RU2313583C2 - Способ производства холоднокатаной стали для холодной штамповки - Google Patents

Способ производства холоднокатаной стали для холодной штамповки Download PDF

Info

Publication number
RU2313583C2
RU2313583C2 RU2006101755/02A RU2006101755A RU2313583C2 RU 2313583 C2 RU2313583 C2 RU 2313583C2 RU 2006101755/02 A RU2006101755/02 A RU 2006101755/02A RU 2006101755 A RU2006101755 A RU 2006101755A RU 2313583 C2 RU2313583 C2 RU 2313583C2
Authority
RU
Russia
Prior art keywords
steel
carbon
content
titanium
temperature
Prior art date
Application number
RU2006101755/02A
Other languages
English (en)
Other versions
RU2006101755A (ru
Inventor
Александр Анатольевич Немтинов (RU)
Александр Анатольевич Немтинов
Виктор Валентинович Кузнецов (RU)
Виктор Валентинович Кузнецов
Людмила Михайловна Струнина (RU)
Людмила Михайловна Струнина
Владислав Владимирович Степаненко (RU)
Владислав Владимирович Степаненко
Семен Викторович Ефимов (RU)
Семен Викторович Ефимов
Максим Анатольевич Кузнецов (RU)
Максим Анатольевич Кузнецов
Ирина Гавриловна Родионова (RU)
Ирина Гавриловна Родионова
Тать на Михайловна Ефимова (RU)
Татьяна Михайловна Ефимова
Дмитрий Александрович Бурко (RU)
Дмитрий Александрович Бурко
Виктор Александрович Пименов (RU)
Виктор Александрович Пименов
Original Assignee
Открытое акционерное общество "Северсталь"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Северсталь" filed Critical Открытое акционерное общество "Северсталь"
Priority to RU2006101755/02A priority Critical patent/RU2313583C2/ru
Publication of RU2006101755A publication Critical patent/RU2006101755A/ru
Application granted granted Critical
Publication of RU2313583C2 publication Critical patent/RU2313583C2/ru

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано при изготовлении сталей, применяемых в автомобилестроении. Технический результат изобретения - повышение склонности к ВН-эффекту, в том числе при термической обработке в колпаковых печах при сохранении высокой штампуемости. Выплавляют сталь при следующем соотношении компонентов, мас.%: углерод 0,002-0,015, кремний 0,005-0,050, марганец 0,05-1,0, фосфор 0,005-0,09, сера 0,003-0,020, алюминий 0,02-0,07, азот 0,002-0,007, титан 0,0005-0,040, ниобий не более 0,060, железо и неизбежные примеси - остальное, при выполнении следующих условий: Сэф=[С]-СTi-CNb≥0,0006%, где Сэф - эффективное содержание углерода, не связанного титаном или ниобием; [С] - общее содержание углерода в стали; CTi - содержание углерода, связанного титаном: при отношении содержания титана [Ti] к содержанию азота [N] [Ti]/[N]<3,43 СTi=0, при [Ti]/[N]≥3,43 CTi=([Ti]-3,43N)/4 СNb - содержание углерода, связанного ниобием, CNb=Nb/7,74; Сэф+0,05[Р]≥0,003%, где [Р] - содержание фосфора в стали; ведут разливку стали, горячую прокатку, смотку полос в рулоны при температуре не более 650°С, холодную прокатку и рекристаллизационный отжиг в колпаковой печи с регламентированным нагревом: сначала до 450-500°С со скоростью не менее 50°С/час, затем до 550-600°С со скоростью не более 30°С/час, далее со скоростью не более 50°С/час до 700°С и при необходимости нанесения покрытия. 2 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области металлургии, к способам производства холоднокатаной стали с высокими вытяжными свойствами для холодной штамповки, и может быть использовано при изготовлении сталей, применяемых в автомобилестроении.
В последнее время кроме требований обеспечения высокой штампуемости все больше предъявляются требования к повышенному уровню прочности, в частности, в результате упрочнения при сушке лакокрасочных покрытий на готовых деталях - ВН-эффекта (bake-hardening effect). При этом в зависимости от оборудования конкретных заводов, главным образом, от режимов термической обработки подбирается определенная система легирования стали и остальные технологические параметры производства. Так, при использовании отжига в колпаковых печах для обеспечения требуемой величины ВН-эффекта часто легируют сталь повышенным количеством фосфора, что может приводить к охрупчиванию границ зерен. Поэтому очень важно выбрать оптимальный химический состав стали и другие технологические параметры, чтобы обеспечить наиболее высокий комплекс свойств стали при ее минимальной стоимости.
Известен способ производства холоднокатаной стали для глубокой вытяжки, включающий выплавку стали, содержащей, мас.%:
углерод - 0,001÷0,006
кремний - 0,002÷0,020
марганец - 0,07÷0,30
фосфор - 0,005÷0,020
сера - 0,005÷0,010
алюминий - 0,015÷0,050
азот - 0,002÷0,006
титан - 0,02÷0,08
ниобий - 0,005÷0,060
кислород - 0,001÷0,005
железо и неизбежные примеси - остальное,
при этом суммарное содержание алюминия и титана составляет 0,07÷0,12%, отношение содержания алюминия к содержанию кислорода составляет не менее 5,0, а минимальное содержание титана рассчитывают из соотношения
(Timin)=3,43(N)+2,4(S),
разливку, горячую прокатку, смотку полос в рулоны при 710÷730°С, травление, холодную прокатку, отжиг в колпаковых печах при 700°С и дрессировку. Как вариант, после травления и холодной прокатки проводят цинкование, непрерывный отжиг при 850°С и дрессировку.
Способ направлен на повышение штампуемости стали, независимо от режима термической обработки и нанесения защитного покрытия, повышение коррозионной стойкости (Патент РФ №2233905, МПК С22С 38/14, 10.08.2004 г.).
Недостатком такого способа является отсутствие гарантированной величины ВН-эффекта, особенно после отжига в колпаковых печах, а также сравнительно высокая стоимость стали, связанная с необходимостью обеспечения сверхнизкого содержания углерода, легирования титаном и ниобием.
Известен способ производства листовой стали, включающий непрерывную разливку слябов из стали, содержащей, мас.%:
углерод - 0,002÷0,007
кремний - 0,005÷0,050
марганец - 0,08-0,16
алюминий - 0,01-0,05
титан - 0,05÷0,12
фосфор - не более 0,015
сера - не более 0,010
хром, никель, медь - не более 0,04 каждого
азот - не более 0,006
железо - остальное,
нагрев слябов до 1150÷1240°С, горячую прокатку с температурой конца прокатки не ниже 870°С, охлаждение водой до 550÷730°С, смотку в рулоны, травление, холодную прокатку с суммарным обжатием не менее 70%, отжиг в колпаковой печи при 700÷750°С в течение 11÷34 часов и дрессировку.
Способ направлен на улучшение вытяжных свойств и увеличение выхода кондиционной листовой стали (Патент РФ №2197542, МПК С21D 8/04, 27.01.2003 г.).
Недостаток способа: высокое содержание титана, низкое содержание фосфора не позволяют обеспечить упрочнение стали в результате ВН-эффекта.
Наиболее близким к заявляемому является способ производства холоднокатаных полос из сверхнизкоуглеродистой стали, включающий выплавку стали, содержащую, мас.%:
углерод - 0,006÷0,10
марганец - 0,01÷0,15
фосфор ≤0,07
азот ≤0,0025
алюминий ≤0,04
ниобий - 0,031÷0,06
сера ≤0,008
железо и неизбежные примеси - остальное,
разливку, нагрев слябов до 1150÷1200°С, горячую прокатку с температурой конца прокатки при 910÷920°С, смотку при 740÷750°С, холодную прокатку с суммарным обжатием не менее 70%, нагрев полосы со скоростью 10÷20°С/с до температуры отжига, определяемой в зависимости от отношения Nb/C по формулам:
при 3,1≤Nb/C≤4,65
Tотж=7,52·(Nb/C)2+45,55·Nb/C+791, °C,
при 4,65<Hb/С≤10
Tотж=1,75·(Nb/C)2+33,81·Nb/C+730, °С,
где Nb и С - содержание ниобия и углерода в стали, мас.%,
выдержку при температуре отжига в течение 50-60 с и охлаждение со скоростью 15÷25°С/с до 340÷360°С.
При необходимости на холоднокатаные полосы наносят покрытия.
Способ направлен на стабилизацию комплекса механических свойств при обеспечении категории весьма особо сложной вытяжки с одновременным получением упрочняющего эффекта (ВН-эффекта) не менее 40 МПа (Патент РФ №2212457, МПК С21D 8/04, 20.09.2003 г. - прототип).
Недостатком данного способа является возможность его применения только для непрерывных термических агрегатов. При термической обработке в колпаковых печах, когда температура отжига не превышает 730÷750°С, требуемая величина ВН-эффекта не обеспечивается.
Задачей данного изобретения является оптимизация химического состава и других технологических параметров производства холоднокатаной стали с обеспечением технического результата в виде повышения склонности к ВН-эффекту, в том числе при термической обработке в колпаковых печах при сохранении высокой штампуемости.
Технический результат достигается тем, что в известном способе производства холоднокатаной стали для холодной штамповки, включающем выплавку стали, содержащей углерод, марганец, фосфор, серу, алюминий, азот, ниобий, железо и неизбежные раскислители и примеси, разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку и рекристаллизационный отжиг, при необходимости нанесения покрытия, согласно изобретению выплавляют сталь, дополнительно содержащую титан при следующем соотношении компонентов, мас.%:
углерод - 0,002÷0,015
кремний - 0,005÷0,050
марганец - 0,05÷1,0
фосфор - 0,005÷0,09
сера - 0,003÷0,020
алюминий - 0,02÷0,07
азот - 0,002÷0,007
титан - 0,0005÷0,040
ниобий - не более 0,060
железо и неизбежные примеси - остальное,
при выполнении следующих условий:
Сэф=[С]-CTi-CNb≥0,0006% (1),
где Сэф - эффективное содержание углерода, не связанного титаном или ниобием;
[С] - общее содержание углерода в стали;
CTi - содержание углерода, связанного титаном: при отношении содержания титана [Ti] к содержанию азота [N] [Ti]/[N]<3,43 CTi=0, при [Ti]/[N]≥3,43 CTi=([Ti]-3,43N)/4;
CNb - содержание углерода, связанного ниобием, CNb=Nb/7,74;
Сэф+0,05[Р]≥0,003% (2),
где [Р] - содержание фосфора в стали,
также тем, что смотку полосы в рулоны ведут при температуре не более 650°С, а также тем, что рекристаллизационный отжиг ведут в колпаковой печи при температуре не ниже 700°С с регламентированным нагревом: нагрев полосы до температуры 450÷500°С со скоростью не менее 50°С/час с последующим замедлением нагрева, по крайней мере до 550÷600°С со скоростью не более 30°С/час, далее со скоростью не более 50°С/час до температуры отжига.
Сущность изобретения сводится к следующему. Для обеспечения высокой штампуемости и обеспечения определенной величины ВН-эффекта необходимо содержание в феррите свободного углерода 6÷20 ppm. В случае непрерывного отжига высокие скорости охлаждения препятствуют выделению углерода в виде цементита и обеспечить требуемое содержание углерода в твердом растворе возможно путем обеспечения определенных соотношений между углеродом, титаном и ниобием (с учетом содержания азота и серы). При медленном охлаждении в процессе колпакового отжига значительная часть углерода может выделиться в виде цементита и требуемая величина ВН-эффекта не получится. Поэтому одним из способов обеспечения ВН-эффекта в случае колпакового отжига является обеспечение перед началом охлаждения более высокого содержания углерода, чем в случае непрерывного отжига, не менее 30 ppm. Другим способом обеспечения требуемой величины ВН-эффекта при достаточно низком содержании углерода в твердом растворе перед началом ускоренного охлаждения - от 6 ppm является легирование стали фосфором, который, снижая скорость диффузии углерода, способствует его сохранению в твердом растворе в количестве, достаточном для проявления ВН-эффекта. Выполнение условия (1) Сэф=[С]-CTi-CNb≥0,0006% обязательно для того, чтобы перед началом охлаждения углерод в количестве, равном Сэф, присутствовал в твердом растворе. При медленном охлаждении часть этого углерода может выделиться в виде цементита. Чтобы этого не произошло, необходимо выполнение условия (2) Сэф+0,05[Р]≥0,003%, смысл которого сводится к следующему. С увеличением содержания углерода в твердом растворе перед началом охлаждения (Сэф) снижается минимально необходимое содержание фосфора, обеспечивающее сохранение углерода в твердом растворе. При значении Сэф≥0,00275% ВН-эффект может быть получен и при минимальном содержании фосфора - 0,005%, хотя при увеличении содержания фосфора величина ВН-эффекта увеличивается. При значении Сэф<0,00275% для обеспечения ВН-эффекта легирование фосфором обязательно, тем в большей степени, чем ниже Сэф (в соответствии с уравнением (2)). CTi - содержание углерода, связанного титаном: при отношении содержания титана [Ti] к содержанию [N] [Ti]/[N]<3,43 CTi=0, так как весь титан будет израсходован на связывание азота, при [Ti]/[N]≥3,43 углерод может быть связан тем количеством титана, которое останется после связывания азота CTi=([Ti]-3,43N)/4 (на связывание азота будет израсходовано титана в количестве 3,43N).
Следует отметить, что выполнение условия (2) повысит уровень свойств и величину ВН-эффекта и при колпаковом и при непрерывном отжигах стали, в том числе с нанесением покрытия.
Ограничение нижнего предела содержания углерода связано с тем, что при дальнейшем уменьшении содержания углерода снижается склонность к ВН-эффекту. Ограничение минимального содержания азота связано с его участием в выделении нитрида алюминия при колпаковом отжиге, влияющем благоприятно на штампуемость. Нижний предел содержания фосфора, серы, кремния и марганца в стали определяется возможностями существующих на сегодняшний день сталеплавильных технологий. Дальнейшее снижение содержания этих элементов не вызывает существенного улучшения потребительских свойств, но приводит к существенному удорожанию металлопродукции.
Увеличение содержания углерода, азота, серы, кремния и марганца, а также фосфора выше верхних пределов формулы изобретения приводит к ухудшению штампуемости.
Минимальное содержание алюминия в стали определяется необходимостью достаточного раскисления стали и связывания азота в нитрид алюминия. Ограничение верхнего предела содержания алюминия связано с его отрицательным влиянием на штампуемость из-за увеличения количества нитридов алюминия и, следовательно, структурной неоднородности.
Минимальное содержание титана определяется требованием выделения некоторого количества азота в виде нитрида титана. Увеличение содержания титана и ниобия выше верхнего предела, помимо отрицательно влияния на штампуемость, снижения величины ВН-эффекта, приводит к удорожанию стали.
Ограничение температуры смотки - не более 650°С связано с необходимостью сохранения в твердом растворе после горячей прокатки азота, который в дальнейшем, при отжиге, выделяясь в виде мелкодисперсных частиц нитрида алюминия, благоприятно влияет на структуру, текстуру и штампуемость стали.
Увеличение скорости нагрева при рекристаллизационном отжиге до температуры 450÷500°С не менее 50°С/час связано с необходимостью подавить выделение частиц ALN до начала рекристаллизации, а снижение скорости нагрева в интервале температур 450÷500°С до 550÷600°С не более 30°С/час - с необходимостью обеспечить более полное выделение частиц ALN на начальных стадиях рекристаллизации. Ограничение скорости последующего нагрева не более 50°С/час, а также минимального значения температуры отжига 700°С связано с необходимостью создания условий для более полного протекания процессов собирательной рекристаллизации, что также требуется для обеспечения высокой штампуемости.
Примеры конкретного выполнения способа.
Семь плавок низкоуглеродистых сталей были выплавлены в 300-тонном конвертере ОАО «Северсталь» и разлиты на установке непрерывной разливки в слябы сечением 250×1290 мм. Горячую прокатку слябов на полосы толщиной 3,2 мм проводили на стане «2000». Температура конца прокатки составляла 850÷890°С. Полосы после душирования сматывали в рулоны при температуре 560÷700°С. После травления и холодной прокатки на полосы толщиной 0,9 мм полосы подвергали рекристаллизационному отжигу в лабораторных условиях по режиму, имитирующему отжиг в агрегате цинкования, или в самом агрегате цинкования (АГЦ) или в колпаковой печи при температуре 700÷730°С. После дрессировки со степенью обжатия 1,0% проводили комплексные механические испытания проката с определением величины ВН-эффекта.
Вариант 1 - сталь, содержащая 0,005% углерода, 0,009% кремния, 0,16% марганца, 0,045% фосфора, 0,010% серы, 0,04% алюминия, 0,004% азота, 0,015% титана, 0,019% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,005-0,00032-0,00245=0,00223%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,00223+0,00225=0,00448%>0,003%, то есть соответствует формуле изобретения. Отжиг проводили по режиму, соответствующему отжигу в агрегате цинкования: нагрев до температуры отжига 840°С со скоростью 5°С/с, выдержка 60 с; охлаждение до 450°С со скоростью 10°С/с, выдержка 3 с, охлаждение на воздухе (вариант соответствует п.1 формулы изобретения).
Вариант 2 - сталь, содержащая 0,006% углерода, 0,008% кремния, 0,18% марганца, 0,040% фосфора, 0,008% серы, 0,03% алюминия, 0,004% азота, 0,015% титана, 0,019% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,006-0,00032-0,00245=0,00323%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,00323+0,00200=0,00523%>0,003%, то есть соответствует формуле изобретения. Отжиг проводили по режиму в агрегате цинкования: по режиму, описанному в варианте 1, но с нанесением горячецинкового покрытия (вариант соответствует п.1 формулы изобретения).
Вариант 3 - сталь, содержащая 0,008% углерода, 0,010% кремния, 0,65% марганца, 0,011% фосфора, 0,012% серы, 0,04% алюминия, 0,005% азота, 0,02% титана, 0,03% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,008-0,0007-0,0039=0,0034%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,0034+0,00055=0,00395%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 560°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°C со скоростью около 35°С/час (вариант полностью соответствовал п.п.1-3 формулы изобретения).
Вариант 4 - сталь, содержащая 0,004% углерода, 0,013% кремния, 0,19% марганца, 0,050% фосфора, 0,009% серы, 0,02% алюминия, 0,003% азота, 0,01% титана, 0,025% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,004-0,0032=0,0008%>0,0006%, то есть соответствует формуле изобретения
Figure 00000001
выражение Сэф+0,05[Р]=0,0008+0,0025=0,0033%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант полностью соответствовал п.п.1-3 формулы изобретения).
Вариант 5 - сталь, содержащая 0,006% углерода, 0,011% кремния, 0,15% марганца, 0,015% фосфора, 0,006% серы, 0,04% алюминия, 0,04% ниобия, 0,002% азота, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,006-0,0052=0,0008%>0,0006%, то есть соответствует формуле изобретения (CTi=0, так как сталь не содержит титан); выражение Сэф+0,05[Р]=0,0008+0,00075=0,00155%<0,003%, то есть не соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значению выражения (2)).
Вариант 6 - сталь, содержащая 0,006% углерода, 0,013% кремния, 0,15% марганца, 0,060% фосфора, 0,007% серы, 0,05% алюминия, 0,015% титана, 0,042% ниобия, 0,004% азота, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,006-0,00032-0,0054=0,00028%<0,0006%, то есть не соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,00028+0,003=0,00328%>0,003%, то есть соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значению выражения (1)).
Вариант 7 - сталь, содержащая 0,0045% углерода, 0,010% кремния, 0,16% марганца, 0,040% фосфора, 0,009% серы, 0,03% алюминия, 0,004% азота, 0,008% титана, 0,020% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-СTi-CNb=0,0045-0,0026=0,0019%>0,0006%, то есть соответствует формуле изобретения
Figure 00000002
выражение Сэф+0,05[Р]=0,0019+0,0020=0,0039%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 680°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 40°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 720°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значениям температуры смотки и скорости нагрева при отжиге до 450°С).
Механические испытания образцов холоднокатаного проката из стали указанных плавок проводили на электромеханической испытательной машине INSTRON-1185. Размеры образца составляли 20×120 мм.
Испытания проводили в полуавтоматическом режиме с тензометром продольной деформации (база тензометра 12,5 мм). Скорость растяжения составляла 10 мм/мин.
В случае кривых растяжений без физического предела текучести величину предела текучести определяли по показаниям тензометра с учетом линейного участка диаграммы растяжения (кроме этого, для контроля использовали анализ машинной диаграммы растяжения).
Коэффициент деформационного упрочнения n определяли в диапазоне деформации от 10 до 17%.
Коэффициент нормальной пластической анизотропии r определяли при остановке испытаний (при достижении 17%) путем замера вручную ширины образца (в трех сечениях).
Для образцов шириной 20 мм относительное удлинение δ4 определяли на базе 80 мм (A80).
Испытания для определения упрочнения стали при сушке лакокрасочного покрытия (ВН-эффект) проводили в следующей последовательности:
1) образцы растягивали до величины деформации 2%, которую определяли по экстензометру (база 26 мм); при этом определяли σ2 - напряжение при деформации 2%;
2) образцы помещали в печь, нагретую до температуры 170±10°С, и выдерживали в течение 20 минут;
3) образцы испытывали на растяжение, определяя величину ВН-эффекта, как разницу между пределом текучести σт (ВН) и σ2.
Результаты механических испытаний приведены в таблице. Определяли основные механические характеристики: предел текучести σт, временное сопротивление σb, относительное удлинение δ4, коэффициент нормальной пластической анизотропии r и коэффициент деформационного упрочнения n. Критерием обеспечения требуемой штампуемости считали получение значения относительного удлинения не менее 40%, значения коэффициента нормальной пластической анизотропии r не менее 2,0 и значение коэффициента деформационного упрочнения n не менее 0,20. При этом стремились обеспечить величину ВН-эффекта не мене 40 Н/мм2.
Для стали по вариантам 1-4 получены требуемые показатели штампуемости и величины ВН-эффекта. Для варианта 5 несмотря на присутствие свободного углерода в твердом растворе перед началом охлаждения, из-за низкого содержания фосфора углерод выделяется при охлаждении в виде цементита, что приводит к отсутствию склонности стали к ВН-эффекту. Для варианта 6 из-за невыполнения условия (1) еще до начала охлаждения основная часть углерода оказывается связанной в карбид ниобия или титана, что приводит к отсутствию ВН-эффекта. Для варианта 7 высокая температура смотки и низкая скорость охлаждения до температур начала рекристаллизации приводят к выделению азота в виде нитрида алюминия еще до начала рекристаллизации, что отрицательно влияет на штамппуемость: снижаются значения r и относительного удлинения. Таким образом, только холоднокатаная сталь, полученная по вариантам 1, 3, 4 и горячеоцинкованная по варианту 2, соответствующим формуле изобретения, имеют высокие показатели штампуемости и величины ВН-эффекта.
То есть использование настоящего предложения существенно повышает величину ВН-эффекта стали даже после рекристаллизационного отжига в колпаковой печи при сохранении высокой штампуемости.
Таблица
Результаты механических испытаний сталей, полученных по использованным вариантам
№№ варианта σт, Н/мм2 σв, Н/м2 δ4, % r n ВН-эффект, Н/мм2
1 220 305 40 2,2 0,22 50
2 220 345 40 2,2 0,21 50
3 210 320 41 2,2 0,21 40
4 220 340 40 2,1 0,22 45
5 180 290 48 2,2 0,21 0
6 230 350 36 2,0 0,20 0
7 210 310 36 1,8 0,20 45

Claims (3)

1. Способ производства холоднокатаной стали для холодной штамповки, включающий выплавку стали, содержащей углерод, марганец, фосфор, серу, алюминий, азот, ниобий, железо и неизбежные раскислители и примеси, разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг и, при необходимости, нанесение покрытия, отличающийся тем, что выплавляют сталь, дополнительно содержащую титан, при следующем соотношении компонентов, мас.%:
углерод 0,002÷0,015 кремний 0,005÷0,050 марганец 0,05÷1,0 фосфор 0,005÷0,09 сера 0,003÷0,020 алюминий 0,02÷0,07 азот 0,002÷0,007 титан 0,0005÷0,040 ниобий не более 0,060 железо и неизбежные примеси остальное,
при выполнении условий
Сэф.=[С]-СTiNb≥0,0006% и Сэф.+0,05[Р]≥0,003%,
где Сэф. - эффективное содержание углерода, не связанного титаном или ниобием,
[С] - общее содержание углерода в стали,
СTi - содержание углерода, связанного титаном, причем СTi=0 при [Ti]/[N]<3,43 и CTi=([Ti]-3,43N)/4 при [Ti]/[N]≥3,43,
СNb - содержание углерода, связанного ниобием, CNb=Nb/7,74,
[Р] - содержание фосфора в стали.
2. Способ по п.1, отличающийся тем, что смотку полосы в рулоны ведут при температуре не более 650°С.
3. Способ по п.2, отличающийся тем, что рекристаллизационный отжиг ведут в колпаковой печи при температуре не ниже 700°С с регламентированным нагревом: сначала до 450-500°С со скоростью не менее 50°С/ч, затем по крайней мере до 550-600°С со скоростью не более 30°С/ч, далее со скоростью не более 50°С/ч до температуры отжига.
RU2006101755/02A 2006-01-24 2006-01-24 Способ производства холоднокатаной стали для холодной штамповки RU2313583C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006101755/02A RU2313583C2 (ru) 2006-01-24 2006-01-24 Способ производства холоднокатаной стали для холодной штамповки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006101755/02A RU2313583C2 (ru) 2006-01-24 2006-01-24 Способ производства холоднокатаной стали для холодной штамповки

Publications (2)

Publication Number Publication Date
RU2006101755A RU2006101755A (ru) 2007-07-27
RU2313583C2 true RU2313583C2 (ru) 2007-12-27

Family

ID=38431521

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006101755/02A RU2313583C2 (ru) 2006-01-24 2006-01-24 Способ производства холоднокатаной стали для холодной штамповки

Country Status (1)

Country Link
RU (1) RU2313583C2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2514743C2 (ru) * 2011-09-30 2014-05-10 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочной стальной лист, обладающий превосходной способностью к термическому упрочнению и формуемостью, и способ его производства
RU2524031C2 (ru) * 2011-09-27 2014-07-27 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочные холоднокатаные стальные листы, обладающие превосходным качеством поверхности после штамповки, и способы их производства
RU2526345C2 (ru) * 2012-03-30 2014-08-20 ДжФЕ СТИЛ КОРПОРЕЙШН Холоднокатаный стальной лист, обладающий превосходной сгибаемостью, и способ его производства
RU2530212C2 (ru) * 2011-09-15 2014-10-10 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочный холоднокатаный стальной лист и стальной лист с покрытием, обладающие превосходной способностью к термическому упрочнению и формуемостью, и способ их производства
RU2532782C2 (ru) * 2011-09-27 2014-11-10 ДжФЕ СТИЛ КОРПОРЕЙШН Холоднокатаный стальной лист, обладающий превосходным качеством поверхности после штамповки и способностью к упрочнению при обжиге, а также способ его производства
RU2532563C2 (ru) * 2012-07-06 2014-11-10 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочный холоднокатаный стальной лист с превосходной способностью к глубокой вытяжке и способ его изготовления
RU2760968C1 (ru) * 2021-02-25 2021-12-01 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства высокопрочной особонизкоуглеродистой холоднокатаной стали с отжигом в периодических печах

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2530212C2 (ru) * 2011-09-15 2014-10-10 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочный холоднокатаный стальной лист и стальной лист с покрытием, обладающие превосходной способностью к термическому упрочнению и формуемостью, и способ их производства
RU2524031C2 (ru) * 2011-09-27 2014-07-27 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочные холоднокатаные стальные листы, обладающие превосходным качеством поверхности после штамповки, и способы их производства
RU2532782C2 (ru) * 2011-09-27 2014-11-10 ДжФЕ СТИЛ КОРПОРЕЙШН Холоднокатаный стальной лист, обладающий превосходным качеством поверхности после штамповки и способностью к упрочнению при обжиге, а также способ его производства
RU2514743C2 (ru) * 2011-09-30 2014-05-10 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочной стальной лист, обладающий превосходной способностью к термическому упрочнению и формуемостью, и способ его производства
RU2526345C2 (ru) * 2012-03-30 2014-08-20 ДжФЕ СТИЛ КОРПОРЕЙШН Холоднокатаный стальной лист, обладающий превосходной сгибаемостью, и способ его производства
RU2532563C2 (ru) * 2012-07-06 2014-11-10 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочный холоднокатаный стальной лист с превосходной способностью к глубокой вытяжке и способ его изготовления
RU2760968C1 (ru) * 2021-02-25 2021-12-01 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства высокопрочной особонизкоуглеродистой холоднокатаной стали с отжигом в периодических печах

Also Published As

Publication number Publication date
RU2006101755A (ru) 2007-07-27

Similar Documents

Publication Publication Date Title
RU2648722C2 (ru) Холоднокатаная листовая сталь, способ ее производства и автотранспортное средство
CN110709183B (zh) 耐氢致延迟断裂性优异的热压成型部件用钢板及其制造方法
RU2627313C2 (ru) Горячештампованная сталь, холоднокатаный стальной лист и способ производства горячештампованной стали
JP6236078B2 (ja) 冷間圧延鋼板製品およびその製造方法
KR101479391B1 (ko) 형상 동결성이 우수한 냉연 박강판 및 그 제조 방법
RU2361935C1 (ru) Способ производства горячеоцинкованного проката повышенной прочности
RU2313583C2 (ru) Способ производства холоднокатаной стали для холодной штамповки
EP2053140A1 (en) High-strength steel sheets and processes for production of the same
JP7528267B2 (ja) 超高張力二相鋼およびその製造方法
RU2361936C1 (ru) Способ производства горячеоцинкованного проката повышенной прочности
RU2330887C1 (ru) Способ производства холоднокатаной стали для глубокой вытяжки
RU2313584C2 (ru) Способ производства холоднокатаной стали для холодной штамповки
JPH024657B2 (ru)
JP4177478B2 (ja) 成形性、パネル形状性、耐デント性に優れた冷延鋼板、溶融亜鉛めっき鋼板及びそれらの製造方法
EP0883696B1 (en) Bake hardenable vanadium containing steel
JP2013064169A (ja) 焼付硬化性及び成形性に優れた高強度薄鋼板、めっき薄鋼板並びにそれらの製造方法
RU2514743C2 (ru) Высокопрочной стальной лист, обладающий превосходной способностью к термическому упрочнению и формуемостью, и способ его производства
RU2333284C2 (ru) Горячекатаная высокопрочная сталь и способ получения ленты из горячекатаной высокопрочной стали
RU2237101C1 (ru) Сталь для глубокой вытяжки и изделие, выполненное из нее (варианты)
JP2007270167A (ja) 焼付硬化性に優れた溶融亜鉛めっき鋼板の製造方法
JP4767888B2 (ja) 深絞り性に優れた冷延鋼板の製造方法
RU2255989C1 (ru) Способ производства холоднокатаной стали для глубокой вытяжки
KR20140055468A (ko) 법랑용 냉연강판 및 그 제조 방법
RU2281338C2 (ru) Способ производства холоднокатаной стали для глубокой вытяжки
RU2313582C2 (ru) Способ производства горячекатаной стали для холодной штамповки