RU2314154C1 - Катализатор, способ его получения и процесс гидрообессеривания дизельных фракций - Google Patents

Катализатор, способ его получения и процесс гидрообессеривания дизельных фракций Download PDF

Info

Publication number
RU2314154C1
RU2314154C1 RU2006136218/04A RU2006136218A RU2314154C1 RU 2314154 C1 RU2314154 C1 RU 2314154C1 RU 2006136218/04 A RU2006136218/04 A RU 2006136218/04A RU 2006136218 A RU2006136218 A RU 2006136218A RU 2314154 C1 RU2314154 C1 RU 2314154C1
Authority
RU
Russia
Prior art keywords
catalyst
carrier
cobalt
alumina
hydrodesulfurization
Prior art date
Application number
RU2006136218/04A
Other languages
English (en)
Inventor
Светлана Анатольевна Яшник (RU)
Светлана Анатольевна Яшник
Зинфер Ришатович Исмагилов (RU)
Зинфер Ришатович Исмагилов
Тать на Анатольевна Суровцова (RU)
Татьяна Анатольевна Суровцова
Александр Степанович Носков (RU)
Александр Степанович Носков
рова Галина Александровна Бухти (RU)
Галина Александровна Бухтиярова
Original Assignee
Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук filed Critical Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук
Priority to RU2006136218/04A priority Critical patent/RU2314154C1/ru
Application granted granted Critical
Publication of RU2314154C1 publication Critical patent/RU2314154C1/ru

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к области химии, а именно к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан катализатор для процессов гидрообессеривания дизельных фракций, который в качестве активного компонента содержит комплексное кислородсодержащее соединение молибдена и кобальта и/или никеля при следующем атомном соотношении компонентов, Mo/(Co+Ni) - 1,5-2,5; катализатор имеет удельную поверхность 100-190 м2/г, объем пор - 0,3-0,5 см3/г, преобладающий радиус пор 80-120 Å. В качестве носителя катализатор содержит оксид алюминия или оксид алюминия с добавкой оксида кремния или цеолита, или монтмориллонита. Также описан способ получения катализатора и способ гидрообессеривания дизельных фракций. Технический результат - высокая активность катализатора в процессе гидроочистки дизельных фракций и устойчивость катализатора к дезактивации в присутствии углеводородных компонентов дизельного топлива и сернистых соединений ряда тиофена и его производных. 3 н. и 5 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области химии, а именно к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, в частности дизельных фракций, от сернистых соединений ряда тиофена и его производных: бензотиофена, дибензотиофена, алкилдибензотиофенов и 4,6-диалкилдибензотиофенов, и других серусодержащих ароматических соединений, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.
Известные Со-Мо и Ni-Mo катализаторы, содержащие 8-10 мас.% МоО3 и 3 мас.% СоО или NiO, нанесенные на пористые алюмооксидные носители, обеспечивают эффективную очистку дизельных фракций от сернистых соединений, в основном от меркаптанов, диалкилдисульфидов, тиофена и ряда его производных, до уровня 500 ppm серы. Сера, остающаяся в дизельных фракциях после процесса гидрообессеривания на указанных катализаторах, входит в состав наиболее устойчивых сероорганических соединений, таких как замещенные алкилдибензотиофены с одной или двумя алкильными группами, расположенными в β-положении к атому серы. Поэтому конверсия замещенных алкилдибензотиофенов определяет степень гидрообессеривания сырья в процессах глубокой гидроочистки дизельных фракций.
Одним из способов достижения глубокого гидрообессеривания дизельных фракций является повышение давления и температуры процесса, что позволяет использовать в процессе известные Co(Ni)-Mo(W) катализаторы. Однако повышение давления и температуры процесса приводит к дезактивации катализаторов как за счет повышения парциального давления сероводорода в газовой смеси, что особенно характерно для Ni-Mo катализатора, так и за счет закоксовысания поверхности катализатора углеводородными компонентами дизельного топлива. Недостатком данного метода является также повышение крекирующей активности Co(Ni)-Mo(W) катализаторов при повышенных температурах, что неизбежно приводит к снижению выхода жидкой фракции и снижению цетанового числа.
Другим способов обеспечения глубокой степени гидрообессеривания является оптимизация состава катализатора. Известно, что в случае β-диалкилдибензотиофенов скорость превращения по маршруту гидрогенолиза связи C-S сильно замедляется вследствие сильных стерических затруднений при их адсорбции на поверхности активного центра. Поэтому для проведения процессов глубокого гидрообессеривания необходимо использовать носители с развитой удельной поверхностью (не ниже 200 м2/г), пористой структурой (0,5-0,9 см3/г) и узким распределением пор по размерам, при этом доля пор размером 75-130 Å должна составлять не менее 75% от общего объема пор (US 3840472, B01J 27/19, C10G 45/08, 8.10.74; 2003/0173256; 4818743, B01J 23/85, 04.04.89; 4879265, B01J 23/24, 07.11.89). Снятие стерических затруднений, возникающих при адсорбции β-диалкилдибензотиофенов, достигается оптимизацией состава активного комплекса, в частности путем увеличения количества так называемых «CoMoS-II» центров, состоящих из сульфида молибдена, MoS2, имеющего слоистую структуру, допированную по периметру катионами промоторов, Со или Ni. Повышение количества «CoMoS-II» центров обычно достигается увеличением содержания соединений молибдена в катализаторе до 18-22 мас.% (US 2003/0173256), а в ряде случаев до 29 мас.% (US 2006/0054536). При приготовлении катализаторов с высоким содержанием активного комплекса методом пропитки неизбежно возникает проблема его равномерного распределения по носителю (до 6 атомов Мо на nm2 Al2О3) при пропитке из концентрированных растворов. Равномерность нанесения активного комплекса обычно достигается регулированием рН и состава пропиточных растворов путем введения в них кислотных добавок, например Н3PO4, и др. (US 3755196, 4392985, 4879265). При этом состав и рН пропиточных растворов необходимо подбирать так, чтобы максимально исключить образование окристаллизованных фаз Со3O4 и CoAl2O4 при термообработке катализатора, поскольку последние при предобработке катализатора в серусодержащей среде (сульфидировании) превращаются в сульфид кобальта, Co9S8, неактивный в реакции гидрообессеривания. Образование окристаллизованных фаз Со3O4 и CoAl2O4 снижается в присутствии в пропиточном растворе органических добавок, например лимонной кислоты (US 2003/0173256, 2006/0054536), при термообработке катализатора при температурах не выше 200°С (US 2003/0173256, 2006/0054536) и при сульфидировании катализатора в «мягких» условиях (US 4879265, 2003/0173256).
Для приготовления пропиточных растворов обычно используют оксиды молибдена и вольфрама, аммонийные соли молибденовой и вольфрамовой кислот (парамолибдат и паравольфрамат аммония), молибденовую или вольфрамовую кислоты, в ряде случаев фосфорно-молибденовую или фосфорно-вольфрамовую кислоты. При этом для повышения растворимости соединений молибдена и вольфрама в воде в пропиточные растворы добавляют минеральные кислоты, в основном фосфорную и ортофосфорную кислоты. Добавки минеральных кислот позволяют также повысить устойчивость совместных пропиточных растворов, содержащих соединения VIII и VI групп, к агломерации и выпадению окристаллизованных осадков. Другим способом увеличения растворимости соединений молибдена и вольфрама и устойчивости совместных пропиточных растворов, содержащих соединения VIII и VI групп, является использование концентрированных водных растворов аммиака. В качестве соединений предшественников кобальта и никеля используют как водорастворимые, так и малорастворимые соединения, наиболее часто это - нитрат, сульфат, ацетат, цитрат, карбонат, гидрооксид и оксид кобальта и/или никеля. Основным недостатком совместных пропиточных растворов, содержащих соединения металлов VIII и VI групп и фосфорную кислоту, является их низкая устойчивость в присутствии нитрат-аниона (NO3-, нежелательно присутствие вообще, US 3840472) и катиона аммония (не более 1,5 моль/л, US 3840472). Например, излишек иона-аммония взаимодействует с металлами VI и VIII групп и фосфорной кислотой с образованием окристаллизованных осадков фосфатов кобальта(никеля) и аммония или аммонийной соли фосфорно-молибденовой кислоты.
Введение добавок фосфорной кислоты в пропиточный раствор, содержащий соли металлов VI и VIII групп Периодической таблицы, позволяет увеличить растворимость соединений молибдена (в виде оксида или парамолибдата аммония) в водных растворах, а следовательно, позволяет вводить в катализатор высокие концентрации молибдена, в пределах 17-27 мас.% МоО3, за одну пропитку. Однако соотношение Р/Мо и рН пропиточного раствора, содержащего соли металлов VI и VIII групп Периодической таблицы, оказывают существенное влияние на гидрообессеривающую активность Co(Ni)-Mo(W) катализаторов. С одной стороны, использование растворов солей металлов VI и VIII групп, стабилизированных фосфорной кислотой, обеспечивает равномерное нанесение активного компонента на поверхность носителя и исключает образование окристаллизованных агрегатов активного компонента на поверхности носителя, что позволяет улучшить гидрообессеривающую активность Co(Ni)-Mo катализаторов. Таким образом, содержание фосфат-иона в пропиточном растворе, содержащем соли металлов VI и VIII групп, должно быть достаточным, чтобы обеспечить растворение необходимого количества предшественников активного компонента и устойчивость совместного пропиточного раствора.
С другой стороны, содержание фосфат-иона в пропиточном растворе не должно быть излишним, поскольку это может приводить к снижению активности по нескольким причинам. Во-первых, рН пропиточного раствора не должен быть существенно выше 2, так как высокое значение рН приводит к образованию и осаждению на поверхности носителя активного компонента в виде окристаллизованных частиц или кристаллитов. Во-вторых, рН пропиточного раствора не должен быть и существенно ниже 1, поскольку низкое значение рН приводит к взаимодействию фосфат-иона с поверхностью оксида алюминия и его пептизации, что приводит к снижению удельной поверхности носителя, доступной для нанесения активного компонента, и образованию фосфата алюминия. Кроме того, излишек фосфат-иона может способствовать химическому разрушению активного комплекса при прокаливании, в частности образованию алюминатов кобальта(никеля).
В патенте US 3840472, B01J 27/19, 8.10.1974 предлагается для приготовления пропиточных растворов использовать оксид молибдена и один из компонентов металлов VIII группы Периодической системы, выбранный из: карбонат, гидрооксид, ацетат, формиат, оксид в твердом виде, растворяя их в фосфорной кислоте при следующих концентрациях 0,3-2,5 моль/л Р, 0,4-1,5 моль/л металла VIII группы и 1-3 моль/л Мо.
Близкий способ приготовления катализатора описан в патентах US 4500424, 19.02.1985; 4818743, B01J 027/185, 4.04.1989. Катализатор готовят пропиткой гамма-оксида алюминия раствором, содержащим оксид молибдена, карбонат кобальта и фосфорную кислоту, в количестве, необходимом для введения в катализатор, не менее мас.%: 17-25 МоО3, 1-6 СоО или NiO, и 1-4 Р, при условии, что мольное соотношение Р/МоО3 в растворе выше 0,1, преимущественно 0,2, рН в интервале 0-1,0. В патенте также указывается, что в случае использования парамолибдата аммония, в качестве предшественника кобальта лучше использовать нитрат кобальта (никеля). В случае использования оксида молибдена в качестве предшественника кобальта лучше использовать карбонат кобальта (никеля).
В патентах US 3755150, 3755196, 28.08.1973; 4686030, 11.08.1987 и 4846961, 11.07.1989 описываются катализаторы, которые получают путем пропитки окиси алюминия, в том числе модифицированной кремнием, растворами солей активных металлов (Мо, Ni, Co) с введением в пропиточный раствор соединений фосфора в виде фосфорной кислоты. Повышение устойчивости пропиточного раствора, содержащего парамолибдат аммония и нитрат никеля (кобальта), достигается введением в раствор фосфорной кислоты до массового соотношения Р/МоО3 в интервале 0,1-0,25 и рН в интервале 1-2. После прокаливания при 900°F катализатор гидрообессеривания содержит, мас.%: 5-40 МоО3 (преимущественно 15-21,7), 1-10 NiO или СоО (преимущественно 2,8-3,07) и 2,4-3,5 Р, нанесенных на модифицированный кремнием Al2О3.
В патенте US 4392985, B01J 027/14, 12.07.1983 для получения устойчивого пропиточного раствора, содержащего парамолибдат аммония и нитрат кобальта (никеля), предлагается вводить в раствор фосфорную кислоту до массового соотношения Р/МоО3 в интервале 0,05-0,16 и рН ниже 1,2. Пропиточный раствор стабилен при условии содержания в нем не менее 17 мас.% МоО3 и массовом соотношении СоО/МоО3 в интервале 0,1-0,4.
Влияние фосфат-иона на активность катализаторов гидрообессеривания сглаживает добавление в пропиточный раствор органических соединений, например лимонной кислоты. В патенте US 4879265 B01J 027/19, 7.07.1989 описан способ приготовления высокоактивного катализатора, содержащего не менее, мас.%: 17 МоО3 (до 27), 1 Р (до 4) и 0,5 NiO (до 5). Катализатор готовят пропиткой раствором, содержащим фосфат-ион и лимонную кислоту, при этом выдерживают рН раствора ниже 1,0 и мольное соотношение лимонной кислоты к металлу VIB группы в пределах 0,5-0,9/1, с последующей сушкой и прокаливанием при температуре не ниже 750°F, преимущественно 1000°F. Для приготовления преимущественно используют парамолибдат аммония и нитрат кобальта (никеля), но возможно использовать оксид молибдена и оксид или карбонат кобальта (никеля). При прокаливании катализатора большая часть лимонной кислоты разлагается, остается не более 0,5 мас.% С. Катализатор обладает высокой активностью в процессах гидрообессеривания и гидроочистки.
Во всех известных методиках используется достаточно высокая концентрация фосфат-иона в пропиточном растворе, что обеспечивает высокое содержание фосфора в катализаторе (2,4-3,5 мас.% Р, US 3755150, 3755196, 4392985, 4846961 и др.) и приводит к повышению кислотных свойств катализатора. Основным недостатком указанных катализаторов является недостаточно высокая устойчивость катализатора к воздействию повышенных температур и недостаточно высокая активность в процессе гидроочистки дизельных фракций при переработке высокосернистых нефтей.
Ближайшим по технической сущности к заявляемому и достигаемому результату является катализатор, описанный в заявке на патент 2006/0054536, 16.03.2006. Катализатор по прототипу готовят пропиткой алюмооксидного носителя, содержащего 1 мас.% SiO2 или 5 мас.% ультрастабилизированного цеолита Y с мольным соотношением SiO2/Al2O3, равным 6, водным раствором, содержащим цитрат кобальта, ортофосфорную кислоту (85%-ный раствор) и молибдофосфорную кислоту и имеющим рН в пределах 0,48-0,54, с последующей сушкой в потоке азота и термообработкой в потоке воздуха при 120°С в течение 12 ч. После термообработки при 120°С катализатор содержит, мас.%: 10-40 МоО3, преимущественно 26,2-29, 1-15 СоО и/или NiO, преимущественно 5,6-5,8, 1,5-8 P2O5, преимущественно 3,6-5,5, и 2-14 С, нанесенных на экструдаты γ-Al2О3, γ-Al2О3 с SiO2 (99/1) или γ-Al2О3 с цеолитом Y (95/5). Катализатор имеет высокую гидрообессеривающую активность при давлении 4,9 МПа, объемной скорости 1,5 ч-1 и соотношении водород/сырье 200 и температуре 350°С и содержании серы в сырье - 1,61 мас.%, обеспечивая остаточное содержание серы на уровне 8-10 ppm.
Основным недостатком указанного катализатора является высокое содержание фосфора, что приводит к достаточно быстрой дезактивации катализатора вследствие закоксовывания углеводородными компонентами нефтяных фракций, особенно при воздействии повышенных температур, и к недостаточно высокой активности в процессе гидроочистки дизельных фракций при переработке высокосернистых нефтей при низком парциальном давлении водорода.
Задача, решаемая изобретением: разработка состава и способа приготовления катализатора, предназначенного для проведения процессов гидрообессеривания высокосернистых дизельных фракций на действующих установках гидроочистки.
Это достигается оптимизацией состава и способа приготовления катализатора, содержащего комплексные соединения молибдена и кобальта, диспергированные на поверхности алюмооксидного носителя, в том числе модифицированного кислотными добавками. Содержание соединений молибдена в количестве 14-29, предпочтительно 16-21 мас.% МоО3, и соотношение Mo/Co(Ni) в пределах 1,5-2,5 оказывается достаточным для обеспечения высокой активности в процессе гидрообессеривания дизельных фракций, содержащих до 1,06 мас.% серы, при температурах 320-350°С, давлении 3,5 МПа и кратности водородсодержащего газа 300 м33 сырья.
Отличительным признаком предлагаемого катализатора является отсутствие в составе катализатора фосфора, что позволяет повысить устойчивость катализатора к закоксовыванию углеводородными компонентами дизельных фракций. Для растворения оксида молибдена и карбоната кобальта в количестве, обеспечивающем нанесение 14-29 мас.% МоО3 и 3-8 мас.% СоО, в пропиточный раствор добавляли смесь комплексообразующих органических кислот, в частности лимонной и молочной и/или малоновой, уксусной, муравьиной кислот. При этом мольное соотношение СоСО3/лимонная кислота в пропиточном растворе должно быть не ниже 3/2, а рН пропиточного раствора находится в пределах 1,7-2,7, что обеспечивает растворение необходимого количества оксида молибдена и карбоната кобальта и стабильность пропиточного раствора.
Использование пропиточного раствора, содержащего комплексные соединения молибдена и кобальта (никеля), стабилизированные смесью комплексообразующих органических кислот, позволяет исключить взаимодействие соединений кобальта с оксидом алюминия на стадиях пропитки и, следовательно, образование Со3O4 и CoAl2O4 при прокаливании. Отсутствие Со3O4 и CoAl2O4 фиксируется по данным электронной спектроскопии, в частности по слабой интенсивности полосы в области 15000 см-1 (мультиплет), соответствующей d-d переходам катионов кобальта Со2+ в тетраэдрическом окружении. Кроме того, медленная сушка пропитанного носителя в токе инертного газа или воздушной атмосфере позволяет исключить кристаллизацию активного комплекса, а прокаливание в токе воздуха при температурах ниже 240°С исключает разрушение активного комплекса.
Носитель, а следовательно, и катализатор преимущественно выполнен в виде экструдатов - цилиндров или трехлистников, диаметром 1,0-1,5 мм и длиной 3-5 мм. Использование экструдатов в форме «трехлистника» также позволяет увеличить эффективность гидрообессеривания нефтяных фракций.
Описанный выше способ приготовления предлагаемого катализатора позволяет увеличить активность Со-Мо катализатора гидрообессеривания дизельных фракций при температурах 320-350°С, давлении 3,5 МПа и кратности циркуляции водородсодержащего газа 300 м33 сырья и устойчивость катализатора к дезактивации в присутствии органических серусодержащих соединений при повышенных температурах, а следовательно, использовать катализатор в процессах гидрообессеривания дизельных фракций на существующем оборудовании. Наряду с активностью и стабильностью в реакциях превращения сернистых соединений катализатор обеспечивает получаемому дизельному топливу необходимые цетановое число, распределение фракций по температурам кипения, плотность, содержание ароматических и полиароматических соединений. Описанный вариант катализатора является предпочтительным для процессов гидрообессеривания дизельных фракций.
Процесс гидроочистки дизельных фракций на промышленных установках осуществляют при температуре 340-400°С, давлении 3-3,5 МПа и 5,2-5,5 МПа в случае Со-Мо и Ni-Mo катализаторов соответственно и кратности циркуляции водородсодержащего газа 250-350 м33 сырья. Концентрация серосодержащих соединений в дизельных фракциях обычно составляет ~1-1,5 мас.% в пересчете на элементарную серу. В соответствии с этим были выбраны условия тестирования катализаторов.
Катализаторы тестируют в виде фракции размером 0,25-0,5 мм, которую готовят путем дробления и рассеивания исходных экструдатов. Навеску катализатора массой 2,0 г помещают в вертикальный проточный реактор из нержавеющей стали, имеющий внутренний диаметр 8 мм, при этом высота слоя катализатора - 50±10 мм. Выше слоя катализатора для равномерного перемешивания и нагрева исходного сырья помещают слой карбида кремния (частицы 1-2 мм), который отделяют от слоя катализатора тампоном из стекловолокна. Ниже слоя катализатора для заполнения свободного объема реактора помещают слой кварца (частицы 1-2 мм), который также отделяют от слоя катализатора тампоном из стекловолокна.
Катализаторы сульфидируют при атмосферном давлении в потоке сероводорода, который начинают подавать при комнатной температуре со скоростью 1 л/ч. Реактор нагревают от комнатной температуры до 400°С в течение 30 мин и далее продолжают сульфидирование в течение 2 ч. Затем реактор с помощью запорных вентилей отсекают одновременно от линий подачи и сброса сероводорода и охлаждают до комнатной температуры.
В качестве исходного сырья используют прямогонное дизельное топливо, имеющее следующие характеристики:
Плотность при 20°С - 844 кг/м3
Цетановое число - 53,5±0,5
Температура застывания - около -10°С
Содержание серы - 1,06% S (10600 ppm)
Температура вспышки (в закрытом тигле) - 66,9°С
Фракционный состав:
- 50% объема перегоняется при 292°С
- 96% объема перегоняется при 366°С.
Реактор с сульфидированным катализатором помещают в термостат с электрическим обогревом, заполняют водородом до давления 3,5 МПа при комнатной температуре, после чего начинают подачу дизельного топлива, обеспечивая массовый расход топлива 2 ч-1 и регулируя поток водорода до объемного соотношения водород/дизельное топливо, равного 300. В тот момент, когда расходы реагентов стабилизировались, начинают разогрев реактора от комнатной температуры до 340°С, который осуществляют в течение 35-40 мин. Далее процесс проводят при температуре 340°С и давлении 3,5 МПа.
На выходе из реактора продукты проходят через капилляр из нержавеющей стали, внутренним диаметром 2 мм, в котором охлаждаются до 60-70°С, после чего поступают в узел сброса давления до атмосферного. Далее продукты охлаждают в холодильнике-сепараторе, снабженном водяной рубашкой, и делят на газовую и жидкую составляющие. Унос жидкости газом не превышал 1 мас.%. Продукты, накопленные за первые 3 ч с момента начала подъема температуры в реакторе, выбрасывают без всяких анализов, далее через каждые 2 ч определяют массовый выход полученного дизельного топлива и содержание серы в нем.
Об активности катализатора судят по содержанию в нефтепродуктах остаточной серы. Массовое содержание серы в жидких нефтепродуктах определяют без предварительного удаления растворенного в них сероводорода. Для определения содержания серы используют рентгено-флуоресцентный анализатор HORIBA SLFA-20, позволяющий работать в интервале концентраций S от 20 ppm до 5 мас.% с точностью 5 ppm. Специально проведенные эксперименты по удалению сероводорода с помощью 10%-ного водного раствора NaOH (смешиваемого с пробой 1 к 1) показывают, что содержание растворенного в нефтепродуктах сероводорода может колебаться в пределах 20-80 ppm.
Для оценки дезактивации катализаторов вследствие закоксовывания углеводородными компонентами и серусодержащими соединениями дизельных фракций катализаторы подвергают воздействию повышенных температур - 370°С на 6-9 ч (для ускорения процессов дезактивации), после чего измеряют активность катализаторов при температуре 340°С, давлении 3,5 МПа и кратности водород/сырье - 300.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1
Для приготовления пропиточного раствора к 5,89 г кобальта углекислого, СоСО3, добавляют 42 мл дистиллированной воды и нагревают до 80°С. Затем при перемешивании добавляют порциями 6,93 г моногидрата лимонной кислоты, СН2С(ОН)СН2(СООН)3·Н2O, при этом наблюдают интенсивное выделение CO2. Дождавшись полного растворения осадка, добавляют 12,14 г оксида молибдена, МоО3, и 4 мл 80%-ной молочной кислоты, НОСНСН3СООН. Продолжают перемешивать раствор при 80°С до полного растворения. После растворения объем раствора составляет 50 мл. Раствор характеризовался рН - 2,4, содержанием МоО3 - 19 мас.% и мольным соотношением Мо/Со, равным 1,7.
В качестве носителя используют экструдаты из оксида алюминия, диаметром 1,3-1,4 мм и длиной 4-5,2 мм, имеющие удельную поверхность 275-295 м2/г, объем пор 0,82 см3/г и средний радиус пор 119 Å, определенные из изотерм адсорбции азота. На долю пор размером 70-130 Å приходится 65% от общего объема пор.
К 30 г прокаленных экструдатов добавляют 27 мл пропиточного раствора и выдерживают 15 мин. Пропитанные экструдаты сушат при комнатной температуре в потоке азота и подвергают термообработке в потоке азота при 150°С в течение 10 ч.
Содержание оксида молибдена в катализаторе составляет 16,2 мас.% (здесь и далее в расчете на МоО3), оксида кобальта - 4,7 мас.% (здесь и далее в расчете на СоО). Катализатор имеет мольное соотношение Мо/Со - 1,8.
Катализатор после термообработки при 150°С имеет удельную поверхность (Sуд) - 113 м2/г, объем пор (V) - 0,35 см3/г и средний радиус пор по (Dcp) - 122 Å, определенные из изотерм адсорбции азота. Катализатор имеет узкое распределение пор по размерам, при этом на долю пор размером Dcp±15 Å приходится 70% от общего объема пор. В электронных спектрах диффузного отражения катализатор характеризуется полосами поглощения в области 12400-14000 см-1 и 14200-18500 см-1, соответствующими d-d переходам Мо5+ и Со2+Oh в комплексных соединениях.
Из экструдатов катализатора готовят фракцию размером 0,2-0,5 мм. Фракцию в количестве 2 г загружают в реактор и подвергают сульфидированию в потоке сероводорода при 400°С в течение 2 ч.
Определяют выход жидких нефтепродуктов и содержание в них серы, которые обеспечивают сульфидированный катализатор при подаче на него прямогонного дизельного топлива с содержанием 1,06 мас.% серы и следующих условиях процесса: температуре 340°С, давлении 3,5 МПа, массовом расходе дизельного топлива 2 ч-1 и объемном соотношении водород/дизельное топлива 300.
При указанных условиях процесса гидроочистки дизельного топлива катализатор обеспечивает снижение содержания серы в жидких нефтепродуктах до уровня 200-245 ppm и выход жидких нефтепродуктов на уровне 96-97%.
Через 24 ч поднимают температуру в реакторе до 370°С и определяют содержание серы в жидких нефтепродуктах, при этом содержание серы в жидких нефтепродуктах снижается до уровня 55-60 ppm.
Через 9 ч снижают температуру в реакторе до 340°С и определяют содержание серы в жидких нефтепродуктах. Катализатор обеспечивает содержание серы в жидких нефтепродуктах на уровне 295-325 ppm.
Пример 2
Аналогичен примеру 1, только для приготовления пропиточного раствора используют 5,74 г кобальта углекислого, 6,76 г моногидрата лимонной кислоты, 13,88 г оксида молибдена, 2 мл молочной кислоты (80%-ный раствор) и 2 мл уксусной кислоты. Раствор имеет рН - 2,95, содержит 21 мас.% МоО3 и мольное соотношение Мо/Со - 2,0. В качестве носителя используют оксид алюминия с добавкой цеолита Н-морденит в соотношении 90/10.
Пропитку, сушку и термообработку проводят в условиях примера 1. Катализатор после прокаливания при 150°С содержит, мас.%: 19,0 МоО3 и 4,8 СоО.
Катализатор после прокаливания при 150°С имеет удельную поверхность 104 м2/г, объем пор 0,35 см3/г и средний радиус пор 98 Å.
При условиях тестирования из примера 1, катализатор обеспечивает 97% выход жидких нефтепродуктов и содержание серы в них на уровне 210-230 ppm при 340°С.
Пример 3
Аналогичен примеру 1, только для приготовления пропиточного раствора используют 4,09 г кобальта углекислого и 1,69 г никеля углекислого, 6,8 г моногидрата лимонной кислоты, 16,7 г оксида молибдена, 2 мл молочной кислоты (80%-ный раствор) и 1,0 г малоновой кислоты. Раствор имеет рН - 2,85, содержит 24 мас.% МоО3 и мольное соотношение Mo/(Co+Ni) - 2,4. В качестве носителя используют оксид алюминия с добавкой монтмориллонита в соотношении 90/10.
Пропитку, сушку и термообработку проводят в условиях примера 1. Катализатор после термообработки содержит, мас.%: 20,5 МоО3, 3,4 СоО и 1,3 NiO.
Катализатор после термообработки имеет удельную поверхность 116 м2/г, объем пор 0,35 см3/г и средний радиус пор 105 Å.
При условиях тестирования из примера 1, катализатор обеспечивает 98% выход жидких нефтепродуктов и содержание серы в них на уровне 250-270 ppm при 340°С.
Пример 4 (сравнительный по прототипу)
Для приготовления пропиточного раствора к 42 г дистиллированной воды добавляют 11,64 г цитрата кобальта и 1,82 г фосфорной кислоты (85%-ный раствор), нагревают до 80°С и перемешивают в течение 10 мин. Затем добавляют 17,74 г фосфорно-молибденовой кислоты и перемешивают при той же температуре до полного растворения. Полученный раствор имеет рН - 0,52, содержит 24 мас.% МоО3, соотношение Мо/Со - 2,4, Р/Мо - 0,2.
В качестве носителя используют экструдаты оксида алюминия из примера 1. Пропитку, сушку и термообработку проводят в условиях примера 1.
Катализатор содержит, мас.%: 21,3 МоО3, 4,6 оксида кобальта, 1,2 фосфора.
Катализатор после прокаливания при 150°С имеет удельную поверхность (Sуд) - 150 м2/г, объем пор (V) - 0,31 см3/г и средний радиус пор (Dcp) - 85 Å.
При условиях тестирования из примера 1 катализатор обеспечивает 96% выход жидких нефтепродуктов и содержание серы в них на уровне 380-400 ppm при 340°С.
Пример 5 (сравнительный 1)
Для приготовления пропиточного раствора к 9,03 г кобальта углекислого добавляют 42 мл дистиллированной воды и нагревают до 80°С. Затем при перемешивании добавляют порциями 10,63 г моногидрата лимонной кислоты, при этом наблюдается интенсивное выделение СО2. Дождавшись полного растворения осадка, добавляют 26,28 г оксида молибдена, МоО3, и 4,95 т фосфорной кислоты (85%-ный раствор). Продолжают перемешивать раствор при 80°С до полного растворения. После полного растворения объем раствора составляет 50 мл, имеет рН - 0,75, содержит 27,5 мас.% МоО3 и имеет мольное соотношение Мо/Со - 2,4 и Р/Мо - 0,38.
В качестве носителя используют экструдаты оксида алюминия из примера 1. Пропитку, сушку и термообработку проводят в условиях примера 1. Катализатор после термообработки содержит, мас.%: 23 МоО3, 4,4 СоО и 1,1 Р.
Катализатор после прокаливания при 150°С имеет удельную поверхность - 114 м2/г, объем пор - 0,31 см3/г и средний радиус пор - 108 Å.
При условиях тестирования из примера 1 катализатор обеспечивает 96% выход жидких нефтепродуктов и содержание серы в них на уровне 365-400 ppm при 340°С.
Пример 6 (сравнительный 2)
Аналогичен примеру 5, но для приготовления пропиточного раствора используют 5,82 г кобальта углекислого, 6,84 г моногидрата лимонной кислоты, 17,95 г оксида молибдена и 1,34 г фосфорной кислоты (85%-ный раствор). Раствор имеет рН - 2,45, содержит 24 мас.% МоО3 и мольное соотношение Мо/Со - 2,4 и Р/Мо - 0,1.
Катализатор после термообработки при 150°С содержит, мас.%: 21,1 МоО3, 5,5 СоО и 0,43 Р и имеет удельную поверхность - 116 м2/г, объем пор - 0,31 см3/г и средний радиус пор - 105 Å.
При условиях тестирования из примера 1 катализатор обеспечивает 96% выход жидких нефтепродуктов и содержание серы в них на уровне 280-370 ppm при 340°С.
Пример 7 (сравнительный 3)
Аналогичен примеру 5, но для приготовления пропиточного раствора используют 6,0 г кобальта углекислого, 17,55 г оксида молибдена и 4,53 г фосфорной кислоты (85%-ный раствор). Раствор после растворения имеет рН - 2,45, содержал 24 мас.% МоО3 и мольное соотношение Мо/Со - 2,3 и Р/Мо - 0,24.
Катализатор после прокаливания при 150°С содержит, мас.%: 21 МоО3, 5,3 СоО и 1,2 Р; имеет удельную поверхность - 144 м2/г, объем пор - 0,40 см3/г и средний радиус пор - 108 Å.
При условиях тестирования из примера 1 катализатор обеспечивает 96% выход жидких нефтепродуктов и содержание серы в них на уровне 360-380 ppm при 340°С.
Видно, что заявляемые составы катализаторов, содержащие преимущественно 16-21 мас.% МоО3 и 4-6 мас.% СоО при условии мольного соотношения Mo/(Co+Ni) в интервале 1,5-2,5 и приготовленные из пропиточных растворов, стабилизированных смесью комплексообразующих органических кислот, например лимонной и молочной (пример 1), и уксусной (пример 2) или малоновой (пример 3), обеспечивают более высокую степень гидрообессеривания дизельных фракций по сравнению с катализаторами, приготовленными из пропиточных растворов, содержащих фосфат-ион (примеры 4-7). При давлении 3,5 МПа, массовом расходе дизельного топлива 2 ч-1 и объемном соотношении водород/топливо 300 заявляемые катализаторы обеспечивали гидроочистку дизельного топлива от сернистых соединений на уровне 97,5-98,1% при температуре 340°С и на уровне 99,3-99,7% при 370°С. При этом содержание серы, остающейся в дизельном топливе после гидрообессеривания при 340°С и 370°С, составляет не более 250-270 ppm и 35-70 ppm соответственно (вместе с сероводородом, растворенным в жидких нефтепродуктах, содержание которого колебалось в пределах 20-80 ppm).
При условии введения в пропиточный раствор смеси органических комплексообразующих кислот в количестве, обеспечивающем рН в пределах 1,7-2,7 и мольное соотношение СоСО3/лимонная кислота не ниже 3/2, обеспечивается растворение необходимого количества оксида молибдена и кобальта(никеля) углекислого и устойчивость пропиточного раствора. Исключение фосфора из состава Co(Ni)-Mo катализатора, вводимого обычно в состав катализатора в мольном соотношении Р/Мо - 0,2 и выше, позволяет повысить устойчивость катализаторов к дезактивации углеводородными компонентами дизельных фракций, в том числе сернистыми соединениями, на что указывают данные по воздействию повышенных температур процесса гидрообессеривания дизельного топлива. После воздействия температуры 370°С в течение 7-9 ч заявляемые составы катализатора обеспечивали при 340°С удаление из дизельного топлива сернистых соединений до уровня 315-350 ppm серы, в то время как на фосфорсодержащих (Р/Мо≥0.2) катализаторах достигался уровень 420-460 ppm серы.
Описанный способ приготовления и состав предлагаемого катализатора позволяют увеличить активность Со-Мо - катализатора гидрообессеривания дизельных фракций при условиях, близких к действующим на промышленных установках гидроочистки дизельных топлив: температуре в интервале 340-400°С, давлении 3,0-3,7 МПа и кратности циркуляции водородсодержащего газа 300 м33 сырья, а также повысить устойчивость катализатора к дезактивации в присутствии углеводородных компонентов дизельного топлива и сернистых соединений ряда тиофена и его производных при повышенных температурах. Это позволяет использовать катализатор в процессах гидрообессеривания дизельных фракций на существующем оборудовании. Описанный вариант катализатора является предпочтительным для процессов гидрообессеривания дизельных фракций.
Таблица
Химический состав и текстурные характеристики катализаторов предлагаемого состава и их каталитические свойства, определенные в процессе гидроочистки прямогонного дизельного топлива при температуре 340°С, давлении 3.5 МПа, расходе топлива - 2 ч-1 и объемном соотношении водород/дизельное топливо - 300.
Химический состав, мас.% Текстурные характеристики Каталитические характеристики
СоО мас.% NiO мас.% МоО3 мас.% Р мас.% Co(Ni)/Mo, мольное P/Mo, мольное Sуд, м2 V, см3 Dcp, А Dср±15 Е % Содержание серы, ppm, XS,% Y,%
340°С 370°С 340°С
1 4,7 - 16,2 - 1,75 - 113 0,35 122 70 200-245 55-60 295-325 98,1
97,7
97
2 4,8 - 19,0 - 2,06 - 104 0,35 98 76 210-230 35-55 295-310 98,0
97,8
97
3 3,4 1,3 20,5 - 2,25 - 116 0,35 105 68 250-270 45-70 315-350 97,6
97,5
98
4 4,6 - 21,3 1,2 2,4 0,26 150 0,31 85 50 380-400 85-90 440-450 96,4
96,2
96
5 4,4 - 23 1,1 2,65 0,21 114 0,31 108 55 365-400 60-70 410-465 96,6
96,2
96
6 5,5 - 21,1 0,43 2,00 0,09 116 0,31 105 50 280-370 105-110 340-370 97,3
96,5
96
7 5,3 - 21 1,2 2,1 0,27 144 0,40 108 40 360-380 65-90 420-460 96,6
96,4
96
Текстурные характеристики, полученные из изотерм адсорбции азота: Sуд, м2/г - удельная поверхность по БЭТ; V, см3/г - объем пор, из изотерм десорбции азота; Dср, Å - средний радиус пор; Dcp±15 Å, % - доля пор с размером Dcp±15 Å;
Каталитические характеристики: содержание серы в жидких нефтепродуктах, ppm, при указанных температурах процесса; ХS, % - степень гидрообессеривания при 340°С; Y, % - выход жидких нефтепродуктов при 340°С

Claims (8)

1. Катализатор для процессов гидрообессеривания дизельных фракций, включающий активный компонент из соединений металлов VIII и VI групп, диспергированный на пористом носителе, отличающийся тем, что в качестве активного компонента содержит комплексное кислородсодержащее соединение молибдена и кобальта и/или никеля при следующем атомном соотношении компонентов: Mo/(Co+Ni)1,5-2,5, катализатор имеет удельную поверхность 100-190 м2/г, объем пор 0,3-0,5 см3/г, преобладающий радиус пор 80-120 Å.
2. Катализатор по п.1, отличающийся тем, что в качестве носителя катализатор содержит оксид алюминия или оксид алюминия с добавкой оксида кремния, или цеолита, или монтмориллонита.
3. Катализатор по пп.1 и 2, отличающийся тем, что в качестве активного компонента содержит, мас.%: оксид молибдена МоО3 в количестве 14,0-29,0, оксид кобальта СоО и/или оксид никеля в количестве 3-8, носитель остальное при мольном соотношении Mo/(Co+Ni)1,5-2,5.
4. Способ получения катализатора по п.1 для процессов гидрообессеривания дизельных фракций, содержащего оксид молибдена, оксид кобальта и/или оксид никеля, пористый носитель, включающий пропитку носителя раствором предшественника активного компонента, сушку и термообработку, отличающийся тем, что нанесение активного компонента осуществляют из раствора, содержащего комплексные соединения металлов VIII и VI групп, стабилизированные смесью комплексообразующих органических кислот, например лимонной и молочной и/или малоновой, уксусной, муравьиной кислот, с рН 1,7-2,7.
5. Способ по п.4, отличающийся тем, что в качестве носителя катализатор содержит оксид алюминия, или оксид алюминия с добавкой оксида кремния, или цеолита, или монтмориллонита.
6. Способ по п.4, отличающийся тем, что термообработку пропитанного носителя проводят в потоке азота или воздуха при температуре не выше 200°С.
7. Способ гидрообессеривания дизельных фракций, который включает пропускание дизельной фракции через слой катализатора, отличающийся тем, что используют катализатор по пп.1-3 или катализатор, приготовленный по пп.4-6.
8. Способ по п.7, отличающийся тем, что процесс осуществляют при следующих условиях: парциальное давление водорода 3,5 МПа, температура 300-370°С, массовый расход жидкости 2 ч-1, объемное соотношение водород/топливо 300.
RU2006136218/04A 2006-10-13 2006-10-13 Катализатор, способ его получения и процесс гидрообессеривания дизельных фракций RU2314154C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006136218/04A RU2314154C1 (ru) 2006-10-13 2006-10-13 Катализатор, способ его получения и процесс гидрообессеривания дизельных фракций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006136218/04A RU2314154C1 (ru) 2006-10-13 2006-10-13 Катализатор, способ его получения и процесс гидрообессеривания дизельных фракций

Publications (1)

Publication Number Publication Date
RU2314154C1 true RU2314154C1 (ru) 2008-01-10

Family

ID=39020109

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006136218/04A RU2314154C1 (ru) 2006-10-13 2006-10-13 Катализатор, способ его получения и процесс гидрообессеривания дизельных фракций

Country Status (1)

Country Link
RU (1) RU2314154C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444406C2 (ru) * 2008-12-18 2012-03-10 Ифп Катализаторы гидродеметаллирования и гидродесульфуризации и применение в способе соединения в одном составе
RU2458103C1 (ru) * 2011-05-27 2012-08-10 Общество с ограниченной ответственностью "Газпром переработка" Носитель катализатора для риформинга бензиновых фракций и способ его приготовления
RU2569682C2 (ru) * 2012-11-14 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья
RU2573561C2 (ru) * 2014-01-29 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
RU2622040C1 (ru) * 2016-08-22 2017-06-09 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") Способ гидроочистки дизельного топлива
RU2640583C2 (ru) * 2013-03-25 2018-01-10 Космо Ойл Ко., Лтд. Катализатор гидродесульфуризации для дизельного топлива и способ гидроочистки дизельного топлива
RU2691744C1 (ru) * 2018-10-04 2019-06-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ окислительного обессеривания и катализатор для окислительного обессеривания вакуумного газойля
RU2747053C1 (ru) * 2020-10-26 2021-04-23 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Способ получения катализатора глубокой гидропереработки углеводородного сырья, катализатор и способ гидроочистки углеводородного сырья с его использованием

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444406C2 (ru) * 2008-12-18 2012-03-10 Ифп Катализаторы гидродеметаллирования и гидродесульфуризации и применение в способе соединения в одном составе
RU2458103C1 (ru) * 2011-05-27 2012-08-10 Общество с ограниченной ответственностью "Газпром переработка" Носитель катализатора для риформинга бензиновых фракций и способ его приготовления
RU2569682C2 (ru) * 2012-11-14 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья
RU2640583C2 (ru) * 2013-03-25 2018-01-10 Космо Ойл Ко., Лтд. Катализатор гидродесульфуризации для дизельного топлива и способ гидроочистки дизельного топлива
US9987622B2 (en) 2013-03-25 2018-06-05 Cosmo Oil Co., Ltd. Hydrodesulfurization catalyst for diesel oil and hydrotreating method for diesel oil
RU2573561C2 (ru) * 2014-01-29 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
RU2622040C1 (ru) * 2016-08-22 2017-06-09 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") Способ гидроочистки дизельного топлива
WO2018038644A1 (ru) * 2016-08-22 2018-03-01 Акционерное Общество "Газпромнефть-Омский Нпз" (Ао "Газпромнефть-Онпз") Способ гидроочистки дизельного топлива
RU2691744C1 (ru) * 2018-10-04 2019-06-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ окислительного обессеривания и катализатор для окислительного обессеривания вакуумного газойля
RU2747053C1 (ru) * 2020-10-26 2021-04-23 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Способ получения катализатора глубокой гидропереработки углеводородного сырья, катализатор и способ гидроочистки углеводородного сырья с его использованием

Similar Documents

Publication Publication Date Title
RU2313389C1 (ru) Катализатор, способ его получения, способ получения носителя для этого катализатора и процесс гидрообессеривания дизельных фракций
RU2314154C1 (ru) Катализатор, способ его получения и процесс гидрообессеривания дизельных фракций
US7618916B2 (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP5544090B2 (ja) ナフサ水素化脱硫用の高温アルミナ担体を有する選択的触媒
US7737071B2 (en) Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
US20060249429A1 (en) Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
US7361624B2 (en) Catalyst for hydrotreating gas oil, process for producing the same, and method for hydrotreating gas oil
US20070175797A1 (en) Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
RU2311959C1 (ru) Катализатор, способ получения носителя, способ получения катализатора и процесс гидрообессеривания дизельных фракций
NL8006444A (nl) Katalysator voor het hydrobehandelen van zware koolwaterstofolien, werkwijzen ter bereiding daarvan, alsmede werkwijzen voor het hydrobehandelen van zware koolwaterstofolieen in aanwezigheid van een dergelijke katalysator.
CN109196077A (zh) 升级重油的系统和方法
JP2004010857A (ja) 重質炭化水素油の水素化処理方法
JP5412286B2 (ja) バルク第viii族/vib族金属触媒に対する水素処理方法
RU2629355C1 (ru) Способ получения малосернистого дизельного топлива
US4732886A (en) Hydrogen treating catalyst for hydrodesulfurization-cracking of mineral oil
RU2691991C1 (ru) Способ получения малосернистого дизельного топлива
JP2006063203A (ja) 重質炭化水素油の水素化処理方法
JP2022524904A (ja) 分散型水素化脱硫触媒用組成物およびその製造方法
JPWO2004078886A1 (ja) 軽油留分の水素化処理方法
Qabazard et al. Comparison between the performance of conventional and high-metal Co-Mo and Ni-Mo catalysts in deep desulfurization of Kuwait atmospheric gas oil
JPH03273092A (ja) 残油の水素化処理触媒
JP4680520B2 (ja) 低硫黄軽油の製造方法および環境対応軽油
FUJIkAwA Development of new CoMo HDS catalyst for ultra-low sulfur diesel fuel production
US4425221A (en) Hydrocarbon desulfurization process with a catalyst of Co-Mo-P
JP2006035052A (ja) 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181014