RU2280499C1 - Смеситель непрерывного действия для жидкостей - Google Patents

Смеситель непрерывного действия для жидкостей Download PDF

Info

Publication number
RU2280499C1
RU2280499C1 RU2005100135/15A RU2005100135A RU2280499C1 RU 2280499 C1 RU2280499 C1 RU 2280499C1 RU 2005100135/15 A RU2005100135/15 A RU 2005100135/15A RU 2005100135 A RU2005100135 A RU 2005100135A RU 2280499 C1 RU2280499 C1 RU 2280499C1
Authority
RU
Russia
Prior art keywords
working
mixer
housing
components
pipe
Prior art date
Application number
RU2005100135/15A
Other languages
English (en)
Inventor
Леонид Петрович Гаранин (RU)
Леонид Петрович Гаранин
Герман Георгиевич Колосов (RU)
Герман Георгиевич Колосов
Геннадий Васильевич Куценко (RU)
Геннадий Васильевич Куценко
Тать на Васильевна Агапова (RU)
Татьяна Васильевна Агапова
Валерий Алексеевич Приходько (RU)
Валерий Алексеевич Приходько
Равиль Габдрахманович Сибгатуллин (RU)
Равиль Габдрахманович Сибгатуллин
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов"
Priority to RU2005100135/15A priority Critical patent/RU2280499C1/ru
Application granted granted Critical
Publication of RU2280499C1 publication Critical patent/RU2280499C1/ru

Links

Images

Abstract

Изобретение относится к средствам смешивания различных жидких сред, в том числе полимерных веществ с различными специальными химическими компонентами (катализаторами, отвердителями и т.д.). Может применяться в химической и других отраслях промышленности. Смеситель содержит корпус в виде трубы, загрузочную и разгрузочную крышки, помещенный в корпус набор рабочих элементов, изогнутых под углом и закрепленных так, что задняя торцовая кромка одного рабочего элемента повернута на 90° относительно передней торцовой кромки следующего рабочего элемента. Набор рабочих элементов выполнен в виде сборного узла, который вставляется в трубу корпуса с гарантированным кольцевым зазором. Каждый рабочий элемент представляет из себя отрезок двухзаходного винта с центральным сердечником и длиной, равной половине хода винтовой линии. В сердечнике каждого рабочего элемента на торцах выполнены отверстия, которые используются для соединения рабочих элементов с помощью стержней и фиксирующих штифтов в единый сборный узел. Сборный узел фиксируется в корпусе от проворота торцовой шпонкой. Выполнение набора рабочих элементов в виде единого сборного узла позволяет легко разбирать смеситель. 1 з.п. ф-лы, 4 ил., 1 табл.

Description

Устройство относится к средствам смешивания различного типа жидких сред (ньютоновских и неньютоновских), в том числе полимерных веществ с различными специальными химическими компонентами (катализаторами, регуляторами, отвердителями).
Известен смеситель для получения однородной смеси без помощи движущихся элементов. В этом смесителе используется движение веществ, текущих по трубе, внутри которой установлены перегородки - элементы, состоящие из отрезков перекрученных металлических или пластмассовых полос, разрезанных на части, изогнутых на 180° и вновь соединенных вместе. Право- и левосторонние изгибы расположены рядом попеременно, причем задняя кромка одного отрезка повернута на 90° относительно передней кромки следующего [Leonard E. Westmore Mixer with No Moving Parts to Make Big Impact in Europe. Process Engineering, September 11, 1970, pp.87-90; Grout Kennet M. Shear mixer (патент США 3860217); Friedrich Kapthammer. Mischerreaktor (патент Австрия 311927)].
Недостатком такого смесителя является то, что изготовление изогнутых (перекрученных) элементов возможно, если исходные заготовки находятся в пластичном состоянии, так как при винтовом изгибе плоской заготовки происходит сложное деформирование: внешние поверхности растягиваются, а прилежащие к центральной оси, относительно которой производится изгиб, испытывают сжатие. Для такой операции необходимо специальное оборудование (пресс) и пресс-форма. Кроме того, для получения заданного вида и размеров элемента необходима специальная конфигурация заготовки. И даже при соблюдении этих условий трудно без значительного количества экспериментов получить элементы нужной формы и размера. В основном это касается посадочной поверхности элемента - она должна быть выполнена цилиндрической, чтобы вставляться в трубу корпуса достаточно плотно или с равномерным зазором. Элементы закрепляются в трубе за счет горячей посадки или привариваются. Получается неразборная конструкция со сложной конфигурацией внутренней полости смесителя, что затрудняет чистку и мойку его при обслуживании. Устройство по патенту Англии 1351811, содержащее корпус в виде трубы, загрузочную и разгрузочную крышки, закрепленный в корпусе набор рабочих элементов из отрезков металлических или пластмассовых полос, изогнутых под углом и закрепленных в корпусе так, что задняя торцовая кромка одного элемента повернута на 90° относительно торцовой кромки следующего, также имеет этот недостаток, так как крепление последовательно установленных изогнутых пластинчатых элементов в трубопроводе осуществляется пайкой, сваркой, склеиванием в зависимости от используемого материала. Это устройство принято в качестве прототипа.
Технической задачей, на решение которой направлено предлагаемое изобретение, является разработка смесителя более простого и технологичного при изготовлении и более экономичного при эксплуатации.
Технический результат достигается тем, что в смесителе, содержащем корпус в виде трубы, загрузочную и разгрузочную крышки, закрепленный в корпусе набор рабочих элементов из отрезков металлических или пластмассовых полос, изогнутых под углом и закрепленных в корпусе так, что задняя торцовая кромка одного элемента повернута на 90° относительно торцовой кромки следующего, набор рабочих элементов выполнен в виде единого сборного узла, который помещается в корпус смесителя с гарантированным кольцевым зазором, что обеспечивает простую сборку и разборку смесителя и, соответственно, его чистку и мойку после работы. Каждый рабочий элемент представляет из себя отрезок двухзаходного винта с сердечником. Такая конструкция рабочих элементов дает возможность изготовления их на обычном токарном станке. При этом без труда обеспечивается выполнение наружного диаметра винтовой линии. В сердечнике каждого рабочего элемента на торцах выполнены отверстия для соединения с соседними рабочими элементами с помощью стержней и фиксирующих штифтов. Весь сборный узел фиксируется от проворота в трубе корпуса торцовой шпонкой, укрепленной в сердечнике первого рабочего элемента и взаимодействующей с ответным пазом в загрузочной крышке смесителя. С целью исключения отрицательного влияния на качество смешивания кольцевого зазора между наружной винтовой поверхностью рабочих элементов и внутренней поверхностью трубы корпуса отношение площади этого зазора к площади поперечного сечения активной зоны смесителя не должно превышать заданного допустимого разброса компонентов в готовой смеси.
Сущность предлагаемого изобретения поясняется следующими чертежами.
На фиг.1 схематично изображен предлагаемый смеситель.
1 - корпус;
2 - крышка загрузочная;
3 - штуцер;
4 - шпонка;
5 - штуцер;
6 - сборный узел;
7 - сердечник;
8 - крышка разгрузочная.
На фиг.2 - сечение А-А.
4 - шпонка.
На фиг.3 - сечение Б-Б.
На фиг.4 - сечение В-В.
9 - рабочий элемент с правой нарезкой;
10 - стержень;
11 - штифт;
12 - рабочий элемент с левой нарезкой.
Смеситель непрерывного действия для жидкостей (фиг.1) состоит из корпуса 1 в виде трубы, загрузочной 2 и разгрузочной 8 крышек, сборного узла 6 рабочих элементов. Загрузочная крышка 2 имеет два штуцера 3 и 5 для ввода двух исходных жидкостей, предназначенных для смешивания. В разгрузочной крышке 8 имеется один штуцер для выхода из смесителя готовой смеси. Сборный узел 6 состоит из нескольких рабочих элементов 9 и 12. Каждый рабочий элемент выполнен в виде отрезка двухзаходного винта с центральным сердечником 7. Длина каждого элемента равна половине хода винтовой линии, чтобы передняя и задняя кромки винтовой линии находились в одной плоскости. В сердечнике каждого рабочего элемента на торцах выполнены отверстия, которые служат для соединения рабочих элементов между собой. В эти отверстия вставляются соединительные стержни 10, которые скрепляются с каждым элементом штифтами 11. Так набирается и соединяется между собой нужное количество рабочих элементов. Рабочие элементы имеют наружный диаметр несколько меньший, чем внутренний диаметр трубы корпуса 1, и между ними имеется определенный кольцевой зазор, поэтому сборный узел 6 может целиком вставляться в трубу корпуса 1 при сборке смесителя, а также его можно легко вынуть из трубы после приготовления необходимого количества смеси. Таким образом, сборный узел 6 становится доступным для его чистки после технологического цикла приготовления смеси.
Кольцевой зазор должен быть достаточным для беспрепятственной сборки-разборки смесителя и в то же время не ухудшать качества смешивания из-за проскока части потока компонентов, минуя активную зону перемешивания.
Для количественной оценки влияния величины зазора принимаем за исходную величину допустимый разброс содержания компонентов в готовой смеси, например δ=±0,5% или в относительных единицах δ=±0,005. Тогда для надежного получения такого результата в идеальном смесителе величина байпасного потока (т.е. проскока части потока несмешанных компонентов мимо зоны активного смешивания) должна быть меньше уровня допустимого разброса содержания компонентов в готовой смеси. Поскольку производительность потока в трубе в случае низковязких жидкостей при прочих равных условиях прямо пропорциональна поперечному сечению устройства, через которое прокачиваются исходные компоненты, то соотношение производительностей потоков можно в первом приближении приравнять к соотношению площадей поперечного сечения. Тогда для соблюдения необходимого качества перемешивания необходимо выполнять условие
SЗ/Sсм<δ, где SЗ - площадь кольцевого зазора;
Sсм - площадь поперечного сечения
зоны активного перемешивания;
δ - допустимый разброс компонентов
в готовой смеси.
Иначе говоря, отношение площади кольцевого зазора между наружной винтовой поверхностью рабочих элементов и внутренней поверхностью трубы корпуса к площади поперечного сечения активной зоны смесителя не должно превышать заданного допустимого разброса компонентов в готовой смеси.
Этот предельный уровень оценки принят со значительным запасом, поскольку в реальных условиях положительную роль в снижении величины байпасного потока и, соответственно, повышении качества смешивания при одинаковом зазоре играют роль следующие обстоятельства: во-первых, между байпасным и основным потоками происходит активный обмен, т.к. зазор несплошной по длине всего смесителя, а винтовой с большим ходом, при этом ширина реборды винта мала по отношению к ходу винтовой линии; во-вторых, при смешивании достаточно вязких жидкостей (от 0,1 до 200 Па·с), для чего и предполагается применить этот смеситель, значительно возрастает сопротивление перетокам через малые зазоры, и тогда соотношение величины перетоков к основной массе жидкости, проходящей через зону активного смешивания, уменьшается в сто и более раз (см. таблицу), что примерно в том же соотношении снижает разброс компонентов в смеси на выходе из смесителя.
Оценку величины перетока можно сделать, исходя из значений вязкости смешиваемых компонентов, перепада давления и реальных размеров конкретного смесителя, используя зависимость для ньютоновской жидкости [Техника переработки пластмасс. Под редакцией Н.И.Басова и В.Броя. Москва, "Химия", 1985, 527 с.]:
Figure 00000002
где принятые значения составляют:
ΔР - перепад давления в зазоре (0,2-0,6) МПа;
Q - переток через зазор (м3/с);
η - вязкость жидкости (0,1-200) Па·с;
В - ширина реборды, 0,3·10-2 м;
Н - величина зазора, (0,1-1,0)·10-3 м;
l - длина зазора, 15,7·10-2 м.
При диаметре трубы корпуса смесителя 50 мм и заданной производительности 600 л/ч допустимый переток должен быть менее 3 л/ч. Из расчета (см. результаты в таблице) видно, что в диапазоне вязкостей от 0,1 до 200 Па·с в реальном рабочем диапазоне перепадов давления до 0,6 МПа даже при величине кольцевого зазора 0,4 мм перетоки меньше допустимых, а при зазоре 0,1 мм перетоки практически исключены. Зазор 0,1 мм технологически выполним при изготовлении рабочих элементов и достаточен для сборки-разборки смесителя.
Q, (л/ч)
Н, (м)
10-4 2·10-4 4·10-4 10-3
ΔР=0,2 МПа 1,15·10-5 9,2·10-2 7·10-1 1,15
η=0,1 Па·с 5,7·10-9 4,6·10-5 3,5·10-4 5,7·10-3
η=200 Па·с
ΔР=0,6 МПа
η=0,1 Па·с 3,4·10-5 2,77·10-1 2,1 11,5
η=200 Па·с 1,72·10-8 1,38·10-4 1,05·10-3 1,71·10-2
При сборке смесителя сборный узел 6 фиксируется от проворота внутри трубы корпуса 1 торцовой шпонкой 4, закрепленной в сердечнике первого рабочего элемента и входящей в ответный паз в загрузочной крышке 2.
Поскольку каждый рабочий элемент является отрезком двухзаходного винта, он может быть изготовлен на обычном токарном станке. При этом наружная поверхность винтовой нарезки заданного диаметра получается автоматически при токарной обработке тела вращения.
Для интенсификации процесса смешивания рабочие элементы выполняются двух видов: с левой и с правой винтовой нарезкой. На фиг.4 показаны эти элементы: рабочий элемент с правой нарезкой - поз.9, элемент с левой нарезкой - поз.12. При сборке узла 6 эти элементы устанавливаются поочередно, а для осуществления операции смешивания за счет последовательного деления потока на 2 каждый последующий рабочий элемент разворачивается на стержне 10 относительно предыдущего на 90° и фиксируется штифтом 11. Это показано на фиг.2 (сечение А-А) и 3 (сечение Б-Б).
Работа смесителя осуществляется следующим образом. Через штуцеры 3 и 5 загрузочной крышки 2 подаются две исходные жидкости, которые необходимо смешать между собой. Поскольку двухзаходный винт рабочего элемента разделяет трубу корпуса 1 на две равные полости (см. фиг.2), через первый рабочий элемент исходные жидкости проходят фактически раздельно: одна жидкость через верхнюю полость, другая - через нижнюю. Обе жидкости перемещаются в сторону выхода, и одновременно их потоки поворачиваются, направляемые винтовой поверхностью рабочего элемента против часовой стрелки. Пройдя раздельно через первый рабочий элемент, оба потока подходят ко второму рабочему элементу. Поскольку второй рабочий элемент развернут относительно первого на 90°, то каждый из потоков разделяется на две части передней вертикальной кромкой двухзаходного винта второго рабочего элемента (см. фиг.2). Теперь в каждой полости второго рабочего элемента перемещается по половине потока каждой из двух исходных жидкостей. Поскольку этот рабочий элемент имеет уже левую нарезку, то потоки меняют направление вращения относительно продольной оси на противоположное и продолжают, вращаясь уже по часовой стрелке, перемещаться в сторону выгрузки. Дойдя до третьего рабочего элемента, потоки опять делятся пополам его передней торцовой кромкой и снова меняют направление вращения. Так происходит до тех пор, пока потоки жидкостей не преодолеют все рабочие элементы и не сольются вместе в виде однородной композиции на выходе из последнего рабочего элемента. Готовая смесь выгружается через штуцер в разгрузочной крышке 8. Смеситель работает непрерывно до тех пор, пока через штуцера 3 и 5 подаются исходные жидкости. По окончании технологического цикла прекращают подачу исходных жидкостей, процесс смешивания также прекращается. Смеситель отсоединяют от трубопроводов подачи исходных жидкостей и от трубопровода выгрузки готовой композиции. Для проведения операции чистки смеситель разбирают: снимают крышки 2 и 8, выталкивают из корпуса 1 сборный узел 6. После этого все детали и узлы смесителя полностью доступны для чистки и мойки от остатков смешиваемых компонентов. Сборка смесителя также не вызывает затруднений. Сначала на корпус 1 устанавливается разгрузочная крышка 8, затем в корпус 1 вставляется сборный узел 6 до упора в крышку 8. Последней устанавливается загрузочная крышка 2, при этом торцовая шпонка 4 должна войти в паз крышки 2 и зафиксировать сборный узел 6 от проворота в трубе корпуса 1. Производится подсоединение необходимых трубопроводов к штуцерам на крышках 2 и 8, и смеситель снова готов к работе.
Применение предлагаемого изобретения обеспечивает более простое и технологичное изготовление рабочих элементов за счет выполнения их в виде отрезков двухзаходного винта на токарном станке. Выполнение набора рабочих элементов в виде единого сборного узла обеспечивает простую сборку и разборку смесителя и, соответственно, его чистку и мойку после работы. Указанные преимущества повышают экономичность изготовления и эксплуатации смесителя.
Опытный образец смесителя прошел испытания в стендовых условиях. Результаты испытаний подтвердили вышеуказанные преимущества смесителя.

Claims (2)

1. Смеситель непрерывного действия для жидкостей, содержащий корпус в виде трубы, загрузочную и разгрузочную крышки, закрепленный в корпусе набор рабочих элементов из отрезков металлических или пластмассовых полос, изогнутых под углом и закрепленных в корпусе так, что задняя торцовая кромка одного элемента повернута на 90° относительно торцовой кромки следующего, отличающийся тем, что набор рабочих элементов выполнен в виде сборного узла с возможностью размещения его в корпусе с гарантированным кольцевым зазором, каждый рабочий элемент представляет из себя отрезок двухзаходного винта с центральным сердечником и длиной, равной половине хода винтовой линии, причем в сердечнике каждого рабочего элемента на переднем и заднем торцах выполнены отверстия для соединения рабочих элементов с помощью стержней и фиксирующих штифтов, а весь сборный узел фиксируется от проворота в корпусе торцовой шпонкой, укрепленной в сердечнике первого рабочего элемента и взаимодействующей с ответным пазом в загрузочной крышке.
2. Смеситель по п.1, отличающийся тем, что отношение площади кольцевого зазора между наружной винтовой поверхностью рабочих элементов и внутренней поверхностью трубы корпуса к площади поперечного сечения активной зоны смесителя не должно превышать заданного допустимого разброса компонентов в готовой смеси.
RU2005100135/15A 2005-01-11 2005-01-11 Смеситель непрерывного действия для жидкостей RU2280499C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005100135/15A RU2280499C1 (ru) 2005-01-11 2005-01-11 Смеситель непрерывного действия для жидкостей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005100135/15A RU2280499C1 (ru) 2005-01-11 2005-01-11 Смеситель непрерывного действия для жидкостей

Publications (1)

Publication Number Publication Date
RU2280499C1 true RU2280499C1 (ru) 2006-07-27

Family

ID=37057765

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005100135/15A RU2280499C1 (ru) 2005-01-11 2005-01-11 Смеситель непрерывного действия для жидкостей

Country Status (1)

Country Link
RU (1) RU2280499C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2667453C1 (ru) * 2017-07-25 2018-09-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Реактор для непрерывного перемешивания жидких растворов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2667453C1 (ru) * 2017-07-25 2018-09-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Реактор для непрерывного перемешивания жидких растворов

Similar Documents

Publication Publication Date Title
DE102008037008B3 (de) Mischvorrichtung für die Flüssigkeitschromatographie
EP1924346B1 (de) Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente
FI90730B (fi) Laite kitin ja sen tapaisten massojen valmistamiseksi
US7438464B2 (en) Static mixer with polymorphic structure
US9724653B2 (en) Double wedge mixing baffle and associated static mixer and methods of mixing
DE1657574A1 (de) Kontinuierlich arbeitende Mehrzweckmisch- und/oder Knetvorrichtung
WO2007045529A1 (de) Vorrichtung und verfaheren zum mischen von flüssigfarbe sowie verfahren zum einfärben von kunststoffen mit flüssigfarbe
DE102018104840A1 (de) Fluidmischer mit nichtkreisförmigem Leitungsquerschnitt
RU2280499C1 (ru) Смеситель непрерывного действия для жидкостей
DE102014012887A1 (de) Schraubenförmiger Rotor, Exzenterschneckenpumpe und Pumpenvorrichtung
WO2011003412A2 (de) Longitudinale mischvorrichtung, insbesondere für die hochleistungsflüssigkeitschromatographie
EP0017041A1 (de) Vorrichtung zum Herstellen eines massive oder zellförmige Stoffe bildenden Reaktionsgemisches aus fliessfähigen Reaktionskomponenten und Einbringen des Reaktionsgemisches in ein Formwerkzeug
DE69509809T2 (de) Vorrichtung zum Mischen von Leim
CN116510976A (zh) 一种狭缝涂布模头
EP1721717B1 (de) Verfahren und Vorrichtung zur Herstellung einer fliessfähigen Masse
CN115738871A (zh) 一种自动配液装置及其方法
DE2065057B2 (de) Vorrichtung zum erzeugen eines vorzugsweise chemisch reaktionsfaehigen gemisches aus kunststoffkomponenten
DE102008014340B4 (de) Fassfolgepumpe
JPWO2020149067A5 (ru)
DE4308139C2 (de) Verfahren zum Mischen zweier Medien unterschiedlicher Viskosität und Vorrichtung zur Durchführung des Verfahrens
DE2304298A1 (de) Vorrichtung zum benetzen pulverfoermiger bis koerniger oder faseriger schuettgueter mit einer fluessigkeit
EP1837070A1 (de) Statischer Mischer und Verfahren zur Herstellung desselben
DE2216444A1 (de) Mischvorrichtung zur herstellung einer homogenen mischung aus mehreren stoffkomponenten
WO2018015103A1 (de) Befüllsystem und verfahren
RU2232298C1 (ru) Винтовой насос-смеситель

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20141204

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190112