RU2607115C1 - Способ получения тугоплавких материалов - Google Patents

Способ получения тугоплавких материалов Download PDF

Info

Publication number
RU2607115C1
RU2607115C1 RU2015130949A RU2015130949A RU2607115C1 RU 2607115 C1 RU2607115 C1 RU 2607115C1 RU 2015130949 A RU2015130949 A RU 2015130949A RU 2015130949 A RU2015130949 A RU 2015130949A RU 2607115 C1 RU2607115 C1 RU 2607115C1
Authority
RU
Russia
Prior art keywords
mixture
powders
shs
exothermic
chemical
Prior art date
Application number
RU2015130949A
Other languages
English (en)
Inventor
Владимир Андреевич Щербаков
Александр Николаевич Грядунов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук
Priority to RU2015130949A priority Critical patent/RU2607115C1/ru
Application granted granted Critical
Publication of RU2607115C1 publication Critical patent/RU2607115C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к получению тугоплавких материалов. Способ включает приготовление экзотермической смеси порошков и смеси порошков химической печки, формование слоевой шихтовой заготовки, инициирование в ней реакции горения в виде самораспространяющегося высокотемпературного синтеза (СВС) с прессованием полученного продукта СВС. Смесь порошков химической печки готовят из стехиометрической смеси порошков титана и сажи. Формование слоевой шихтовой заготовки ведут путем размещения экзотермической смеси порошков внутри смеси порошков химической печки при соотношении толщин слоев экзотермической смеси порошков и смеси порошков химической печки, равном 1:0,5-1:4. Экзотермическую смесь порошков отделяют от смеси порошков химической печки слоем графита толщиной 0,1-1,0 мм. Инициирование реакции горения в виде СВС ведут одновременно в смеси порошков химической печки и экзотермической смеси порошков при давлении 5-20 МПа и через 1-20 с после инициирования полученный продукт СВС прессуют под давлением 100-450 МПа в течение 1-30 с, после чего охлаждают и отделяют полученный тугоплавкий материал от продуктов горения смеси порошков химической печки. Обеспечивается уменьшение остаточной пористости и увеличение твердости материала. 1 ил., 1 табл., 2 пр.

Description

Изобретение относится к порошковой металлургии, в частности к способам получения тугоплавких материалов, основанных на самораспространяющемся высокотемпературном синтезе (СВС) и компактировании целевого продукта, и может быть использовано для изготовления режущего инструмента, тугоплавких и износостойких изделий, мишеней для нанесения композитных покрытий и других целей.
Известен способ получения тугоплавких материалов включает приготовление экзотермической смеси и «химической печки», формование слоевой шихтовой заготовки, инициирование реакции горения (СВС) и прессование продуктов синтеза. Он отличается тем, что «химическую печку» готовят из стехиометрической смеси порошков титана и сажи, экзотермическую смесь помещают внутри «химической печки», толщины слоев экзотермической смеси и «химической печки» выбирают из соотношения 1:0,5-1:4, экзотермическую смесь отделяют от «химической печки» слоем графита толщиной 0,1-1,0 мм, реакции горения слоев инициируют одновременно в «химической печке» и экзотермической смеси при давлении 5-20 МПа и через 1-20 секунд после инициирования продукт СВС прессуют давлением 100-450 МПа в течение 1-30 секунд. Способ позволяет получить тугоплавкие материалы, обладающие высокой плотностью, твердостью и выходом годного.
Известен способ получения изделий из тугоплавких материалов, включающий приготовление экзотермической смеси порошков, формование шихтовой заготовки, локальное инициирование реакции экзотермического синтеза и прессование горячего целевого продукта синтеза [Питюлин А.Н. Силовое СВС-компактирование твердых сплавов переменного состава, Черноголовка, Издательство "Территория", 2001, с. 333-354]. Недостатком известного способа является высокая остаточная пористость, низкая твердость полученных материалов и выход годного.
Известен способ получения мишеней из тугоплавких материалов, включающий приготовление трех экзотермических смесей, послойное размещение на металлической подложке промежуточного, распыляемого и инициирующего слоев, инициирование реакции горения (СВС) и прессование продуктов синтеза давлением 20 МПа. Инициирующий слой, содержащий Ti - 75,6; C - 12,0; B - 12,4 мас. %, использовали в качестве «химической печки», тепловыделение которой нагревает распыляемый слой и инициирует в ней реакцию СВС. Однако использованная схема не обеспечивает необходимый тепловой режим СВС-компактирования тугоплавких материалов на основе боридов. Последовательное сгорание экзотермических слоев увеличивает время задержки прессования и снижает эффективность использования «химической печки». Снижение температуры горения затрудняет уплотнение продуктов СВС [Патент России RU 2305717 C2, C23C 14/36, B22F 3/105, 10.09.2007 г.].
Наиболее близким техническим решением является способ, включающий приготовление экзотермической смеси и «химической печки». Слой экзотермической смеси помещают между двумя слоями «химической печки». Для предотвращения взаимодействия шихтовую заготовку отделяют от «химической печки» бумагой из терморасширенного графита. Синтез проводят в реакционной пресс-форме на гидравлическом прессе ДА-1532Б с применением песка в качестве передающей давление среды. Горение инициируют вольфрамовой спиралью, раскаленной электрической. После окончания горения горячий продукт синтеза прессуют давлением 7-20 МПа. Полученные образцы разгружают из пресс-формы и охлаждают в песке [Потанин А.Ю. «Получение керамических материалов в системах Mo-Si-B И Cr-Al-Si-B методом самораспространяющегося высокотемпературного синтеза», Диссертация на соискание ученой степени к.т.н., Москва, МиСиС, 2014, стр. 59-60, http://www.misis.ru/Portals/0/Avtoreferat/2014/Potanin_A.U._disser.pdf].
Недостатком известного способа является высокая остаточная пористость тугоплавкого материала. Причиной нарушения теплового режима СВС-компактирования является то, что реакцию СВС инициируют в экзотермической смеси, а затем от нее зажигается смесь порошков химической печки. В этом случае тепло отводится из центрального слоя к наружному, что снижает эффективность использования химической печки и увеличивает пористость целевого продукта.
Техническим результатом предлагаемого способа является уменьшение остаточной пористости, увеличение твердости материала и выхода годного.
Технический результат достигается тем, что способ получения тугоплавкого материала включает приготовление экзотермической смеси порошков и смеси порошков химической печки, формование слоевой шихтовой заготовки, инициирование в ней реакции горения в виде самораспространяющегося высокотемпературного синтеза (СВС) с прессованием полученного продукта СВС, причем смесь порошков химической печки готовят из стехиометрической смеси порошков титана и сажи, формование слоевой шихтовой заготовки ведут путем размещения экзотермической смеси порошков внутри смеси порошков химической печки при соотношении толщин слоев экзотермической смеси порошков и смеси порошков химической печки, равном 1:0,5-1:4, при этом экзотермическую смесь порошков отделяют от смеси порошков химической печки слоем графита толщиной 0,1-1,0 мм, инициирование реакции горения в виде СВС ведут одновременно в смеси порошков химической печки и экзотермической смеси порошков при давлении 5-20 МПа и через 1-20 с после инициирования полученный продукт СВС прессуют под давлением 100-450 МПа в течение 1-30 секунд, после чего охлаждают и отделяют полученный тугоплавкий материал от продуктов горения смеси порошков химической печки.
Сущность изобретения заключается в следующем. Для решения поставленной задачи необходимо использовать дополнительный источник тепла, чтобы повысить температуру и пластичность продукта СВС. Этот полученный продукт СВС прессуют под давлением 100-450 МПа в течение 1-30 секунд, после чего охлаждают и отделяют полученный тугоплавкий материал от продуктов горения смеси порошков химической печки.
Сущность изобретения заключается в следующем. Для решения поставленной задачи необходимо использовать дополнительный источник тепла, чтобы повысить температуру и пластичность продукта СВС. Это достигается тем, что шихтовую заготовку экзотермической смеси порошков помещают внутри смеси порошков химической печки, тепловыделение которой создает тепловой режим СВС-компактирования. Для предотвращения взаимодействия целевого материала с продуктами горения смеси порошков химической печки, между экзотермическим слоями помещают слой графита толщиной 0,1-1,0 мм. Использование слоя графита толщиной менее 0,1 мм является недостаточным для эффективного разделения тугоплавкого материала и продуктов горения смеси порошков химической печки. При толщине слоя графита более 1,0 мм нарушается тепловой режим СВС-компактирования, что приводит к увеличению остаточной пористости получаемого материала.
Другим условием является выбор состава и толщины слоя «сильно» экзотермической смеси. В предложенном техническом решении химическую печку готовят из стехиометрической смеси порошков титана и сажи, а толщину слоев экзотермической смеси порошков и смеси порошков химической печки выбирают из соотношения 1:0,5-1:4. Выбор толщин слоев из указанного соотношения является оптимальным для получения тугоплавкого материала с минимальной пористостью, высокой твердостью и выходом годного. Уменьшение соотношения толщин слоев менее 1:0,5 не обеспечивает дополнительного нагрева, необходимого для повышения пластичности целевого продукта. Увеличение соотношения более чем 1:4 затрудняет удаление примесного газа, выделившегося в ходе экзотермической реакции, который препятствует компактированию тугоплавкого материала.
Условие одновременного инициирования экзотермических слоев связано с осуществлением необходимого теплового режима СВС-компактирования тугоплавкого материала. В случае последовательного горения оптимальный режим СВС-компактирования нарушается из-за увеличения времени экзотермического взаимодействия и увеличения теплопотерь.
СВС тугоплавкого материала осуществляют при давлении 5-20 МПа в течение 1-20 секунд, а компактирование - при давлении 100-450 МПа в течение 1-30 секунд. Выбор указанных интервалов давлений и временных выдержек является оптимальным для получения тугоплавкого материала, сочетающего высокую плотность, твердость и выход годного. Снижение давления на стадии СВС менее 5 МПа приводит к снижению скорости и температуры горения экзотермических смесей, и, соответственно, к снижению пластичности продукта СВС. Увеличение давления более 20 МПа нецелесообразно, так как ухудшаются условия для удаления из продуктов СВС примесного газа, выделившегося в ходе экзотермической реакции. Соответственно, уменьшение времени задержки прессования менее 1 секунды приводит к неполному удалению примесного газа, а увеличение более 20 секунд - к уменьшению температуры продукта СВС.
Снижение давления на стадии компактирования продукта СВС менее 100 МПа приводит к снижению скорости пластической деформации и увеличению остаточной пористости продукта СВС. Увеличение давления более 450 МПа нецелесообразно, так как возрастает уровень термических напряжений, приводящих к образованию трещин и снижению выхода годного. Уменьшение времени прессования менее 1 секунды или увеличение более 20 секунд приводит к увеличению остаточной пористости.
Заявленный способ осуществляют следующим образом.
Пример 1. Готовят смесь порошков химической печки, содержащую 80 мас. % титана марки ПТМ (ТУ 14-1-3086-80) и 20 мас. % технического углерода (сажа) марки П804Т (ТУ 38-1154-88), и экзотермическую смесь порошков, содержащую 73,35 мас. % титана марки ПТМ (ТУ 14-1-3086-80), 18,65 мас. % бора марки аморфный Б-99А (ТУ 1-92-154-90) и 8,0 мас. % технического углерода (сажа) марки П804Т (ТУ 38-1154-88). Из экзотермической смеси порошков формуют брикет диаметром 58 мм, высотой 16 мм и относительной плотностью 0,6. Цилиндрическую и торцевые поверхности брикета покрывают слоем терморасширенного графита толщиной 0,1 мм. Затем помещают в смесь порошков химической печки и формуют шихтовую заготовку диаметром 90 мм, высотой 48 мм (соотношение толщин слоев 1:1) и относительной плотностью 0,6. Шихтовую заготовку помещают в пресс-форму и на боковой (цилиндрической) поверхности устанавливают инициирующее устройство, состоящее из вольфрамовой спирали и слоя поджигающего состава. Свободное пространство в пресс-форме заполняют передающей давление дисперсной средой, в качестве которой используют порошок оксида кремния дисперсностью 200-300 мкм. Схема пресс-формы, с размещенной в ней шихтовой заготовкой, представлена на чертеже. Собранную пресс-форму устанавливают на рабочем столе гидравлического пресса усилием 160 тонн. Затем в пресс-форме создают давление 10 МПа и инициируют реакцию горения в виде самораспространяющегося высокотемпературного синтеза (СВС) в экзотермических слоях. Через 3 секунды с момента инициирования давление прессования увеличивают до 250 МПа и выдерживают в течение 5 секунд. Полученный продукт извлекают из пресс-формы и охлаждают в песке. После остывания синтезированный материал отделяют от продуктов горения смеси порошков химической печки. Полученный тугоплавкий материал состоит из карбида титана и диборида титана. Остаточная пористость составляет 0,3%, а твердость по Виккерсу - 28 ГПа. Выход годного - 100%.
Пример 2. Готовят смесь порошков химической печки, содержащую 80 мас. % титана марки ПТМ (ТУ 14-1-3086-80) и 20 мас. % технического углерода (сажа) марки П804Т (ТУ 38-1154-88), и экзотермическую смесь порошков, содержащую 48,5 мас. % циркония марки ПЦрК-2, 33,3 мас. % хрома ПХ-1С (ГОСТ 5905-79) и 18,2 мас. % бора марки аморфный Б-99А (ТУ 1-92-154-90). Из экзотермической смеси порошков формуют брикет диаметром 58 мм, высотой 16 мм и относительной плотностью 0,6. Цилиндрическую и торцевые поверхности брикета покрывают бумагой из терморасширенного графита.
Затем помещают в смесь порошков химической печки и формуют шихтовую заготовку диаметром 90 мм, высотой 48 мм (соотношение толщин слоев 1:1) и относительной плотностью 0,6. Шихтовую заготовку помещают в пресс-форму и на ее боковой (цилиндрической) поверхности устанавливают инициирующее устройство, состоящее из вольфрамовой спирали и слоя поджигающего состава. Свободное пространство в пресс-форме заполняют передающей давление дисперсной средой, в качестве которой используют порошок оксида кремния дисперсностью 200-300 мкм. Схема пресс-формы, с размещенной в ней шихтовой заготовкой, представлена на чертеже. Собранную пресс-форму устанавливают на рабочем столе гидравлического пресса усилием 160 тонн. Затем в пресс-форме создают давление 10 МПа и инициируют реакцию горения в виде самораспространяющегося высокотемпературного синтеза (СВС) в экзотермических слоях. Через 3 секунды с момента инициирования давление прессования увеличивают до 250 МПа и выдерживают в течение 5 секунд. Полученный продукт извлекают из пресс-формы и охлаждают в песке. После остывания синтезированный материал отделяют от продуктов горения смеси порошков химической печки. Полученный тугоплавкий материал состоит из диборида циркония 30% мас. борида хрома. Остаточная пористость составляет 0,3%, а твердость по Виккерсу - 25 ГПа. Выход годного - 100%.
Другие примеры получения изделий из тугоплавких материалов, их характеристики и характеристики прототипа сведены в Таблице. Видно, что предложенный способ получения изделий из тугоплавких материалов (примеры 1-4) позволяет в сравнении с известным способом (пример 5) уменьшить остаточную пористость, увеличить твердость тугоплавких материалов и выход годных изделий.
Таким образом, данный способ позволяет получать изделия из тугоплавких материалов повышенной твердости за счет уменьшения остаточной пористости, что позволяет его использовать для изготовления режущего инструмента, тугоплавких и износостойких изделий, мишеней для нанесения композитных покрытий и других целей.
Figure 00000001

Claims (1)

  1. Способ получения тугоплавкого материала, включающий приготовление экзотермической смеси порошков и смеси порошков химической печки, формование слоевой шихтовой заготовки, инициирование в ней реакции горения в виде самораспространяющегося высокотемпературного синтеза (СВС) с прессованием полученного продукта СВС, отличающийся тем, что смесь порошков химической печки готовят из стехиометрической смеси порошков титана и сажи, формование слоевой шихтовой заготовки ведут путем размещения экзотермической смеси порошков внутри смеси порошков химической печки при соотношении толщин слоев экзотермической смеси порошков и смеси порошков химической печки, равном 1:0,5-1:4, при этом экзотермическую смесь порошков отделяют от смеси порошков химической печки слоем графита толщиной 0,1-1,0 мм, инициирование реакции горения в виде СВС ведут одновременно в смеси порошков химической печки и экзотермической смеси порошков при давлении 5-20 МПа и через 1-20 с после инициирования полученный продукт СВС прессуют под давлением 100-450 МПа в течение 1-30 с, после чего охлаждают и отделяют полученный тугоплавкий материал от продуктов горения смеси порошков химической печки.
RU2015130949A 2015-07-27 2015-07-27 Способ получения тугоплавких материалов RU2607115C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015130949A RU2607115C1 (ru) 2015-07-27 2015-07-27 Способ получения тугоплавких материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015130949A RU2607115C1 (ru) 2015-07-27 2015-07-27 Способ получения тугоплавких материалов

Publications (1)

Publication Number Publication Date
RU2607115C1 true RU2607115C1 (ru) 2017-01-10

Family

ID=58452418

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015130949A RU2607115C1 (ru) 2015-07-27 2015-07-27 Способ получения тугоплавких материалов

Country Status (1)

Country Link
RU (1) RU2607115C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697146C1 (ru) * 2018-10-29 2019-08-12 Федеральное государственное бюджетное учреждение науки Томский научный центр Сибирского отделения Российской академии наук (ТНЦ СО РАН) Способ получения супертвердого керамического порошкового материала AlMgB14
RU2766878C1 (ru) * 2021-06-21 2022-03-16 Алексей Евгеньевич Матвеев Способ получения высокодисперсных тугоплавких карбидов переходных металлов
RU2816713C1 (ru) * 2023-06-13 2024-04-03 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук Способ получения тугоплавкого материала

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU556110A1 (ru) * 1974-04-29 1977-04-30 Отделение ордена Ленина института химической физики АН СССР Способ получени тугоплавких неорганических соединений
SU1720258A1 (ru) * 1989-02-08 1995-05-10 Институт структурной макрокинетики АН СССР Способ получения керамических изделий
JPH11131106A (ja) * 1997-10-23 1999-05-18 Ishizuka Kenkyusho:Kk 燃焼合成による焼結体の製法及びそのための装置
RU2305717C2 (ru) * 2005-11-14 2007-09-10 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Мишень для получения функциональных покрытий и способ ее изготовления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU556110A1 (ru) * 1974-04-29 1977-04-30 Отделение ордена Ленина института химической физики АН СССР Способ получени тугоплавких неорганических соединений
SU1720258A1 (ru) * 1989-02-08 1995-05-10 Институт структурной макрокинетики АН СССР Способ получения керамических изделий
JPH11131106A (ja) * 1997-10-23 1999-05-18 Ishizuka Kenkyusho:Kk 燃焼合成による焼結体の製法及びそのための装置
RU2305717C2 (ru) * 2005-11-14 2007-09-10 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Мишень для получения функциональных покрытий и способ ее изготовления

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ПОТАНИН А.Ю. Получение керамических материалов в системах Mo-Si-B и Cr-Al-Si-B методом самораспространяющегося высокотемпературного синтеза. Авто диссертации на соискание ученой степени кандидата технических наук, М., МИСИС, 2014, с.1-22. *
ПОТАНИН А.Ю. Получение керамических материалов в системах Mo-Si-B и Cr-Al-Si-B методом самораспространяющегося высокотемпературного синтеза. Автореферат диссертации на соискание ученой степени кандидата технических наук, М., МИСИС, 2014, с.1-22. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697146C1 (ru) * 2018-10-29 2019-08-12 Федеральное государственное бюджетное учреждение науки Томский научный центр Сибирского отделения Российской академии наук (ТНЦ СО РАН) Способ получения супертвердого керамического порошкового материала AlMgB14
RU2766878C1 (ru) * 2021-06-21 2022-03-16 Алексей Евгеньевич Матвеев Способ получения высокодисперсных тугоплавких карбидов переходных металлов
RU2816713C1 (ru) * 2023-06-13 2024-04-03 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук Способ получения тугоплавкого материала

Similar Documents

Publication Publication Date Title
US5708956A (en) Single step synthesis and densification of ceramic-ceramic and ceramic-metal composite materials
US4988480A (en) Method for making a composite
Fu et al. Composites fabricated by self-propagating high-temperature synthesis
RU2607115C1 (ru) Способ получения тугоплавких материалов
RU2305717C2 (ru) Мишень для получения функциональных покрытий и способ ее изготовления
Zurnachyan et al. Self-propagating high temperature synthesis of SiC–Cu and SiC–Al cermets: role of chemical activation
EP2021302A1 (en) Process for the preparation of dense ultra-high-temperature composite products
Korchagin et al. Self-propagating high-temperature synthesis in mechanically activated mixtures of boron carbide and titanium
Yang et al. Effect of Ni content on the reaction behaviors of self-propagating high-temperature synthesis in the Ni–Ti–B4C system
RU2607114C1 (ru) Способ получения изделий из тугоплавких материалов
Yeh et al. Effects of dilution and preheating on SHS of vanadium nitride
RU2623942C1 (ru) Способ изготовления дисперсно-упрочненного композиционного электродного материала для электроискрового легирования и электродуговой наплавки
RU2367541C1 (ru) Способ изготовления изделий из порошковых материалов
Jiang et al. Combustion synthesis of tungsten carbides under electric fieldI. Field activated combustion synthesis
Telepa et al. TiC–30 wt% Fe composite by pressure-assisted electrothermal explosion
Morsi et al. Simultaneous combustion synthesis (thermal explosion mode) and extrusion of nickel aluminides
RU2706913C1 (ru) Способ получения материала, содержащего борид вольфрама
RU2792027C1 (ru) Способ изготовления электродов для электроискрового легирования и электродуговой наплавки
Hu et al. Influence of an electric field on combustion synthesis process and microstructures of TiC–Al2O3–Al composites
RU2515777C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ИНТЕРМЕТАЛЛИЧЕСКОГО СОЕДИНЕНИЯ Ni3Al
RU2102187C1 (ru) Способ получения изделий из экзотермических порошковых смесей
Bogatov et al. Effect of Mechanical Activation and Combustion Parameters on SHS Compaction of Titanium Carbide
CHIZHIKOV et al. INFLUENCE OF TECHNOLOGICAL PARAMETERS ON THE PROCESS OF SHS-EXTRUSION OF COMPOSITE MATERIAL MGAL2O4-TIB2
RU2779580C1 (ru) Способ получения электродов для электроискрового легирования на основе композиционного материала TiB2-Co2B
Shcherbakov et al. Ta4HfC5 Ceramic by Electro-Thermal Explosion under Pressure: Thermal and Electrical Parameters of the Process