C1 (ru) Способ электрохимической обработки информационных изделий
CN104582320A (zh) 一种柔性线路板的前段制作工艺
GB2070647A (en) Selective chemical deposition and/or electrodeposition of metal coatings, especially for the production of printed circuits
JP5751530B2 (ja) 長尺導電性基板の電解めっき方法および銅張積層板の製造方法
US6217787B1 (en) Method of removing and/or applying conductive material
JPH0328389A (ja) 銅張積層板用銅箔層、その製造方法およびそれに用いるめっき浴
JP3226169B2 (ja) 流体ヘッドを利用した選択的電解メタライゼーション装置および方法
DE1640579A1 (de) Verfahren zur Herstellung flaechenhafter elektrischer Leitungszuege
DE3034175A1 (de) Verfahren zur herstellung chemisch abscheidbarer, elektrisch leitfaehiger schichten
JPH0688285A (ja) 金属の電着方法
RU2118793C1 (ru) Электрод сравнения
KR100847867B1 (ko) 인쇄부분도금 장치 및 이를 이용한 부분도금 방법
JPS624894A (ja) 電解銅箔の製造装置
KR100727270B1 (ko) 인쇄 회로 기판 제작을 위한 도금 전극 구조 및 이를 구비한 전해 도금 장치
JPH03145187A (ja) フレキシブル基板用の電着塗装装置
JPH09157897A (ja) 電気メッキ方法
JPH0319314B2 (ru)
KR100889003B1 (ko) 전도성 금속 도금 필름, 그 제조 장치 및 제조 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080322