RU2305717C2 - Мишень для получения функциональных покрытий и способ ее изготовления - Google Patents

Мишень для получения функциональных покрытий и способ ее изготовления Download PDF

Info

Publication number
RU2305717C2
RU2305717C2 RU2005135023/02A RU2005135023A RU2305717C2 RU 2305717 C2 RU2305717 C2 RU 2305717C2 RU 2005135023/02 A RU2005135023/02 A RU 2005135023/02A RU 2005135023 A RU2005135023 A RU 2005135023A RU 2305717 C2 RU2305717 C2 RU 2305717C2
Authority
RU
Russia
Prior art keywords
layer
metal
target
porous structure
working
Prior art date
Application number
RU2005135023/02A
Other languages
English (en)
Other versions
RU2005135023A (ru
Inventor
Евгений Александрович Левашов (RU)
Евгений Александрович Левашов
Виктори Владимировна Курбаткина (RU)
Виктория Владимировна Курбаткина
Дмитрий Владимирович Штанский (RU)
Дмитрий Владимирович Штанский
Борис Романович Сенатулин (RU)
Борис Романович Сенатулин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) filed Critical Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет)
Priority to RU2005135023/02A priority Critical patent/RU2305717C2/ru
Priority to PCT/EP2006/010918 priority patent/WO2007054369A2/en
Priority to EP06829045.1A priority patent/EP1957687B1/en
Publication of RU2005135023A publication Critical patent/RU2005135023A/ru
Application granted granted Critical
Publication of RU2305717C2 publication Critical patent/RU2305717C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Abstract

Изобретение относится к порошковой металлургии, в частности к мишени для получения функциональных покрытий и способу ее изготовления, и может быть использовано в химической, станкоинструментальной промышленности, машиностроении и металлургии. Формуют по крайней мере три таблетки, образующие рабочий распыляемый, промежуточный и инициирующий слои, из по крайней мере трех порошковых смесей, имеющих экзотермические составы. Размещают их послойно на профилированной металлической пластине через слой шихты металлического припоя. Запускают СВС процесс в инициирующем слое, под воздействием которого происходит расплавление металлического припоя и металлического наполнителя, входящего в состав порошковой смеси по крайней мере одного из слоев. Затем создают давление на слои путем прессования через 2-10 секунд после завершения СВС процесса, которое поддерживают не менее 5 с. В результате происходит соединение образованных рабочего распыляемого слоя и промежуточного слоя с профилированной металлической пластиной через слой металлического припоя. Затем удаляют инициирующий слой. Получают термостойкую мишень с уменьшенной остаточной пористостью, повышенной механической прочностью и термической стабильностью соединения с металлической пластиной - подложкой, способной выдерживать без разрушения многоцикличные температурные перепады в процессе ионно-плазменного распыления. 2 н. и 16 з.п. ф-лы, 1 ил.,1 табл.

Description

Изобретение относится к порошковой металлургии, в частности к способам получения изделий из твердосплавных материалов методом самораспространяющегося высокотемпературного синтеза (СВС).
Изобретение может быть использовано в химической, станкоинструментальной промышленности, машиностроении, металлургии для получения термостойких, механически прочных покрытий методом ионно-плазменного напыления.
Известна мишень для получения функциональных покрытий в виде люминесцентных пленок (SU 1704920 А1, опубл. 15.01.1992), в состав которой входит нитрид алюминия, легированный марганцем, и свободный алюминий в качестве связующего.
К недостаткам этой мишени относится невозможность использования ее при получении покрытий методом ионно-плазменного напыления.
Известен композиционный материал (RU 2135327 С1, опубл. 27.08. 1999), содержащий профилированную металлическую подложку и функциональный слой из керамического материала, содержащего высокоабразивные частицы, соединенный с поверхностью подложки посредством металлического припоя через промежуточный слой. Материал обладает повышенной механической прочностью и термической стабильностью соединения металлической подложки с керамической частью, содержащей абразивные частицы.
К недостаткам этого материала относится невозможность использования его при получении покрытий методом ионно-плазменного напыления.
Прототипом первого объекта предложенного изобретения является мишень для получения функциональных покрытий методом ионно-плазменного напыления (RU 2017846 С1, опубл. 15.08.1994), представляющая собой двухфазную малопористую композицию: диборид титана - оксид алюминия.
Недостатками мишени являются недостаточные термостойкость и механическая прочность.
Известен способ изготовления мишени для получения функциональных покрытий в виде люминесцентных пленок (SU 1704920 А1, опубл. 15.01.1992). Способ заключается в том, что порошки алюминия и нитрида алюминия смешивают в смачивающей порошки и легко испаряющейся жидкости, содержащей хлорид марганца, затем проводят сушку, прессование шихты и спекание при 660-700°С в защитной атмосфере. В результате получают мишень для получения функциональных покрытий в виде люминесцентных пленок, в состав которой входит нитрид алюминия, легированный марганцем, и свободный алюминий в качестве связующего.
К недостаткам способа относится невозможность получения с его помощью мишени, которую можно использовать в методе ионноплазменного напыления.
Известен способ (RU 2135327 С1, опубл. 27.08.1999), в котором из порошковых смесей с помощью процесса СВС и последующего прессования изготавливают композиционный материал, содержащий профилированную металлическую подложку и функциональный слой из керамического материала, содержащего высокоабразивные частицы, соединенный с поверхностью подложки посредством металлического припоя через промежуточный слой. Материал обладает повышенной механической прочностью и термической стабильностью соединения металлической подложки с керамической частью, содержащей абразивные частицы.
К недостаткам способа относится невозможность получения с его помощью материала, который можно использовать в методе ионно-плазменного напыления. К недостаткам способа относится невозможность получения мишени,
Прототипом второго объекта предложенного изобретения является способ изготовления мишени для ионно-плазменного напыления покрытий (RU 2017846 С1, опубл. 15.08.1994), включающий приготовление экзотермической смеси порошков металла с неметаллами следующего состава, мас.%: алюминий 15,03-33,81, оксид титана 13,35-30,05, оксид бора 11,62-28,14, диборид титана 60,0-10,0, брикетирование смеси, инициирование реакции горения в смеси, последующее горячее деформирование, выдержку под давлением продуктов горения и их охлаждение. В результате получают мишени, представляющие собой двухфазную малопористую композицию: диборид титана - оксид алюминия.
К недостаткам способа относится то, что получаемые при его осуществлении мишени не обладают достаточной термостойкость и механическая прочность.
В первом объекте изобретения достигается технический результат, заключающийся в повышении термостойкости мишени, определяемой количеством циклов ионно-плазменного (магнетронного) распыления до появления расслойных трещин, уменьшении остаточной пористости распыляемого рабочего слоя мишени, улучшении степени пропайки, определяемой как отношение площади поверхности пропайки к общей площади контактной поверхности металлической пластины-подложки.
Указанный технический результат достигается следующим образом.
Мишень для получения покрытий включает слой в виде профилированной металлической пластины, с которым посредством слоя металлического припоя через промежуточный слой в виде таблетки на основе керамического материала соединен рабочий распыляемый слой в виде таблетки на основе керамического материала.
При этом в мишени рабочий распыляемый слой содержит скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит, или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры.
Кроме того, в мишени рабочий распыляемый слой содержит скелетную структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит, или их смесь.
Также в мишени промежуточный слой содержит скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид, переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры, в соотношении, непрерывно или ступенчато увеличивающемся от границы раздела с рабочим распыляемым слоем к границе раздела с слоем металлического припоя.
При этом в мишени ступенчатое изменение соотношения материала скелетной структуры и металлического наполнителя в промежуточном слое достигается за счет выполнения его по крайней мере из двух слоев.
Кроме того, в мишени слой металлического припоя содержит по крайней мере один элемент, выбранный из группы, включающей железо, и/или медь, и/или алюминий, и/или другие переходные металлы.
Также в мишени толщина рабочего распыляемого слоя составляет от 1 до 6 мм.
При этом толщина промежуточного слоя составляет от 0,5 до 4 мм.
Кроме того, толщина слоя металлического припоя составляет от 0,5 до 5 мм.
Во втором объекте изобретения достигается технический результат, заключающийся в получении мишени нового качества с улучшенной термостойкостью, повышенной механической прочностью и термической стабильностью соединения с металлической пластиной - подложкой, способной выдерживать без разрушения (расслоения) многоцикличные температурные перепады в процессе ионно-плазменного распыления.
Указанный технический результат достигается следующим образом.
В способе изготовления мишени для получения покрытий формуют по крайней мере три таблетки, образующие рабочий распыляемый, промежуточный и инициирующий слои, из по крайней мере трех порошковых смесей, имеющих экзотермические составы, способные к химическому взаимодействию в режиме СВС после локального теплового инициирования.
Далее размещают послойно на профилированной металлической пластине через слой шихты металлического припоя таблетки промежуточного слоя, рабочего распыляемого слоя и инициирующего слоя. После этого запускают СВС процесс в инициирующем слое, под воздействием которого происходит расплавление металлического припоя и металлического наполнителя, входящего в состав порошковой смеси по крайней мере одного из слоев.
Затем создают давление на слои путем прессования через 2-10 секунд после завершения СВС процесса, которое поддерживают не менее 5 с. В результате происходит соединение образованных рабочего распыляемого слоя и промежуточного слоя с профилированной металлической пластиной через слой металлического припоя. Затем удаляют инициирующий слой.
При этом рабочий распыляемый слой является продуктом СВС-процесса и содержит скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит, или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры.
Кроме того, рабочий распыляемый слой является продуктом СВС-процесса и содержит скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит или их смесь.
Также промежуточный слой является продуктом СВС-процесса и содержит скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит, или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры, в соотношении, непрерывно или ступенчато увеличивающемся от границы раздела с рабочим распыляемым слоем к границе раздела с слоем металлического припоя.
Также ступенчатое изменение соотношения скелетной структуры и металлического наполнителя в промежуточном слое достигается за счет выполнения его по крайней мере из двух слоев.
Кроме того слой металлического припоя содержит по крайней мере один элемент, выбранный из группы, включающей железо, и/или медь, и/или алюминий, и/или другие переходные металлы.
Также металлический наполнитель при изготовлении порошковых смесей распределяют в виде порошка в керамическом материале, образующем скелетную пористую структуру.
Также металлический наполнитель при проведении СВС процесса частично поступает в вышележащие слои из шихты металлического припоя.
При этом шихту металлического припоя выполняют в виде металлического листа или металлического порошка.
Кроме того, прессование осуществляется путем прямого прессования в штампе или пресс-форме или квазиизотопного прессования со средой, передающей давление, или прессования валком.
Также средой, передающей давление, является формовочный песок.
Изобретение поясняется чертежом, на котором схематически проиллюстрирована мишень для получения покрытий и способ ее изготовления.
Мишень включает слой в виде профилированной металлической пластины 1 (подложки), с которым посредством слоя 2 металлического припоя через промежуточный слой 3 в виде таблетки на основе керамического материала соединен рабочий распыляемый слой 4 в виде таблетки на основе керамического материала. В процессе изготовления мишени используется также инициирующий слой 5 в виде таблетки, к которому присоединено инициирующее устройство 6.
В настоящем изобретении использован процесс СВС для изготовления слоев материалов, из которых состоит мишень для получения покрытий методом ионноплазменного напыления. Процесс СВС происходит в материальных системах в режиме горения после локального теплового инициирования в точке воспламенения. Процесс СВС самоподдерживается и распространяется по всему остальному материалу вследствие интенсивного вырабатывания и выделения тепла, которое расширяется и вызывает достаточное повышение температуры. Эта технология удобна для получения таких соединений, как, например, карбиды, нитриды, бориды, силициды или оксиды металлов с четвертой по шестую группы периодической таблицы, включающих Ti, Zr, Та, Si, а также интерметаллических соединений (Левашов Е.А., Рогачев А.С., Юхвид В.И., Боровинская И.П. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза. М.: БИНОМ, 1999, 174 с.).
Процесс СВС, который может в течение короткого промежутка времени почти адиабатически создавать высокие температуры, используется для образования и спекания, одновременного или последовательного, прессовок порошков различных материалов. Для получения беспористых или малопористых композиционных материалов такими технологиями являются: силовое СВС-компактирование (прессование), реализуемое путем статического прессования в механическом прессе, мгновенного прессования посредством детонации взрыва, горячего изостатического прессования (ГИП) системы, квази-, ГИП процесс, в результате которого образованная прессовка обжимается механическим прессом в штампе посредством формовочного песка.
Способ по изобретению основан на последовательном проведении процесса СВС и прессования. Металлические ингредиенты плавятся под воздействием интенсивного выделения тепла реакции СВС и пронизывают скелетную структуру образованного керамического пористого материала, заполняя, таким образом, поры внутри последнего. Полученный материал уплотненной структуры проявляет высокие теплостойкость и износостойкость, которые невозможно обеспечить посредством известных технологий.
Керамические материалы, пригодные для создания скелетной пористой структуры, включают один или более карбидов, нитридов и боридов переходных металлов с четвертой по шестую группу Периодической Таблицы и SiC, Si3N4 и В4С. Из этих материалов карбид, нитрид и борид титана или кремния являются особенно предпочтительными по стоимости изготовления.
Для получения твердого и плотного композиционного материала слоев мишени - предлагается использовать в качестве исходного материала порошковую смесь, способную к протеканию химического взаимодействия в режиме СВС для получения твердого материала, и металлический наполнитель, обеспечивающий получение расплава под воздействием СВС процесса. Так, в случае порошковой смеси, например (Ti+C)+(Ti+Al), может быть получена тепло- и износостойкая плотная матрица, содержащая скелетную пористую структуру из зерен TiC, поры внутри которой заполнены расплавом Ti-Al. Вязкость керамического слоя может быть повышена путем добавления никеля.
Для образования металлической пластины 1 согласно изобретению используются обычные конструкционные материалы из пластичных металлов, при этом подходящий состав материала и размеры выбираются таким образом, чтобы обеспечить возможность хорошего согласования зажимного приспособления и последующей обработки в соответствии с определенным конечным применением.
Верхние слои мишени 4, 3 и металлический слои 2, 3 соединяют способом, подобным пайке. Короткий период, порядка нескольких секунд, генерирования тепла химической реакции оказывается достаточным для расплавления металлического слоя припоя и прочного соединения с металлической подложкой, не оказывая особенно вредного воздействия на свойства металлической подложки в целом. Пластина 1 - подложка может быть изготовлена из различных марок обычно используемых сталей. Для обеспечения более высокой стойкости к коррозии или атмосферным воздействиям могут использоваться нержавеющая сталь марки SUS (JIS) и медь, тогда как для более легких конструкций предпочтительны материалы на основе титана. Так как такая комбинация из металлической пластины 1 - подложки и вышележащего керамического слоя 4 может подвергаться растрескиванию вследствие различия их коэффициентов термического расширения у поверхности раздела этих материалов, между двумя этими слоями введен промежуточный слой 3 из прессованного порошка интерметаллического соединения. Промежуточный слой 3 при необходимости может содержать несколько различных подслоев; каждый из них выполнен в виде таблетки или прессованной порошковой смеси, с так или иначе различающимися составами.
Короткий период нагрева, порядка нескольких секунд, в СВС процессе не допускает растекания расплава на большое расстояние для заполнения зазоров внутри скелетных пористых структур. Поэтому для формирования слоя с пониженными напряжениями состав слоя 3 изменяют таким образом, чтобы доля металлического наполнителя относительно керамических материалов ступенчато уменьшалась в направлении от торца пластины 1 к торцу рабочего распыляемого слоя 4, в результате чего неоднородность полученной структуры снижается до минимума.
Материал металлического припоя 2 для соединения металлической пластины 1 с слоем 3, 4 в дополнение к довольно высокой температуре плавления должен обладать хорошими прочностью на разрыв и прочностью на изгиб.
Изобретение осуществляется следующим образом.
Сначала готовят, по крайней мере, три порошковые смеси, т.е., по крайней мере, три шихты, имеющие экзотермические составы, способные к химическому взаимодействию в режиме СВС после локального теплового инициирования.
Металлический наполнитель при изготовлении порошковых смесей распределяют в виде порошка в керамическом материале, образующем скелетную пористую структуру.
Из этих смесей формуют по крайней мере три таблетки, которые после проведения СВС процесса образуют рабочий распыляемый, промежуточный и инициирующий слои 4, 3, 5 соответственно на основе керамических материалов и металлического наполнителя.
Далее размещают послойно на профилированной металлической пластине 1 через слой металлического припоя 2 таблетки промежуточного слоя 3, рабочего распыляемого слоя 4 и инициирующего слоя 5.
Слой металлического припоя 2 содержит по крайней мере один элемент, выбранный из группы, включающей железо, и/или медь, и/или алюминий, и/или другие переходные металлы.
Шихту металлического припоя 2 выполняют в виде металлического листа или металлического порошка.
После этого с помощью инициирующего устройства 6 запускают СВС процесс в инициирующем слое 5, под воздействием которого происходит расплавление металла припоя 2 и металлического наполнителя по крайней мере одного из слоев 3, 4, 5 соответственно.
Металлический наполнитель при проведении СВС процесса частично поступает в вышележащие слои 3, 4 из металлического припоя 2.
Через 2-10 секунд после завершения СВС процесса создают давление на слои 1, 2, 3, 4, 5 путем прессования.
Прессование осуществляется путем прямого прессования в штампе или пресс-форме или квазиизотопного прессования со средой, передающей давление, или прессования валком.
Средой, передающей давление, может являться также формовочный песок.
Давление на слои поддерживают не менее 5 с. В результате происходит соединение образованных рабочего распыляемого слоя 4 и промежуточного слоя 3 с профилированной металлической пластиной 1 через слой металлического припоя 2. Инициирующий слой удаляют с мишени.
Рабочий распыляемый слой 4, полученный в качестве продукта СВС-процесса, может содержать скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит, или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры.
Рабочий распыляемый слой 4 может содержать также скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит, или их смесь.
Промежуточный слой 3, полученный в качестве продукта СВС-процесса, может содержать скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит, или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры, в соотношении, непрерывно или ступенчато увеличивающемся от границы раздела с рабочим распыляемым слоем к границе раздела с слоем металлического припоя.
Ступенчатое изменение соотношения скелетной структуры и металлического наполнителя в промежуточном слое достигается за счет выполнения его по крайней мере из двух слоев.
Толщина рабочего распыляемого слоя мишени составляет от 1 до 6 мм. Толщина промежуточного слоя мишени составляет от 0,5 до 4 мм. Толщина слоя металлического припоя мишени составляет от 0,5 до 5 мм.
Примеры реализации изобретения приведены в таблице.
Исходные порошковые компоненты в заданном соотношении для каждого состава порошковых смесей, т.е. различные виды шихты (см. таблицу), загружают в шаровые мельницы объемом 3 л из расчета 1,0 кг шихты на мельницу. В качестве углерода используют сажу ламповую марки П804Т, а в качестве бора - бор аморфный коричневый. Остальные порошки берут стандартных марок дисперсностью менее 150 мкм. Соотношение массы шихты к массе шаров выбирают равным 1:6. При смешении используют шары диаметром 8-30 мм. Смешение проводят при атмосферном давлении. Время смешивания шихты 6 часов. Готовая шихта не должна содержать посторонних включений, видимых невооруженным глазом, а также непромешанных участков.
Прессование шихты производят на гидравлическом прессе ДА-1532Б в пресс-формах с внутренним диаметром 127 мм. Перед прессованием на дно пресс-формы помещают металлическую пластину, например титановую, являющуюся нижним несущим слоем мишени. Затем в пресс-форму засыпают навески предварительно перемешанных шихт чередующимися слоями в следующей последовательности: слой припоя, промежуточный слой, распыляемый рабочий слой мишени, инициирующий слой, так называемая «химическая печка». В качестве «химической печки» используют порошковую смесь высокоэкзотермического состава 75,6% Ti + 12,0% C + 12,4% B, тепловыделение от которой обеспечивает инициирование химических реакций в режиме самораспространяющегося высокотемпературного синтеза (СВС) в шихте распыляемого рабочего слоя мишени и в шихте промежуточного слоя, с одной стороны, и улучшает прессуемость (за счет повышения температуры) тугоплавких продуктов синтеза в распыляемом рабочем слое, снижая его остаточную пористость, с другой стороны. Массу слоя «химической печки» для данного диаметра пресс-формы берут равной 180 г. Массы всех остальных слоев приведены в таблице 1. При отсутствии «химической печки» и зажигании напрямую со стороны рабочего слоя (опыт № 30 таблица 1), а также при недостаточной массе «химической печки», равной 100 г (опыт № 31 таблица 1), продукты синтеза распыляемого рабочего слоя мишеней имеют повышенную остаточную пористость, что делает непригодным их эксплуатацию.
Слой «химической печки» отделяется от остальной шихты бумагой из терморасширенного графита. Пресс-форму собирают и устанавливают под пуансоном пресса. Формование шихтового многослойного брикета ведут по следующему режиму: давление прессования - 50 кгс/см2; время прессования - 15 секунд. По окончанию прессования производят выпрессовку готового шихтового брикета. Брикеты не должны иметь трещин, расслоев, выкрашиваний, непропрессованных участков, видимых невооруженным глазом.
Синтез заготовок производят на гидравлическом прессе усилием 160 тс с автоматическим управлением в специальной реакционной пресс-форме. Пресс-форму устанавливают на рабочий стол пресса, ее основание до верхнего уровня заполняют кварцевым песком в количестве 0,6-0,8 кг. Кварцевый песок используют как среду, передающую давление и теплоизолятор, исключающий прямой контакт горячих продуктов синтеза с внутренней поверхностью пресс-матрицы и пуансонов. Кроме того, песок обеспечивает отвод газов, выделяющихся при синтезе. Спрессованный брикет устанавливают по центру реакционной пресс-формы на песок. Корпус пресс-формы - пресс-матрицу надевают на основание. В боковые электроды корпуса пресс-формы вставляют инициирующую спираль так, чтобы она касалась боковой поверхности шихтового слоя «химической печки». Инициирующая спираль изготавливается из вольфрамовой проволоки и должна иметь «П»-образную форму. Свободное пространство пресс-формы засыпают кварцевым песком и производят ее окончательную сборку. Пресс-форму устанавливают под пуансон пресса. На манометре пресса устанавливают давление предварительного прессования - 10 кгс/см2 и основное давление компактирования при синтезировании - 200 кгс/см2. На блоке автоматического управления пресса устанавливают необходимые параметры синтеза: время инициирования 0,5 секунд; время задержки, измеряемое от момента завершения СВС-процесса до момента приложения основного давления компактирования при синтезировании (значения приведены в таблице); время выдержки продуктов синтеза под давлением (значения приведены в таблице). Напряжение инициирования - 20-25 В. Процесс синтеза начинается после сигнала с блока автоматического управления. После возвращения пуансона пресса в верхнее положение автоматически открываются защитные дверцы пресса, пресс-форма выдвигается, а затем ее разбирают.
При синтезе в жесткой пресс-форме без песка, т.е. при наличии прямого контакта горячих продуктов синтеза с внутренней поверхностью металлической пресс-матрицы и пуансонов, за счет больших тепловых потерь продукты синтеза быстро остывают, резко сокращается время существования вязко-пластичного состояния, и остаточная пористость превышает допустимую норму, что ведет к браку (опыт № 11 таблица 1).
Горячую заготовку при помощи специальных щипцов вынимают из пресс-формы и помещают в муфельную печь, расположенную вблизи пресса и разогретую предварительно до 900°С. Затем заготовки вместе с печью охлаждаются до комнатной температуры с целью снижения остаточных напряжений и предотвращения от растрескивания. С охлажденных заготовок удаляется инициирующий слой.
В отсутствии операции медленного охлаждения горячей заготовки вместе с печью (опыт № 12 таблица 1), т.е. при быстром охлаждении на воздухе без термообработки, повышенные остаточные напряжения неизбежно снижают термостойкость мишени и ведут к преждевременному растрескиванию в процессе ее распыления.
После этого проводят операцию шлифовки опорных плоскостей заготовок. Заготовки в количестве 3-5 штук наклеивают с помощью смеси канифоль-парафин на раму, которая крепится на магнитном столе плоскошлифовального станка 3Е 711В. Для шлифования используются алмазные шлифовальные круги марки АПП 250×40×5×76 АСР160/125-Б, 100% СОЖ. После выравнивания поверхности заготовок производится автоматическое шлифование заготовок с последующим выхаживанием обработанной поверхности на жестком упоре до чистоты 9-10 класса. Аналогично шлифуется 2-ая сторона заготовки до необходимой толщины.
Контроль геометрических размеров мишеней, а также контроль качества поверхности мишеней проводят на 100% мишеней партии. Мишени с расслоями и трещинами, не удовлетворяющие требованиям по химическому составу, бракуются. Основными критериями качества мишени являются: термостойкость мишени, определяемая количеством циклов ионно-плазменного (магнетронного) распыления до появления расслойных трещин; остаточная пористость распыляемого рабочего слоя мишени; степень пропайки, определяемая как отношение площади поверхности пропайки к общей площади контактной поверхности пластины. Качественными считают мишени со следующими допустимыми значениями: термостойкость - более 200 циклов; остаточная пористость не более 3%; степень пропайки - не менее 95%.
В опытах №№ 1-31 использованы пластины из титанового сплава ВТ3-1 толщиной 4 мм, а в опытах №№ 32-37 - медные пластины толщиной от 3 до 10 мм с различными вариантами припоев. С ростом толщины пластины, в результате увеличения тепловых потерь, ухудшается качество мишени за счет высокой остаточной пористости и низкой степени пропайки. Таким образом, пластина имеет оптимальную толщину и применительно к каждому материалу пластины следует подбирать свой припой.
Многослойные мишени получают также деформированием горячих продуктов синтеза на прокатном стане (технология СВС-прокатки) (опыты №№ 38-40). В этом случае получают прямоугольные сегменты для планарной мишени. Прессование шихтовых брикетов проводят на гидравлическом прессе ДА-1532Б в прямоугольных пресс-формах с внутренними сечением 140×110 мм. По аналогии с дисковой формой перед прессованием на дно пресс-формы размещают титановую пластину, являющуюся нижним несущим слоем мишени. Затем в пресс-форму засыпают навески предварительно перемешанных шихт, чередующимися слоями в следующей последовательности: слой припоя, промежуточный слой, распыляемый рабочий слой мишени, инициирующий слой «химической печки». Массу шихтового слоя «химической печки» берут равной 300 г. Пресс-форму собирают и устанавливают под пуансоном пресса. Формование шихтового многослойного брикета ведут по следующему режиму: давление прессования - 60 кгс/см2; время прессования - 15 секунд. По окончанию прессования производят выпрессовку готового шихтового брикета. Брикеты не должны иметь трещин, расслоев, выкрашиваний, непропрессованных участков, видимых невооруженным глазом.
Синтез и деформационную обработку многослойных мишеней проводят на вакуумном прокатном стане по известной методике: Chernyshov V.N., Osipov E.E., Levashov Е.А., Merzhanov A.G., Biyachi L. Formation of Materials with Controllable Porosity by SHS Vacuum Rolling. Int. Journal of Self-Propagating High-Temperature Synthesis, 1993, Vol.2, No.3, p.p.315-321. Прокатный стан состоит из следующих последовательно расположенных частей: камера загрузки; камера нагрева; основной объем камеры с прокатными валками диаметром 155 мм; камера охлаждения и выгрузки прокатанных заготовок. Камеры загрузки и выгрузки отделены от основного объема вакуумными затворами, что дает возможность их индивидуальной откачки с помощью независимых вакуумных насосов, а при загрузке и выгрузке сохранять вакуум в основной рабочей камере прокатного стана. Шихтовой брикет размещают в стальной многоразовой газопроницаемой оболочке. Слой «химической печки» отделяется от основной шихты бумагой из терморасширенного графита. Данную бумагу также прокладывают между металлической оболочкой и шихтой. Перед инициированием СВС-реакции шихтовой брикет вместе с оболочкой подвергался термовакуумной обработке (ТВО) непосредственно в камере нагрева прокатного стана при температуре 750°С в течение 30 мин. ТВО позволяет значительно снизить газовыделение при СВС в вакууме и не допустить разброса шихты и горячих продуктов синтеза. Инициирование СВС-процесса в слое «химической печки» осуществляют с помощью вольфрамовой спирали в основной камере непосредственно перед валками. Напряжение инициирования - 20-25 В. Процесс синтеза начинается после сигнала с блока автоматического управления прокатным станом. Начало и окончание СВС-процесса регистрируется автоматически по изменению давления в вакуумной камере, т.к. в результате газовыделения происходит падение вакуума (даже при включенных насосах). Сразу после завершения СВС-процесса оболочку с горячими продуктами синтеза подают в валки, где происходит обжатие продуктов с заданной степенью деформации (Е) от 50 до 80%. Далее оболочка с продуктами синтеза попадает в камеру выгрузки, где происходит медленное охлаждение. Оболочка разбирается и с охлажденных заготовок удаляется слой «химической печки». Из таблицы видно (опыт № 38), что 70%-ная деформация обеспечивает получение качественной, практически беспористой сегментной мишени.
Далее проводят операцию шлифовки опорных плоскостей и граней сегментов. Заготовки в количестве 3-5 штук наклеивают с помощью смеси канифоль-парафин на раму, которая крепится на магнитном столе плоскошлифовального станка 3Е 711В. Для шлифования используются алмазные шлифовальные круги марки АПП 250×40×5×76 АСР160/125-Б, 100% СОЖ.
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007

Claims (18)

1. Мишень для получения покрытий, состоящая из слоя в виде профилированной металлической пластины, с которым посредством слоя металлического припоя через промежуточный слой в виде таблетки на основе керамического материала соединен рабочий распыляемый слой в виде таблетки на основе керамического материала, при этом рабочий распыляемый слой содержит скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит или их смесь, а промежуточный слой содержит скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры.
2. Мишень по п.1, в которой рабочий распыляемый слой содержит металлический наполнитель, заполняющий поры внутри скелетной пористой структуры.
3. Мишень по п.1, в которой скелетная пористая структура промежуточного слоя заполнена металлическим наполнителем в соотношении, непрерывно или ступенчато увеличивающемся от границы раздела с рабочим распыляемым слоем к границе со слоем металлического припоя.
4. Мишень по п.1, отличающаяся тем, что промежуточный слой выполнен по крайней мере из двух слоев с обеспечением в нем ступенчатого изменения соотношения материала скелетной пористой структуры и металлического наполнителя.
5. Мишень по п.1, отличающаяся тем, что слой металлического припоя содержит по крайней мере один элемент, выбранный из группы, включающей железо, и/или медь, и/или алюминий, и/или другие переходные металлы.
6. Мишень по п.1, отличающаяся тем, что толщина рабочего распыляемого слоя составляет от 1 до 6 мм.
7. Мишень по п.1, отличающаяся тем, что толщина промежуточного слоя составляет от 0,5 до 4 мм.
8. Мишень по п.1, отличающаяся тем, что толщина слоя металлического припоя составляет от 0,5 до 5 мм.
9. Способ изготовления мишени для получения покрытий, включающий формование по крайней мере трех таблеток, образующих рабочий распыляемый, промежуточный и инициирующий слои, из по крайней мере трех порошковых смесей, имеющих экзотермические составы, способные к химическому взаимодействию в режиме СВС после локального теплового инициирования, послойное размещение на профилированной металлической пластине через слой шихты металлического припоя таблеток промежуточного слоя, рабочего распыляемого слоя и инициирующего слоя, запуск СВС процесса в инициирующем слое, расплавление под воздействием СВС процесса металлического припоя и металлического наполнителя, входящего в состав порошковой смеси по крайней мере одного из слоев, создание давления на слои путем прессования через 2-10 с после завершения СВС процесса, последующее поддержание давления не менее 5 с, соединение в результате этого образованных рабочего распыляемого слоя и промежуточного слоя с профилированной металлической пластиной через слой металлического припоя и последующее удаление инициирующего слоя, при этом в результате СВС процесса получают рабочий распыляемый слой, содержащий скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит или их смесь, и получают промежуточный слой, содержащий скелетную пористую структуру из материала, включающего карбид, и/или нитрид, и/или карбонитрид, и/или борид, и/или силицид переходного металла IV-VI групп, и/или оксид кальция, и/или фосфат кальция, и/или оксид циркония, и/или гидроксилапатит или их смесь, и металлический наполнитель, заполняющий поры внутри скелетной пористой структуры.
10. Способ по п.9, в котором получают рабочий распыляемый слой со скелетной пористой структурой с порами, заполненными металлическим наполнителем.
11. Способ по п.9, в котором получают промежуточный слой со скелетной пористой структурой с порами, заполненными металлическим наполнителем в соотношении, непрерывно или ступенчато увеличивающемся от границы раздела с рабочим распыляемым слоем к границе раздела с слоем металлического припоя.
12. Способ по п.9, в котором промежуточный слой выполняют по крайней мере из двух слоев с обеспечением ступенчатого изменения соотношения скелетной структуры и металлического наполнителя.
13. Способ по п.9, в котором используют металлический припой, содержащий по крайней мере один элемент, выбранный из группы, включающей железо, и/или медь, и/или алюминий, и/или другие переходные металлы.
14. Способ по п.9, в котором используют порошковые смеси с металлическим наполнителем, распределенным в виде порошка в керамическом материале, образующем скелетную пористую структуру.
15. Способ по п.9, в котором при проведении СВС процесса обеспечивают частичное поступление металлического наполнителя в вышележащие слои из шихты металлического припоя.
16. Способ по п.9, в котором шихту металлического припоя используют в виде металлического листа или металлического порошка.
17. Способ по п.9, в котором прессование осуществляют путем прямого прессования в штампе или пресс-форме или квазиизотопного прессования со средой, передающей давление, или прессования валком.
18. Способ по п.9, в котором в качестве среды, передающей давление, используют формовочный песок.
RU2005135023/02A 2005-11-14 2005-11-14 Мишень для получения функциональных покрытий и способ ее изготовления RU2305717C2 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2005135023/02A RU2305717C2 (ru) 2005-11-14 2005-11-14 Мишень для получения функциональных покрытий и способ ее изготовления
PCT/EP2006/010918 WO2007054369A2 (en) 2005-11-14 2006-11-14 Sputtering target and method of its fabrication
EP06829045.1A EP1957687B1 (en) 2005-11-14 2006-11-14 Method of fabricating a target.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005135023/02A RU2305717C2 (ru) 2005-11-14 2005-11-14 Мишень для получения функциональных покрытий и способ ее изготовления

Publications (2)

Publication Number Publication Date
RU2005135023A RU2005135023A (ru) 2007-05-27
RU2305717C2 true RU2305717C2 (ru) 2007-09-10

Family

ID=37888046

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005135023/02A RU2305717C2 (ru) 2005-11-14 2005-11-14 Мишень для получения функциональных покрытий и способ ее изготовления

Country Status (3)

Country Link
EP (1) EP1957687B1 (ru)
RU (1) RU2305717C2 (ru)
WO (1) WO2007054369A2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561624C2 (ru) * 2010-05-04 2015-08-27 Планзее 3Е Мишень из диборида титана
RU2569293C1 (ru) * 2014-07-11 2015-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Мишень для получения функциональных покрытий и способ ее изготовления
RU2607114C1 (ru) * 2015-07-27 2017-01-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Способ получения изделий из тугоплавких материалов
RU2607115C1 (ru) * 2015-07-27 2017-01-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Способ получения тугоплавких материалов
RU2696910C2 (ru) * 2014-06-27 2019-08-07 Планзее Композит Материалс Гмбх Распыляемая мишень
RU2754419C1 (ru) * 2020-10-26 2021-09-02 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук Способ получения слоистых металлокерамических композиционных материалов
RU2765376C2 (ru) * 2017-04-28 2022-01-28 Сэн-Гобэн Коутинг Солюшнз Мишень для получения цветного остекления

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018749B2 (ja) * 1979-01-16 1985-05-11 株式会社村田製作所 スパツタリング用タ−ゲツト
US4209375A (en) * 1979-08-02 1980-06-24 The United States Of America As Represented By The United States Department Of Energy Sputter target
SU1704920A1 (ru) 1990-01-09 1992-01-15 Ровенский государственный педагогический институт им.Д.З.Мануильского Способ изготовлени мишеней, преимущественно керамических, дл получени напыл емых пленок
WO1997011803A1 (fr) 1995-09-27 1997-04-03 The Ishizuka Research Institute, Ltd. Materiau composite granuleux extremement abrasif

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561624C2 (ru) * 2010-05-04 2015-08-27 Планзее 3Е Мишень из диборида титана
US9481925B2 (en) 2010-05-04 2016-11-01 Plansee Se Titanium diboride target
RU2696910C2 (ru) * 2014-06-27 2019-08-07 Планзее Композит Материалс Гмбх Распыляемая мишень
RU2569293C1 (ru) * 2014-07-11 2015-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Мишень для получения функциональных покрытий и способ ее изготовления
RU2607114C1 (ru) * 2015-07-27 2017-01-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Способ получения изделий из тугоплавких материалов
RU2607115C1 (ru) * 2015-07-27 2017-01-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Способ получения тугоплавких материалов
RU2765376C2 (ru) * 2017-04-28 2022-01-28 Сэн-Гобэн Коутинг Солюшнз Мишень для получения цветного остекления
RU2754419C1 (ru) * 2020-10-26 2021-09-02 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук Способ получения слоистых металлокерамических композиционных материалов

Also Published As

Publication number Publication date
WO2007054369A3 (en) 2007-07-12
RU2005135023A (ru) 2007-05-27
EP1957687A2 (en) 2008-08-20
EP1957687B1 (en) 2013-04-17
WO2007054369A2 (en) 2007-05-18

Similar Documents

Publication Publication Date Title
RU2305717C2 (ru) Мишень для получения функциональных покрытий и способ ее изготовления
KR100391096B1 (ko) 초지립함유복합재및그제법
Poletti et al. Production of titanium matrix composites reinforced with SiC particles
Travitzky et al. Alumina–Ti aluminide interpenetrating composites: microstructure and mechanical properties
Song et al. Self-propagating high temperature synthesis and dynamic compaction of titanium diboride/titanium carbide composites
US5996385A (en) Hot explosive consolidation of refractory metal and alloys
US6432150B1 (en) Diamond-containing stratified composite material and method of manufacturing the same
Ahmed et al. Simultaneous synthesis and sintering of TiC/Al2O3 composite via self propagating synthesis with direct consolidation technique
JPH03503663A (ja) 複合材料の製造方法
Levashov et al. Structure and properties of Ti-CB composite thin films produced by sputtering of composite TiC-TiB2 targets
Kecskes et al. Microstructural effects in hot-explosively-consolidated W–Ti alloys
RU2733524C1 (ru) Способ получения керамико-металлических композиционных материалов
Taguchi et al. Near-net shape processing of TiAl intermetallic compounds via pseudoHIP-SHS route
RU2569293C1 (ru) Мишень для получения функциональных покрытий и способ ее изготовления
US8999230B1 (en) Near net shape fabrication of high temperature components using high pressure combustion driven compaction process
Davydov et al. Synthesis of MAX-phase of titanium silicon carbide (Ti3SiC2) as a promising electric contact material by SHS pressing method
CN1594625A (zh) 一种用粉末原料制备金属陶瓷的方法
RU2266270C1 (ru) СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА Al2O3-Al
CN111850551A (zh) 一种垃圾焚烧炉耐高温磨蚀推料板及其制备方法
RU2607114C1 (ru) Способ получения изделий из тугоплавких материалов
Levashov et al. Self-Propagating High-Temperature Synthesis of Functionally Graded PVD Targets with a Ceramic Working Layer of TiB 2-TiN or Ti 5 Si 3-TiN
RU2146187C1 (ru) Композит и способ его производства
RU2816713C1 (ru) Способ получения тугоплавкого материала
US5114645A (en) Fabrication of ceramics by shock compaction of materials prepared by combustion synthesis
RU2184644C2 (ru) Алмазосодержащий слоистый композит и способ его получения

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081115

NF4A Reinstatement of patent

Effective date: 20111227