RU2309304C1 - Радиальный лепестковый газодинамический подшипник - Google Patents

Радиальный лепестковый газодинамический подшипник Download PDF

Info

Publication number
RU2309304C1
RU2309304C1 RU2006104801/11A RU2006104801A RU2309304C1 RU 2309304 C1 RU2309304 C1 RU 2309304C1 RU 2006104801/11 A RU2006104801/11 A RU 2006104801/11A RU 2006104801 A RU2006104801 A RU 2006104801A RU 2309304 C1 RU2309304 C1 RU 2309304C1
Authority
RU
Russia
Prior art keywords
bearing
petals
radial
petal
shanks
Prior art date
Application number
RU2006104801/11A
Other languages
English (en)
Inventor
Андрей Владимирович Ящелтов (RU)
Андрей Владимирович Ящелтов
Александр Константинович Маркин (RU)
Александр Константинович Маркин
Original Assignee
Открытое акционерное общество "Научно-производственное объединение "Сатурн"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное объединение "Сатурн" filed Critical Открытое акционерное общество "Научно-производственное объединение "Сатурн"
Priority to RU2006104801/11A priority Critical patent/RU2309304C1/ru
Application granted granted Critical
Publication of RU2309304C1 publication Critical patent/RU2309304C1/ru

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

Изобретение относится к области машиностроения, а именно к радиальным лепестковым газодинамическим подшипникам, и может быть использовано в радиальных опорах с газовой смазкой. Радиальный лепестковый газодинамический подшипник содержит корпус с осевыми гнездами и лепестки с хвостовиками, закрепленными в гнездах корпуса. На части своей длины гнезда выполнены сквозными и сообщены с источником смазки. Гнезда выполнены в виде двух параллельных прорезей и хвостовики лепестков охватывают корпус подшипника между прорезями. Также гнезда могут быть выполнены в виде ряда сквозных отверстий, а хвостовики лепестков - в виде усиков, расположенных в этих отверстиях. Подшипник снабжен лепестковыми демпферными вставками, сопряженными с лепестками. Технический результат: создание радиального лепесткового газодинамического подшипника скольжения не только с торцевым, но и радиальным подводом смазки через корпус подшипника, что позволит повысить эффективность «всплытия» ротора (снизить нижнюю предельную границу частоты вращения ротора), увеличить длину подшипника без ограничения, повысить несущую способность и устойчивость подшипника; повысить ресурс и надежность опоры в целом. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области машиностроения, а именно к радиальным лепестковым газодинамическим подшипникам, и может быть использовано в радиальных опорах с газовой смазкой.
Известен радиальный лепестковый газодинамический подшипник, содержащий корпус с осевыми глухими гнездами и лепестки с крепежными хвостовиками, закрепленными в гнездах корпуса (патент США 4848932, МПК F16C 32/16, заявл. 3 августа 1988 г., опубл. 18 июля 1989 г.).
Также известен радиальный лепестковый газодинамический подшипник, содержащий корпус с осевыми глухими гнездами и лепестки с крепежными хвостовиками, закрепленными в гнездах корпуса (авторское свидетельство СССР №1555556, МПК F16C 27/02, заявл. 12.01.88, опубл. 07.04.90).
В таких подшипниках подвод газовой смазки в рабочий зазор осуществляется через торец или под лепесток через цапфу вала со сквозной пористостью.
К недостаткам таких подшипников относится то, что торцевой подвод газовой смазки в рабочий зазор значительно ограничивает длину подшипника из-за недостаточности площади проходного сечения и невозможности своевременного оптимального насыщения всех рабочих поверхностей подшипника смазкой (зачастую по центру рабочей зоны подшипника в месте максимального давления создается разрежение). Увеличение зазора, увеличивающее площадь проходного сечения, резко снижает несущую способность и устойчивость подшипника.
Подвод газовой смазки через пористую цапфу вала под лепесток значительно облегчает условия «всплытия» ротора, но при отсутствии нагнетателя высокого давления такие конструкции обычно невозможно применить из-за сообщающихся рабочей и подводящей полостей, т.к. величина давлений в рабочей полости, обеспечивающая работоспособность подшипника, на порядки больше величины давления, которое можно нагнетать из подводящей полости, что и ограничивает несущую способность и устойчивость таких подшипников.
К тому же воздух, подводимый в рабочую зону, не всегда удается качественно очистить от пыли, влаги и других загрязнений, что забивает поры в цапфе вала и нарушает работу подшипника.
Выполнение гнезд, в которых расположены крепежные хвостовики лепестков, глухими требует дополнительных деталей для закрепления хвостовиков.
Техническим результатом, на достижение которого направлено изобретение, является создание радиального лепесткового газодинамического подшипника скольжения не только с торцевым, но и радиальным подводом смазки через корпус подшипника, что позволит повысить эффективность «всплытия» ротора (снизить нижнюю предельную границу частоты вращения ротора), увеличить длину подшипника без ограничения, повысить несущую способность и устойчивость подшипника; повысить ресурс и надежность опоры в целом.
Заявляемый технический результат достигается тем, что радиальный лепестковый газодинамический подшипник содержит корпус с осевыми гнездами и лепестки с хвостовиками, закрепленными в гнездах корпуса.
Новым в изобретении является то, что на части своей длины гнезда выполнены сквозными в радиальном направлении и сообщены с источником смазки.
Для исключения дополнительных деталей для закрепления хвостовиков лепестков гнезда в корпусе подшипника выполнены в виде двух параллельных прорезей, и хвостовики каждого из лепестков охватывают корпус подшипника между прорезями.
Гнезда также могут быть выполнены в виде ряда сквозных отверстий, а хвостовики лепестков снабжены усиками, расположенными в этих отверстиях.
Радиальный лепестковый газодинамический подшипник может быть снабжен лепестковыми демпферными вставками, сопряженными с лепестками.
Вышеизложенные признаки обеспечивают заявленному подшипнику новый технический результат, заключающийся в интенсивном подводе смазки в рабочую зону по длине подшипника за счет того, что на части своей длины гнезда в корпусе подшипника выполнены сквозными в радиальном направлении. Количество и размещение по длине гнезда сквозных участков зависит от требуемого количества смазки, подаваемого в рабочую зону.
Кроме того, сквозные гнезда, выполненные в виде двух параллельных прорезей, выполняют функцию крепежных элементов для хвостовиков лепестков, что позволяет зафиксировать их без дополнительных деталей.
Выполнение гнезд в виде ряда сквозных отверстий также позволяет не использовать при креплении лепестков дополнительные крепежные элементы, т.к. их функцию выполняют усики на хвостовиках лепестков.
На прилагаемых чертежах изображено:
на фиг.1 - общий вид радиального лепесткового подшипника, вариант выполнения хвостовиков лепестков по п.2 формулы,
на фиг.2 - разрез радиального лепесткового подшипника плоскостью, перпендикулярной его оси, вариант выполнения хвостовиков лепестков по п.3 формулы.
Радиальный лепестковый газодинамический подшипник содержит корпус 1, лепестки 2 с хвостовиками 3, закрепленными в гнездах корпуса 1.
На части своей длины гнезда могут быть выполнены в виде двух сквозных параллельных прорезей 4 (фиг.1) и хвостовики 3 каждого из лепестков 2 охватывают перемычку на корпусе 1 подшипника между прорезями 4.
Также гнезда могут быть выполнены в виде ряда сквозных отверстий 5 (фиг.2), а хвостовики 3 лепестков 2 - в виде усиков 6, расположенных в отверстиях 5 и фиксирующих лепестки 2.
Гнезда в корпусе 1 сообщены с источником смазки (на чертеже не показан).
Для повышения устойчивости подшипника он снабжен лепестковыми демпферными вставками (демпферами) 7, сопряженными с лепестками 2 и корпусом 1 подшипника.
Сборка радиального лепесткового газодинамического подшипника выполняется последовательно. В параллельные прорези 4 корпуса 1 со стороны его внутреннего диаметра вставляются демпферы 7, затем лепестки 2 и закрепляются в них, охватывая корпус 1 подшипника между прорезями 4 за счет пружинящих свойств материала, из которого они изготовлены. После закрепления всех демпферов 7 и лепестков 3 вставляется цапфа 8 вала при помощи конусной технологической втулки, которая направляет лепестки на наружный рабочий диаметр цапфы 8 вала и исключает повреждение рабочих поверхностей лепестков 2. Лепестки 2 плотно охватывают цапфу 8 вала за счет своих пружинящих свойств.
Аналогично осуществляется сборка подшипника при выполнении гнезд в виде отверстий 5. Усики 6 лепестков 2 располагаются в отверстиях 5 и закрепляются в них за счет упругих свойств материала лепестков.
При раскрутке вала контактирующие поверхности лепестков 2 трутся (скользят) о поверхность цапфы 8. При этом поверхность цапфы 8 вала захватывает и нагнетает воздух в полости под лепестками 2 (в рабочий зазор), где создается избыточное давление. Воздух в рабочий зазор подводится через торец и через прорези 4 или отверстия 5 в корпусе 1 подшипника, что улучшает условия его нагнетания.
При достижении определенной скорости вращения нагнетаемый воздух создает избыточное давление под лепестками 2, которое превышает усилие, воздействующее на лепестки 2, и они отходят от поверхности цапфы 8 вала. При этом между контактирующими поверхностями возникает воздушная прослойка. Этот момент называют «всплытием» вала. При этом резко снижается момент сопротивления вращению и резко снижаются тепловыделения в подшипнике из-за низкого коэффициента трения воздуха. При дальнейшем увеличении скорости вращения вала до расчетной величины избыточное давление под лепестками подшипника еще больше возрастает, при этом увеличиваются жесткость, несущая способность и устойчивость подшипника, а следовательно, и его работоспособность.
Одновременно торцевой и радиальный подвод смазки через корпус подшипника позволяет повысить эффективность «всплытия» ротора (снизить нижнюю предельную границу частоты вращения ротора), увеличить длину подшипника без ограничения, повысить несущую способность и устойчивость подшипника; повысить ресурс и надежность опоры в целом.
Кроме того, выполнение гнезд в корпусе в виде прорезей или отверстий позволяет не использовать для крепления лепестков специальные крепежные элементы.
Демпферы 7 повышают жесткость опоры, гасят возмущающие колебания вала и лепестков за счет трения контактирующих поверхностей и снижают воздействия на опору от температурных деформаций и перекоса опор.

Claims (4)

1. Радиальный лепестковый газодинамический подшипник, содержащий корпус с осевыми гнездами и лепестки с хвостовиками, закрепленными в гнездах корпуса, отличающийся тем, что на части своей длины гнезда выполнены сквозными и сообщены с источником смазки.
2. Радиальный лепестковый подшипник по п.1, отличающийся тем, что гнезда выполнены в виде двух параллельных прорезей и хвостовики лепестков охватывают корпус подшипника между прорезями.
3. Радиальный лепестковый подшипник по п.1, отличающийся тем, что гнезда выполнены в виде ряда сквозных отверстий, а хвостовики лепестков - в виде усиков, расположенных в этих отверстиях.
4. Радиальный лепестковый подшипник по п.1 или 2, отличающийся тем, что он снабжен лепестковыми демпферными вставками, сопряженными с лепестками.
RU2006104801/11A 2006-02-16 2006-02-16 Радиальный лепестковый газодинамический подшипник RU2309304C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006104801/11A RU2309304C1 (ru) 2006-02-16 2006-02-16 Радиальный лепестковый газодинамический подшипник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006104801/11A RU2309304C1 (ru) 2006-02-16 2006-02-16 Радиальный лепестковый газодинамический подшипник

Publications (1)

Publication Number Publication Date
RU2309304C1 true RU2309304C1 (ru) 2007-10-27

Family

ID=38955793

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006104801/11A RU2309304C1 (ru) 2006-02-16 2006-02-16 Радиальный лепестковый газодинамический подшипник

Country Status (1)

Country Link
RU (1) RU2309304C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2568005C1 (ru) * 2014-06-04 2015-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет-учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Лепестковый газодинамический подшипник с активным управлением
RU2581101C1 (ru) * 2014-11-05 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет-учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Многолепестковый газодинамический подшипник с активным управлением
RU2658260C2 (ru) * 2015-02-04 2018-06-19 Сергей Иванович Сигачев Радиальный лепестковый газодинамический подшипник

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2568005C1 (ru) * 2014-06-04 2015-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет-учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Лепестковый газодинамический подшипник с активным управлением
RU2581101C1 (ru) * 2014-11-05 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет-учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Многолепестковый газодинамический подшипник с активным управлением
RU2658260C2 (ru) * 2015-02-04 2018-06-19 Сергей Иванович Сигачев Радиальный лепестковый газодинамический подшипник

Similar Documents

Publication Publication Date Title
EP1896696B1 (en) Turbocharger bearing and associated components
JP5230968B2 (ja) 動翼振動ダンパシステム
EP1769167B1 (en) Multi-thickness squeeze film damper layer between bearing cartridge and housing
JP6857215B2 (ja) ターボチャージャ二重ボールベアリングシステム
JP5297190B2 (ja) 真空ポンプ
US9140185B2 (en) Locating mechanism for turbocharger bearing
JP6007982B2 (ja) 過給機
EP2472065A1 (en) Damper coverplate and sealing arrangement for turbine bucket shank
KR20040097938A (ko) 터빈 휠용 버킷의 조립체
KR101970400B1 (ko) 공기 베어링 및 회전체 시스템
US8523525B2 (en) Snubber assembly for turbine blades
US8905715B2 (en) Damper and seal pin arrangement for a turbine blade
JP6241548B2 (ja) 軸受構造、および、過給機
KR101829715B1 (ko) 배기가스 터보차저의 베어링 하우징
KR20190057833A (ko) 에어 포일 저널 베어링
JP2016540927A (ja) タイロッドを介してインペラのセットを組み立てる方法、インペラ及びターボ機械
RU2309304C1 (ru) Радиальный лепестковый газодинамический подшипник
US10094417B2 (en) Tilting pad journal bearing
JP2009270612A (ja) ターボチャージャーの軸受構造
WO2019155797A1 (ja) 軸受構造
JP2019210936A (ja) 回転防止アセンブリ及びそれを含む軸受ハウジングアセンブリ
CN102612608B (zh) 用于涡轮增压器的转轮的容纳装置
JP6597780B2 (ja) シール構造および過給機
CN110439636B (zh) 轴承单元
US9151163B2 (en) Turbomachine rotor disk