RU2266141C2 - Устройство для перекачки однофазных или многофазных жидкостей без изменения их свойств - Google Patents

Устройство для перекачки однофазных или многофазных жидкостей без изменения их свойств Download PDF

Info

Publication number
RU2266141C2
RU2266141C2 RU2001131346/14A RU2001131346A RU2266141C2 RU 2266141 C2 RU2266141 C2 RU 2266141C2 RU 2001131346/14 A RU2001131346/14 A RU 2001131346/14A RU 2001131346 A RU2001131346 A RU 2001131346A RU 2266141 C2 RU2266141 C2 RU 2266141C2
Authority
RU
Russia
Prior art keywords
discharge element
rotor
flow
axial
guide blocks
Prior art date
Application number
RU2001131346/14A
Other languages
English (en)
Other versions
RU2001131346A (ru
Inventor
Питер МЮССЕР (DE)
Питер МЮССЕР
Йоханнес МЮЛЛЕР (DE)
Йоханнес Мюллер
Ганс-Эрхард ПЕТЕРС (DE)
Ганс-Эрхард ПЕТЕРС
Original Assignee
Берлин Харт Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19944863A external-priority patent/DE19944863A1/de
Application filed by Берлин Харт Аг filed Critical Берлин Харт Аг
Publication of RU2001131346A publication Critical patent/RU2001131346A/ru
Application granted granted Critical
Publication of RU2266141C2 publication Critical patent/RU2266141C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/562Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • A61M60/812Vanes or blades, e.g. static flow guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • A61M60/816Sensors arranged on or in the housing, e.g. ultrasound flow sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • A61M60/822Magnetic bearings specially adapted for being actively controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0633Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0646Units comprising pumps and their driving means the pump being electrically driven the hollow pump or motor shaft being the conduit for the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • F04D3/02Axial-flow pumps of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3351Controlling upstream pump pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2316/00Apparatus in health or amusement
    • F16C2316/10Apparatus in health or amusement in medical appliances, e.g. in diagnosis, dentistry, instruments, prostheses, medical imaging appliances
    • F16C2316/18Pumps for pumping blood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Изобретение относится к медицинской технике и касается устройства для перекачивания однофазных или многофазных жидкостей без изменения их свойств. Изобретение представляет собой устройство для деликатного перекачивания крови, состоящее из трубчатого, полого корпуса, пропускающего жидкость, при этом ротор электромотора, который смонтирован и подвешен внутри трубчатого полого корпуса, представляет собой продольно расположенный, вращающийся нагнетательный элемент и снабжен, по крайней мере, одним направляющим поток блоком, который размещен спереди и/или сзади нагнетательного элемента, отличающееся тем, что приводимый в движение ротором нагнетательный элемент подвешен бесконтактным способом посредством магнитной подвески. Изобретение при несложной конструкции обеспечивает неизменность, или практическую неизменность параметров перекачиваемой жидкости, и, в особенности, минимизирует области повреждения или завихрения перекачиваемой жидкости. 8 з.п. ф-лы, 8 ил.

Description

Изобретение относится к устройствам для перекачки однофазных или многофазных жидкостей без изменения их свойств в соответствии с той частью пункта 1 формулы изобретения, в которой отражен уровень техники.
Особенно слабо устойчивые многофазные жидкости, например эмульсии и дисперсии, которые могут испытывать необратимые изменения под воздействием прилагаемых сил, могут самопроизвольно переходить в нестабильную фазу в процессе их перекачки соответствующими устройствами.
Очень чувствительной жидкой системой является кровь. Эта красная непрозрачная жидкость у позвоночных животных циркулирует в закрытой сосудистой системе, причем ритмическое сжатие сердца выдавливает кровь в различные области организма. В этом случае кровь переносит газовые дыхательные смеси, включающие кислород и двуокись углерода, а также питательные вещества, продукты метаболизма и собственные вещества организма. В этом случае, кровеносная сосудистая система, включающая и сердце, герметизирована от окружающей среды таким образом, чтобы кровь не подвергалась никаким изменениям в здоровом организме в процессе перекачки ее через сердце и тело.
Известно, что, при контакте с инородными телу материалами или при инородном силовом воздействии, кровь имеет тенденцию к гемолизу и образованию тромбов. Формирование тромбов может быть смертельно для организма, поскольку они ведут к закупорке широко разветвленной сосудистой системы. Гемолизом является такое состояние, при котором эритроциты растворяются (разрушаются) более чем физиологически допустимо. Причины гемолиза могут быть как механические, так и метаболические. Повышенный гемолиз вызывает множественные поражения органов и может привести к смерти человека.
С другой стороны, было доказано, что существует принципиальная возможность поддерживать перекачивающую способность сердца при определенных условиях за счет конструктивных решений или даже замещать естественное сердце искусственным сердцем, однако, продолжительное действие имплантированных, поддерживающих работу сердца насосов или искусственных сердец в настоящее время только ограниченно возможно, поскольку взаимодействие этих искусственных изделий с кровью все еще приводит к негативным изменениям крови.
В известном уровне техники можно выделить различные направления в разработке кровяных насосов. Поддерживающие сердечные насосы и искусственные сердца могут проектироваться, исходя из заданной разности давлений и объемных параметров потока, или, исходя из принципа перекачки, такие насосы могут реализовываться как, так называемые, пульсационные или, если используется принцип турбины, как устройства, обеспечивающие радиальный или осевой поток (поточные насосы). В настоящее время эти три названных направления развиваются параллельно. Поточные устройства, за счет большей удельной производительности насосов этого типа, имеют меньшие габариты, чем поршневые устройства. В ряду насосов, которые функционируют на принципе турбины, осевой вариант насоса имеет, как правило, меньшие габариты, чем радиальный вариант. Турбоустройство, в принципе, может быть спроектировано для данной разности давлений и данных объемных параметров потока весьма разнообразными способами, например, как осевой или радиальный насос с очень разными угловыми скоростями.
Конструкции осевых кровяных насосов, известные из уровня техники, включают, как правило, внешнюю цилиндрическую трубу, в которой вращается нагнетательный элемент, выполненный в виде ротора, сопряженного с внешним статором, образуя мотор, в котором кровь переносится в осевом направлении. Проблема заключается в способе крепления (подвеске) нагнетательного элемента. Чисто механическое крепление представляется нерациональным из-за повреждения крови и даже из-за относительно высокого коэффициента трения. Известные к настоящему времени типы магнитных подвесок не привели к удовлетворительному решению.
В уровень техники входит осевой кровяной насос для поддержки больного сердца, который может быть имплантирован в грудную клетку пациента (см. In Phase I Ex Vivo Studies of the Baylor/NASA Axial Flow Ventricular Assist Device, in: Heart Replacement Artificial Heart 5, pages 245-252, Springer Verlag Tokyo, 1996, Publisher T. Akutso and H. Koyagani) [1]. Этот осевой кровяной насос имеет вращающееся рабочее колесо с комплектом лопаток, которое размещено в трубке, по которой проходит кровяной поток, и приводится в движение с помощью электродвигателя.
Чтобы добиться этого, рабочее колесо выполнено в виде ротора электродвигателя и сопряжено, посредством установленных на лопатках магнитов, со статором электродвигателя, совмещенным с корпусом (кожухом). Осевая и радиальная поддержка ротора осуществляется с помощью пальцеобразного подшипника, при этом ротор поддерживается за счет точечного контакта с находящимися в потоке элементами подшипника. Такое устройство также известно из патента США №4957504 [2].
Кровяной насос такой конструкции имеет тот недостаток, что кровь при перекачке в значительной степени травмируется и повреждается. В этом случае опасность заключается, главным образом, в формировании тромбов. Причина, в основном, заключается в наличии точек опоры подвески ротора. Еще один недостаток заключается в ограниченном сроке службы механической подвески за счет износа.
В патенте США №4779614 [3] описывается имплантируемый осевой кровяной насос, который состоит из внешней цилиндрической трубки и роторного вкладыша, вращающегося в этой трубке для перекачки крови. Ротор поддерживается магнитным полем и одновременно включает в себя как магниты привода ротора, так и лопатки (лопасти) рабочего колеса (крыльчатки). Поддерживаемый магнитным полем ротор образует совместно с лопатками статора, размещенными на внешней трубке, длинные узкие зазоры. Размещение двух комплектов "мотор-статор" на концах насоса должно стабилизировать расположение ротора. Регулировка его расположения в направлении оси стабилизируется другой парой магнитов, которые должны компенсировать также осевое смещение ротора. Хотя для потока жидкости предусмотрен относительно широкий кольцевой зазор, и при наличии магнитной подвески ротора решается важная конструкторская задача, как в отношении компактности имплантируемого кровяного насоса, так и в отношении герметичности и износостойкости, тем не менее, этот кровяной насос имеет существенные недостатки, касающиеся функционирования и конструктивного выполнения этого насоса. Чрезвычайно длинные и узкие зазоры между роторным вкладышем и лопатками статора увеличивают опасность повреждения крови за счет высокого перепада скоростей потоков в этих зазорах. Наличие двух моторов, требующееся для стабилизации ротора, достаточно неудобно с конструкционной точки зрения. Кроме того, ротор недостаточно надежно закреплен в осевом направлении из-за особенностей своей формы, что представляет определенный риск.
Еще один патент США №5385581 [4] описывает осевой кровяной насос с магнитной подвеской. Размещенные на роторе и статоре магниты-подшипники имеют противоположную полярность. К сожалению, это приводит к поломке насоса, когда эти подшипники не срабатывают. Кроме того, недостатком является и то, что в конструкции не предусмотрено установки так называемой "успокаивающей" решетки, т.е. суммарный напор создается крыльчаткой, и остаточная энергия вращения сохраняется в потоке.
Помимо этих конструкций осевого кровяного насоса с магнитной подвеской ротора, известно решение, описанное в публикации WO 97/49440. Магнитная подвеска размещается на конусообразных концах ротора, который образует крыльчатку. Неподвижно закрепленные полюсные наконечники размещены напротив оконечных частей ротора, при этом полюсные наконечники направляют поля постоянных магнитов. Такая подвеска требует активной стабилизации с помощью, по крайней мере, четырех стабилизирующих обмоток, как в осевом, так и в радиальном направлениях. В последующем варианте предлагаются подшипники с радиально намагниченными кольцевыми постоянными магнитами с изменяющимся направлением намагничивания, но этим явлением чрезвычайно трудно управлять.
Из публикации WO 98/11650 [5] известен еще один осевой кровяной насос с так называемым "бесподшипниковым" приводом (мотором). "Бесподшипниковый" привод - это комбинация мотора и магнитной подвески. Положение ротора стабилизируется пассивно постоянными магнитами в отношении трех степеней свободы - перемещению в направлении оси X, отклонениям в направлениях Х и У. Такая пассивная стабилизация осуществляется постоянным магнитным кольцом ротора, которое окружено со стороны статора кольцом из мягкого железа. Управляющие и рабочие обмотки, которые связаны с кольцом из мягкого железа, позволяют прилагать усилие в соответствии с тремя степенями свободы. Невысокая жесткость подвески требует принятия дополнительных мер. Кроме того, стабилизация подвески необходима в направлениях X и У, что требует значительных усилий с точки зрения требующейся измерительной технологии, и может привести к высокому нагреву насоса за счет рабочих обмоток.
Для перекачки химических жидкостей разработан осевой пропеллерный насос, описанный в европейской заявке ЕР-А №0856666 [6]. Нагнетательный элемент поддерживается магнитным полем между двумя крепежными элементами, прикрепленными к трубчатому полому корпусу с сохранением кольцевого зазора. Нагнетательный элемент служит ротором мотора, статор которого размещен с внешней стороны трубчатого полого корпуса. В радиальном направлении магнитная подвеска осуществляется радиально намагниченными постоянными магнитами, а в осевом направлении - посредством электромагнитных катушек, которые, насколько возможно, отдалены от магнитов. Радиально намагниченные постоянные магниты требуют определенного минимального размера и малых воздушных зазоров.
Поэтому зазор для прохождения потока может быть лишь очень малым, что усложняет задачу по перекачке (пропеллерные насосы производят высокое давление при малой пропускной способности), этот фактор не является существенным для других насосов, но совершенно не приемлем для кровяных насосов. Кроме того, общая осевая жесткость, которая очень высока по сравнению с радиальной жесткостью из-за нагнетательного давления перекачиваемой жидкости, должна обеспечиваться стабилизирующими катушками (обмотками), для которых требуется определенная сила тока, что ведет к необходимости обеспечить соответствующее энергоснабжение и к нагреванию. Контроль за поддержанием осевого положения замедляется с увеличением силы тока, поэтому данный насос пригоден только осуществления пульсационной перекачки лишь в ограниченной степени.
Настоящее изобретение направлено на решение задачи по созданию достаточно простого в конструктивном отношении устройства для деликатной перекачки одно- или многофазных жидкостей, которое не изменяло бы, или лишь несущественно изменяло, параметры перекачиваемой жидкости; в котором опасные зоны (зоны трения и завихрений) для перекачиваемой жидкости сведены к минимуму, и обеспечивается перекачка пульсационного характера.
Решение этой задачи приводится в отличительной части пункта 1 формулы изобретения.
Предпочтительные и целесообразные варианты реализации изобретения приведены в зависимых пунктах формулы.
В данном решении нагнетательный элемент бесконтактно подвешен между крепежными конструкциями, отделенный от каждой из них зазором за счет элементов подшипника из постоянного магнита, которые размещены как в опорных конструкциях, так и в нагнетательном элементе, которые функционально работают вместе, при этом активные лицевые стороны магнитов расположены один напротив другого и намагничены в осевом направлении с противоположной полярностью. Датчики определения положения и стабилизаторы для коррекции положения размещены в крепежных конструкциях, в стенке полого корпуса или на его стенке.
Устройство, описанное в заявке, отличается простотой конструкции. Элементы магнитной подвески, кроме всего прочего, совмещены с постоянными магнитами ротора электромотора непосредственно на нагнетательном элементе. Магнитная подвеска удачно компенсирует как осевые так и радиальные силы. Осевая стабилизация обеспечивает активную регулировку осевого положения нагнетательного элемента, при этом кольцевые катушки (обмотки), размещенные на лицевой стороне нагнетательного элемента, генерируют осевой магнитный поток, который накладывается на осевой магнитный поток элементов магнитной подвески и служит для управления осевым положением.
Зазор ротора, который необходимо предусмотреть между внешним торцом нагнетательного элемента и внутренним торцом трубчатого полого корпуса, должен быть спроектирован таким образом, чтобы минимизировать негативное влияние как мотора, так и зазора. Поэтому очень важно для устранения негативного влияния мотора взаиморасположение ротора и статора. Уменьшенный роторный зазор в двигателе представляется наиболее желательным. С другой стороны, уменьшение роторного зазора ведет к увеличению потерь за счет трения потока и поэтому является технологически невыгодным в отношении потока. Приемлемым компромиссом для кровяных насосов является, например, фиксированная ширина роторного зазора в пределах от 0.5 до 2.5 мм.
Предпочтительный вариант реализации настоящего изобретения заключается в размещении датчиков для определения, в данный момент времени, разности давления, создаваемой насосом, во вкладышах осевого кровяного насоса и/или в стенках трубчатого полого корпуса. Эти данные поступают в устройство, управляющее процессом перекачки, для определения отклонений, и дает возможность контроля за нагнетательным процессом с точки зрения физиологически оптимальной пульсационной перекачки, сходной с естественными функциями сердца, посредством изменяющейся с течением времени разницы в угловой скорости ротора или пульсационного насоса, оптимизированной с точки зрения наиболее малого потребления энергии, а также привязанной к изменениям угловой скорости в зависимости от времени.
В предпочтительном варианте реализации крепежные элементы выполнены в виде направляющих жидкость блоков, снабженных лопатками. За счет этого минимизируются потери в потоке.
В усовершенствованном варианте реализации изобретения предусматривается размещение на переднем торце вкладыша ротора приспособлений, которые обеспечивают радиальное движение жидкости, находящейся в зазоре вкладыша между направляющим жидкость блоком и нагнетательным элементом, к внешней стороне, этому могут, например, служить радиальные лопатки, пазы, выпуклости или вогнутости.
Еще один усовершенствованный вариант реализации изобретения заключается в том, что просверливается продольный канал в, по крайней мере, одном из направляющих жидкость блоков, сквозь который проходит перекачиваемая жидкость, и который служит для того, чтобы жидкость, скапливающаяся в зазоре вкладыша между направляющим жидкость блоком и нагнетательным элементом, переносилась радиально к внешней стороне.
Оба вышеупомянутых варианта конструкции влияют на распределение радиального давления и порождают компенсационные потоки для предотвращения возникновения областей стоячей воды в зазоре вкладыша между передними гранями направляющего жидкость блока и нагнетательным элементом.
В еще одном усовершенствованном варианте реализации изобретения нагнетательный элемент, особенно роторный вкладыш, имеет спаренные лопатки, разнесенные в осевом направлении. При этом образуется так называемая тандемная решетка. Повышение давления, которое производится каждым рядом лопаток, существенно понижается. Кроме того, подобное специфическое устройство ротора нагнетательного элемента дополнительно ограничивает его нежелательные боковое перемещение.
Изобретения детально иллюстрируется посредством примера со ссылками на конкретные чертежи.
Фиг.1 показывает насос в разрезе по продольной оси;
Фиг.2 показывает продольный разрез осевого перекачивающего устройства с магнитной подвеской и с датчиками осевой стабилизации и контроля за взаимным положением элементов устройства;
Фиг.2а показывает поперечный разрез по линии А-А осевого перекачивающего устройства по фиг.2;
Фиг.2b показывает продольный разрез осевого перекачивающего устройства с магнитной подвеской;
Фиг.2с показывает поперечный разрез по линии А-А осевого перекачивающего устройства по фиг.2b;
Фиг.2d показывает продольный разрез осевого перекачивающего устройства с коническим нагнетательным элементом;
Фиг.3а показывает магнитную подвеску для осевого перекачивающего устройства;
Фиг.3b показывает поперечный разрез магнитной подвески по фиг.3а;
Фиг.4 показывает нагнетательный элемент со спаренными лопатками;
Фиг.5 показывает направляющий блок для жидкости с датчиком контроля за положением и с элементом магнитной подвески на основе постоянных магнитов;
Фиг.5а показывает поперечный разрез по линии В-В направляющего блока для жидкости по фиг.5;
Фиг.6а показывает схематический вид спереди торца роторного вкладыша или вкладышей;
Фиг.6b показывает схематический вид спереди торца другого варианта роторного вкладыша или вкладышей;
Фиг.6с показывает схематический вид спереди торца роторного вкладыша с эксцентрично расположенным выступом;
Фиг.7 показывает схематический разрез зазора вкладыша, образованного между нагнетательным элементом и вкладышем направляющего элемента;
Фиг.7а показывает схематический разрез зазора вкладыша, образованного между нагнетательным элементом и вкладышем направляющего элемента; и
Фиг.8 показывает схематический разрез вкладыша с осевым каналом.
На фиг.1 показан экспериментальный вариант заявляемой конструкции кровяного насоса, включающего кожух 3 насоса и кожух 2 стабилизатора. Статор 31 мотора с обмотками 33 расположен с внешней стороны и вокруг трубчатого полого корпуса 1, в котором осуществляется осевая перекачка жидкости. Статор 31 мотора приводит в движение нагнетательный элемент 5, включающий ротор 32 мотора и роторный вкладыш 52, и который подвешен внутри трубчатого полого корпуса 1. Роторный вкладыш 52 снабжен роторными лопатками 53. На внутренней стенке трубчатого полого корпуса 1 смонтированы направляющие блоки 7, 7', снабженные лопатками 72, 72' и расположенные по ходу потока спереди и сзади роторного вкладыша. Между направляющими блоками 7, 7' и роторным вкладышем 52 образован так называемый зазор 9. Ротор 32, совмещенный с роторным вкладышем 52, может вращаться под влиянием статора 31.
В процессе функционирования кровяного насоса перекачиваемая кровь поступает через колено 6 к нагнетательному элементу 5 и там захватывается роторными лопатками 53, при этом роторный вкладыш 52 служит для создания благоприятных динамических условий для потока. Технически приемлемый поток в направлении роторных лопаток 53 обеспечивается за счет направляющего блока 7', снабженного лопатками 72', жестко связанными с полым корпусом 1. Датчик 60 давления позволяет замерять давление в поступающей жидкости. Нагнетательный элемент 5 приводится в движение известным способом, а именно, за счет индуктивной связи ротора 32 со статором 31. Формирование тромбов в крови сведено к минимуму за счет использования магнитной подвески, поскольку никакие элементы подвески не размещаются в потоке, что, в противном случае, могло бы создавать неблагоприятные области. Завихрения и связанные с ними потери потока появляются лишь в малой степени. Роторный зазор 8 между роторным вкладышем 52 и внутренней стенкой полого корпуса 1 имеет в этом случае размеры, которые обеспечивают малую величину потерь потока и, в то же время, сокращают моторные потери, которые увеличиваются с увеличением расстояния между ротором 32 и статором 31. Ширина роторного зазора 8 в пределах 0,5-2,5 мм оказалась наиболее эффективной. После того как жидкость получила ускорение посредством роторных лопаток 53 роторного вкладыша 52, и связанное с этим давление возросло, жидкость поступает в направляющий блок 7, где она испытывает воздействие в осевом направлении, а давление еще более возрастает. Из-за особенностей конструкции лопаток 72 направляющего жидкость блока 7 обеспечивается гарантия того, что отклонение жидкости в осевом направлении осуществляется деликатно и, в основном, без завихрений.
Кровь выходит из кровяного насоса через колено 6' и поступает в шунт 62 аорты, который прикрепляется посредством съемного соединительного элемента (муфты) 63 к колену. Специфически экранированный оболочкой 11а кабель, включающий линии питания и передачи сигналов для статора 31, осевой стабилизатор 12 и сенсорный механизм, состоящий из датчиков 60, 61 и 43, связан через муфту 11 кабеля с кровяным насосом. Функционирование магнитной подвески представлено на фиг.2 и 2а.
Фиг.2 и фиг.2а показывают, соответственно, продольный и поперечный разрезы усовершенствованного варианта конструкции кровяного насоса, снабженного роторным вкладышем 52, поддерживаемым магнитной подвеской. Ротор 32 встроен в роторный вкладыш 52, при этом ротор 32 содержит элементы 42 магнитной подвески, которые размещены на его торцах, и закреплен в крепежном элементе 4. В направляющих жидкость блоках 7, 7' элементы 41 магнитной подвески размещены непосредственно напротив элементов 42 магнитной подвески. В данном случае, элементы 41 и 42 магнитной подвески имеют противоположную полярность. Направленная по оси сила притяжения элементов 41, 42 магнитной подвески обеспечивает стабильное расположение нагнетательного элемента 5 по оси трубчатого полого корпуса 1 и коррекцию радиальных отклонений. Позиционные датчики 43, также расположенные в направляющих жидкость блоках 7 и 7', определяют ширину зазора 9 вкладыша, а также измеряют и корректируют этот зазор с помощью осевого стабилизатора 12. Осевой стабилизатор 12 размещен в кожухе 2. Осевые стабилизаторы 12, выполненные в виде обмоток, порождают, когда подвод тока включен, магнитное поле, которое передается через кожух 2 стабилизатора и направляющие элементы 10 таким образом, что нагнетательный элемент 5 занимает устойчивое осевое положение между направляющими блоками 7 и 7'. На торцах направляющих блоков 7 и 7', а также на внешней стенке трубчатого полого корпуса 1 размещаются датчики 60 давления и датчик потока 61 для определения параметров потока. Нагнетательный элемент 5, включающий ротор 32 и элементы 42 магнитной подвески, а также роторные лопатки 53, вращается под воздействием статора 31 мотора. Радиальные отклонения в процессе вращения сглаживаются за счет противоположно поляризованных элементов магнитной подвески, в то время как осевая стабилизация обеспечивается датчиками 43 и осевым стабилизатором 12. Концентрация основной массы элементов 42 магнитной подвески в районе оси нагнетательного элемента 5 обеспечивает возможность пульсационного действия насоса, например, посредством быстрого изменения угловой скорости ротора.
Элементы 41 и 42 магнитной подвески альтернативно выполняются в форме кольцевого постоянного магнита с осевой поляризацией вместо цилиндра. Любые, известные специалисту, варианты конструкции, могут использоваться для конструкции элементов 41 и 42 магнитной подвески.
Для стабилизации осевого положения нагнетательного элемента 5 и роторного вкладыша, соответственно, предусмотрен осевой стабилизатор 12, выполненный, как представлено на данном примере; стабилизатор 12 взаимодействует с позиционными датчиками 43 и оказывает воздействие, через направляющие поток блоки 7 и 7', на торцевые поверхности нагнетательного элемента 5, соответственно; при этом он использует цепь электронного управления, не представленную в этом случае. Осевой стабилизатор 12 осуществляет активное управление осевым положением нагнетательного элемента 5, при этом на обмотки стабилизатора оказывают воздействие токи согласно сигналам управления и порождают в то же самое время магнитный поток, который накладывается на осевой магнитный поток элементов магнитной подвески и служит для регулировки осевого смещения. Позиционные датчики 43 определяют отклонения от желательного осевого положения нагнетательного элемента 5 и передают эту информацию в цепь управления.
На фиг.2b и фиг.2с показаны продольный и поперечный разрезы усовершенствованного варианта конструкции заявляемого устройства. Элементы крепежа 75 установлены спереди и сзади нагнетательного элемента 5 при взгляде направлении потока, они состоят из вкладыша 73, установленного с помощью опор 74 на внутренней стенке трубчатого полого корпуса 1. Опоры 74 размещены, например в данном случае, вокруг вкладыша 73 с разносом в 90°. В принципе, одной опоры 74 было бы также достаточно. Элемент крепежа 75 служит, по существу, для крепления элементов 41 магнитной подвески. Противостоящие элементы 41 и 42 магнитной подвески в этом случае также имеют противоположную полярность. Для осевой стабилизации осевого стабилизатора 12 используется позиционный датчик 43 и электронное управление (не показано).
В усовершенствованном варианте конструкции (см. фиг.2d) нагнетательный элемент 5 и направляющий блок 7 выполнены коническими. Конический ротор 80 нагнетательного элемента 5 утолщается в направлении потока и переходит, продлеваясь далее конически, в конусообразный направляющий блок 81. Элементы 41 и 42 магнитной подвески имеют противоположную полярность. Осевая стабилизация также осуществляется посредством позиционных датчиков 43, сопряженных с осевым стабилизатором 12.
Фиг.3а и 3b детально демонстрируют, соответственно, продольный поперечный разрезы экспериментального образца элементов 75 и 74 магнитной подвески.
На фиг.4 показан нагнетательный элемент 5 с роторным вкладышем 52 размещенный вокруг спаренных роторных лопаток 53 и 53'. Установка двух и более роторных лопаток 53 позволяет повысить эффективность лопаток нагнетательного элемента 5.
На фиг.5 и фиг.5а представлены, соответственно, продольный и поперечный разрезы, направляющего поток блока 7 или 7', соответственно, в котором элемент 41 магнитной подвески из постоянных магнитов окружен датчиком 43 контроля за положением.
Конструктивные решения, которые влияют на радиальное распределение давления и создают компенсирующие потоки, предотвращающие образование областей застоя жидкости в районе вкладыша 52 ротора, то есть в зазоре 7 вкладыша между передними гранями направляющих поток блоков 7 и 7' и нагнетающим элементом 5, показаны на фиг.6а, 6b, 6 с, 7 и 7а. Согласно фиг.6а ребро 723, расположенное радиально от центра к внешней стороне, выполнено на передней грани 722 направляющего поток блока 7, 7'.
Согласно фиг.6b ребро 724 выполнено изогнутым. Вместо таких ребер на верхнем торце 722 могут быть предусмотрены также впадины и/или выпуклости, радиальные лопатки, микро-лопатки, ребра, углубления и эксцентрично расположенные выступы 725 (фиг.6с) любой формы или даже просто шероховатость верхнего торца. Важно только, что это позволяет перекачиваемой жидкости вытекать из зазора 9 вкладыша (сравни с фиг.8) при вращении нагнетательного элемента 5. Этот способ может, конечно, быть применен также к конструкции переднего торца вкладыша 52 ротора.
Представленное на фиг.7 решение дает дополнительное преимущество в виде уменьшения возможности сцепления поверхностей в случае перебоев в работе системы осевой стабилизации.
В фиг.8 вкладыш 73 имеет осевой канал 726, сквозь который проходит перекачиваемая жидкость и который обеспечивает, чтобы жидкость, остающаяся в зазоре 9 вкладыша, тоже перекачивалась в радиальном направлении.
Следует подчеркнуть, что описанная в изобретении магнитная подвеска не обязательно ограничивается цилиндрическими формами магнитов. Другие геометрические формы элементов 41 и 42 магнитной подвески на постоянных магнитах также возможно применять.
Список ссылочных номеров
1 - Трубчатый полый корпус
2 - Кожух стабилизатора
3 - Кожух насоса
4 - Крепежный элемент
5 - Нагнетательный элемент
6 - Колено
6' - Колено
7 - Направляющий блок для потока
7' - Направляющий блок для потока
8 - Зазор ротора (роторный зазор)
9 - Зазор вкладыша
10 - Элемент направляющего блока для потока
11 - Оболочка кабеля
11a - Кабель
12 - Осевой стабилизатор
31 - Статор мотора
32 - Ротор мотора
33 - Обмотка статора
41 - Элемент подвески в виде постоянного магнита
42 - Элемент подвески в виде постоянного магнита
43 - Датчик положения
52 - Вкладыш ротора
53 - Лопатки ротора
60 - Датчик давления
61 - Датчик потока
62 - Шунт аорты
63 - Соединительный элемент
72 - Лопатки статора
72' - Лопатки статора
73 - Вкладыш
74 - Опора (суппорт)
75 - Направляющий блок (крепеж)
76 - Крышка вкладыша
722 - Торцевая поверхность
723 - Ребро
724 - Ребро
725 - Выступ
726 - Канал
80 - Конический ротор
81 - Конический направляющий блок

Claims (9)

1. Устройство для перекачивания крови, состоящее из трубчатого, полого корпуса, направляющего жидкость вдоль оси, в котором имеется нагнетательный элемент, приводимый во вращательное движение статором мотора, размещенным с наружной стороны полого корпуса, при этом нагнетательный элемент ориентирован вдоль оси, в котором кровь имеет возможность перетекать через роторный зазор между нагнетательным элементом и полым корпусом, и в котором по одному направляющему блоку установлено спереди и позади нагнетательного элемента соответственно, отличающееся тем, что нагнетательный элемент подвешен бесконтактным способом между направляющими блоками, каждый из которых разделен зазором вкладыша, посредством элементов магнитной подвески, размещенных в направляющих блоках и в нагнетательном элементе непосредственно против друг друга и имеющих возможность совместного функционирования, при этом элементы магнитной подвески намагничены в осевом направлении и с противоположной полярностью, а позиционные датчики для определения положения и стабилизаторы (12) для коррекции положения нагнетательного элемента размещены в направляющих блоках и на или в стенках полого корпуса.
2. Устройство по п.1, отличающееся тем, что контролирующие параметры потока датчики давления и потока размещены в направляющих блоках и/или на или в стенке полого корпуса.
3. Устройство по п.1 или 2, отличающееся тем, что элементы магнитной подвески снабжены направляющими поток элементами, которые размещены в направляющих блоках.
4. Устройство по одному из пп.1-3, отличающееся тем, что направляющие блоки выполнены в форме блоков, направляющих поток жидкости, и снабжены жидкостными лопатками.
5. Устройство по одному из пп.1-4, отличающееся тем, что торцевые поверхности направляющих блоков, обращенные к нагнетательному элементу, и/или торцевые поверхности нагнетательного элемента снабжены ребрами, лопатками, пазами, выпуклостями и/или вогнутостями или эксцентрично расположенными выступами.
6. Устройство по одному из пп.1-5, отличающееся тем, что в, по крайней мере, одном из направляющих блоков имеется продольный, ориентированный в осевом направлении, канал.
7. Устройство по одному из п.1 или 5, отличающееся тем, что роторный вкладыш нагнетательного элемента снабжен двумя роторными лопатками, разнесенными по оси.
8. Устройство по одному из п.1, 5 или 7, отличающееся тем, что роторный вкладыш и вкладыши выполнены в виде цилиндров, а вкладыши закрываются крышками с торцов, противоположных нагнетательному элементу.
9. Устройство по одному из п.1, 5 или 7, отличающееся тем, что нагнетательный элемент (5) и направляющие выполнены с утолщением или утончением в направлении потока.
RU2001131346/14A 1999-04-20 2000-04-19 Устройство для перекачки однофазных или многофазных жидкостей без изменения их свойств RU2266141C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19918841.6 1999-04-20
DE19918841 1999-04-20
DE19944863A DE19944863A1 (de) 1999-09-18 1999-09-18 Magnetlager
PCT/EP2000/003563 WO2000064030A1 (de) 1999-04-20 2000-04-19 Vorrichtung zur schonenden förderung von ein- oder mehrphasigen fluiden

Publications (2)

Publication Number Publication Date
RU2001131346A RU2001131346A (ru) 2003-08-10
RU2266141C2 true RU2266141C2 (ru) 2005-12-20

Family

ID=26053083

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001131346/14A RU2266141C2 (ru) 1999-04-20 2000-04-19 Устройство для перекачки однофазных или многофазных жидкостей без изменения их свойств

Country Status (9)

Country Link
US (1) US6742999B1 (ru)
EP (1) EP1208630B1 (ru)
JP (1) JP3610305B2 (ru)
CN (1) CN1245793C (ru)
AT (1) ATE256931T1 (ru)
AU (1) AU757839B2 (ru)
CA (1) CA2369955C (ru)
RU (1) RU2266141C2 (ru)
WO (1) WO2000064030A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2562912C2 (ru) * 2011-03-23 2015-09-10 Нуово Пиньоне С.п.А. Упругая коническая часть для герметично уплотненного статора, соответствующий двигатель и способ изготовления
RU2629054C1 (ru) * 2016-08-10 2017-08-24 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Осевой насос вспомогательного кровообращения
RU2637605C1 (ru) * 2016-11-09 2017-12-05 Алексей Васильевич Коротеев Микроаксиальный насос поддержки кровообращения (варианты)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108810A1 (de) 2001-02-16 2002-08-29 Berlin Heart Ag Vorrichtung zur axialen Förderung von Flüssigkeiten
DE10164942B4 (de) * 2001-02-16 2014-04-30 Berlin Heart Gmbh Vorrichtung zur axialen Förderung von Körperflüssigkeiten
AU2006230718B2 (en) * 2001-02-16 2008-09-25 Berlin Heart Gmbh Device for axially conveying body fluids
DE10108815B4 (de) 2001-02-16 2006-03-16 Berlin Heart Ag Vorrichtung zur axialen Förderung von Körperflüssigkeiten
DE10123139B4 (de) * 2001-04-30 2005-08-11 Berlin Heart Ag Verfahren zur Regelung einer Unterstützungspumpe für Fluidfördersysteme mit pulsatilem Druck
DE10123138B4 (de) * 2001-04-30 2007-09-27 Berlin Heart Ag Verfahren zur Lageregelung eines permanentmagnetisch gelagerten rotierenden Bauteils
DE10216421A1 (de) 2002-04-12 2003-10-30 Forschungszentrum Juelich Gmbh Magnetführungseinrichtung
JP4108054B2 (ja) 2003-04-30 2008-06-25 三菱重工業株式会社 人工心臓ポンプ
US20040241019A1 (en) * 2003-05-28 2004-12-02 Michael Goldowsky Passive non-contacting smart bearing suspension for turbo blood-pumps
US7320676B2 (en) * 2003-10-02 2008-01-22 Medtronic, Inc. Pressure sensing in implantable medical devices
US9033920B2 (en) * 2003-10-02 2015-05-19 Medtronic, Inc. Determining catheter status
US8323244B2 (en) * 2007-03-30 2012-12-04 Medtronic, Inc. Catheter malfunction determinations using physiologic pressure
US9138537B2 (en) 2003-10-02 2015-09-22 Medtronic, Inc. Determining catheter status
US8419609B2 (en) 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device
NL1028471C2 (nl) * 2005-03-07 2006-09-11 Hemodynamics Holding B V Pomp voor kwetsbaar fluïdum, gebruik van dergelijke pomp voor pompen van bloed.
JP4209412B2 (ja) 2005-09-13 2009-01-14 三菱重工業株式会社 人工心臓ポンプ
WO2007105842A1 (en) * 2006-03-15 2007-09-20 Korea University Industrial & Academic Collaboration Foundation Rotary blood pump
WO2007123764A2 (en) 2006-04-06 2007-11-01 Medtronic, Inc. Systems and methods of identifying catheter malfunctions using pressure sensing
KR100805268B1 (ko) 2006-04-18 2008-02-25 고려대학교 산학협력단 회전식 혈액펌프
JP4898319B2 (ja) * 2006-06-23 2012-03-14 テルモ株式会社 血液ポンプ装置
EP2131888B1 (en) 2007-02-26 2017-04-05 HeartWare, Inc. Intravascular ventricular assist device
US9044537B2 (en) 2007-03-30 2015-06-02 Medtronic, Inc. Devices and methods for detecting catheter complications
JP4523961B2 (ja) * 2007-11-26 2010-08-11 三菱重工業株式会社 人工心臓ポンプ
JP4611364B2 (ja) * 2007-11-26 2011-01-12 三菱重工業株式会社 人工心臓ポンプ
US20100222635A1 (en) * 2009-02-27 2010-09-02 Thoratec Corporation Maximizing blood pump flow while avoiding left ventricle collapse
US20100222878A1 (en) * 2009-02-27 2010-09-02 Thoratec Corporation Blood pump system with arterial pressure monitoring
US8449444B2 (en) * 2009-02-27 2013-05-28 Thoratec Corporation Blood flow meter
US20100222633A1 (en) * 2009-02-27 2010-09-02 Victor Poirier Blood pump system with controlled weaning
US8562507B2 (en) 2009-02-27 2013-10-22 Thoratec Corporation Prevention of aortic valve fusion
EP2319552B1 (de) 2009-11-06 2014-01-08 Berlin Heart GmbH Blutpumpe
US9662431B2 (en) 2010-02-17 2017-05-30 Flow Forward Medical, Inc. Blood pump systems and methods
US9555174B2 (en) 2010-02-17 2017-01-31 Flow Forward Medical, Inc. Blood pump systems and methods
KR101963799B1 (ko) 2010-02-17 2019-03-29 플로우 포워드 메디컬, 인크. 정맥의 전체 직경을 증가시키는 방법 및 시스템
WO2012040551A1 (en) 2010-09-24 2012-03-29 Thoratec Corporation Generating artificial pulse
EP2618862B1 (en) 2010-09-24 2016-07-27 Thoratec Corporation Control of circulatory assist systems
US9308304B2 (en) 2011-05-05 2016-04-12 Berlin Heart Gmbh Blood pump
JP6106673B2 (ja) 2011-08-17 2017-04-05 フロー フォワード メディカル,インク. 静脈と動脈の全体直径を増大させるシステムと方法
KR102062132B1 (ko) 2011-08-17 2020-01-03 플로우 포워드 메디컬, 인크. 혈액 펌프 시스템 및 방법
US10258730B2 (en) 2012-08-17 2019-04-16 Flow Forward Medical, Inc. Blood pump systems and methods
CN103195758B (zh) * 2013-04-07 2015-06-10 江苏大学 一种用于轴流泵叶轮进口横截面piv流场测量的进口装置
US10111994B2 (en) 2013-05-14 2018-10-30 Heartware, Inc. Blood pump with separate mixed-flow and axial-flow impeller stages and multi-stage stators
DE102013211848A1 (de) 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pumpengehäuse aus mindestens zwei unterschiedlichen versinterbaren Materialien
DE102013211844A1 (de) * 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pumpengehäuse aus einem magnetischen und einem nichtmagnetischen Material
DE102014004121A1 (de) 2014-03-24 2015-09-24 Heraeus Deutschland GmbH & Co. KG Pumpengehäuse aus mindestens drei unterschiedlichen versinterbaren Materialien
EP3131596B1 (en) 2014-04-15 2020-07-22 Tc1 Llc Methods and systems for controlling a blood pump
EP3115069A1 (de) 2015-07-07 2017-01-11 Berlin Heart GmbH Vorrichtung zur positionsbestimmung eines beweglichen bauteils
EP3448487A4 (en) 2016-04-29 2020-04-29 Flow Forward Medical, Inc. PIPING TIPS AND SYSTEMS AND METHODS FOR USE
WO2017196271A1 (en) 2016-05-13 2017-11-16 Koc Universitesi Internal axial flow blood pump with passive magnets and hydrodynamic radial bearing
CN107013470B (zh) * 2017-06-05 2019-02-05 兰州理工大学 一种轴流泵
US11672968B2 (en) 2017-08-11 2023-06-13 Carnegie Mellon University Blood-immersed bearing system for a blood pump
FR3071282B1 (fr) * 2017-09-21 2022-04-08 Fineheart Turbine a pales internes
CN107546440A (zh) * 2017-09-25 2018-01-05 青岛金立磁性材料有限公司 一种用于电动大巴电池组冷却的塑磁转子组
EP3574932A1 (de) * 2018-05-28 2019-12-04 Berlin Heart GmbH Blutpumpe
JP2020128745A (ja) * 2019-02-01 2020-08-27 ホワイト ナイト フルイド ハンドリング インコーポレーテッドWhite Knight Fluid Handling Inc. ロータを支承し、当該ロータを磁気的に軸線方向に位置決めするための磁石を有するポンプ、及びこれに関連する方法
FR3126565A1 (fr) * 2021-08-30 2023-03-03 Fondation Hôpital Saint Joseph Ensemble comprenant une pompe centrifuge portative et un moteur electromagnetique

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512851A (en) 1968-12-11 1970-05-19 Halliburton Co Magnetic bearing
US3623835A (en) * 1969-06-11 1971-11-30 Halliburton Co Gas flowmeter
US3614181A (en) 1970-07-02 1971-10-19 Us Air Force Magnetic bearing for combined radial and thrust loads
DE2337226A1 (de) 1973-07-21 1975-02-06 Maschf Augsburg Nuernberg Ag Vakuumpumpe mit einem im innenraum ihres gehaeuses gelagerten laeufer
DE2444099C3 (de) 1974-09-14 1979-04-12 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Berührungsloses Lagerelement für mindestens teilweise magnetisierbare Körper
DE2919236C2 (de) * 1979-05-12 1982-08-12 Kernforschungsanlage Jülich GmbH, 5170 Jülich Magnetisches Schwebelager für einen Rotor
GB2057590B (en) * 1979-07-02 1983-11-02 United Gas Industries Ltd Magnetic balancing of bearings
US4688998A (en) 1981-03-18 1987-08-25 Olsen Don B Magnetically suspended and rotated impellor pump apparatus and method
US5078741A (en) 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
JPS59228848A (ja) * 1983-06-10 1984-12-22 三菱プレシジヨン株式会社 人工心臓
DE3343186A1 (de) * 1983-11-29 1985-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Magnetische rotorlagerung
US4643641A (en) * 1984-09-10 1987-02-17 Mici Limited Partnership Iv Method and apparatus for sterilization of a centrifugal pump
US4779614A (en) * 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
DE3715216A1 (de) 1987-05-07 1988-11-17 Doll Robert Tauchpumpe, insbesondere fuer tiefsiedende fluessigkeiten
DE3808331A1 (de) 1988-03-12 1989-09-28 Kernforschungsanlage Juelich Magnetische lagerung mit permanentmagneten zur aufnahme der radialen lagerkraefte
US4957504A (en) 1988-12-02 1990-09-18 Chardack William M Implantable blood pump
US5180287A (en) * 1990-03-15 1993-01-19 Abbott Laboratories Method for monitoring fluid flow from a volumetric pump
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
US5112200A (en) 1990-05-29 1992-05-12 Nu-Tech Industries, Inc. Hydrodynamically suspended rotor axial flow blood pump
US5947892A (en) * 1993-11-10 1999-09-07 Micromed Technology, Inc. Rotary blood pump
US5635784A (en) * 1995-02-13 1997-06-03 Seale; Joseph B. Bearingless ultrasound-sweep rotor
US5707218A (en) * 1995-04-19 1998-01-13 Nimbus, Inc. Implantable electric axial-flow blood pump with blood cooled bearing
US5695471A (en) 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
US6015272A (en) * 1996-06-26 2000-01-18 University Of Pittsburgh Magnetically suspended miniature fluid pump and method of designing the same
US6053705A (en) 1996-09-10 2000-04-25 Sulzer Electronics Ag Rotary pump and process to operate it
EP0951302B8 (en) * 1996-10-04 2006-04-19 United States Surgical Corporation Circulatory support system
DE19654834A1 (de) * 1996-12-23 1998-07-09 Peter Dr Ing Nuesser Vorrichtung zur schonenden Förderung von ein- und mehrphasigen Fluiden
JP3777490B2 (ja) 1997-01-31 2006-05-24 株式会社荏原製作所 送液装置及びその制御方法
US6201329B1 (en) * 1997-10-27 2001-03-13 Mohawk Innovative Technology, Inc. Pump having magnetic bearing for pumping blood and the like
US5928131A (en) * 1997-11-26 1999-07-27 Vascor, Inc. Magnetically suspended fluid pump and control system
AU4297800A (en) * 1999-04-20 2000-11-02 Forschungszentrum Julich Gmbh Rotor device
US6527699B1 (en) * 2000-06-02 2003-03-04 Michael P. Goldowsky Magnetic suspension blood pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2562912C2 (ru) * 2011-03-23 2015-09-10 Нуово Пиньоне С.п.А. Упругая коническая часть для герметично уплотненного статора, соответствующий двигатель и способ изготовления
US9577494B2 (en) 2011-03-23 2017-02-21 Nuovo Pignone Spa Elastic cone for sealing and method
RU2629054C1 (ru) * 2016-08-10 2017-08-24 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Осевой насос вспомогательного кровообращения
RU2637605C1 (ru) * 2016-11-09 2017-12-05 Алексей Васильевич Коротеев Микроаксиальный насос поддержки кровообращения (варианты)

Also Published As

Publication number Publication date
AU757839B2 (en) 2003-03-06
CA2369955A1 (en) 2000-10-26
EP1208630A1 (de) 2002-05-29
CN1245793C (zh) 2006-03-15
EP1208630B1 (de) 2003-12-17
RU2001131346A (ru) 2003-08-10
CA2369955C (en) 2005-10-18
CN1348624A (zh) 2002-05-08
AU4553400A (en) 2000-11-02
WO2000064030A1 (de) 2000-10-26
ATE256931T1 (de) 2004-01-15
US6742999B1 (en) 2004-06-01
JP2003525069A (ja) 2003-08-26
JP3610305B2 (ja) 2005-01-12

Similar Documents

Publication Publication Date Title
RU2266141C2 (ru) Устройство для перекачки однофазных или многофазных жидкостей без изменения их свойств
US10973967B2 (en) Bearingless implantable blood pump
US10702641B2 (en) Ventricular assist devices having a hollow rotor and methods of use
AU735578B2 (en) Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
US9675741B2 (en) Implantable blood pump
JP3570726B2 (ja) 血管内血液ポンプ
US7229258B2 (en) Streamlined unobstructed one-pass axial-flow pump
JP2004522894A (ja) 液体の軸方向搬送のための装置
US6302661B1 (en) Electromagnetically suspended and rotated centrifugal pumping apparatus and method
US7972122B2 (en) Multiple rotor, wide blade, axial flow pump
KR20000010736A (ko) 전자기적으로 서스펜젼기능이 이루어지고 회전되는원심펌핑장치 및 방법
WO2019019206A1 (zh) 一种轴向反馈控制磁悬浮轴流血泵
WO2006053384A1 (en) Fluid pump
US11754076B2 (en) Magnetic coupling suspension pump
JP2003525708A (ja) 血液ポンプ
US11786719B2 (en) Rotary blood pump
JP2004072879A (ja) アキシャル磁気浮上回転モータおよびこれを用いた回転機器
Shinshi Ventricular Assist Devices Utilizing Magnetic Bearing Systems
AU8152801A (en) Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method

Legal Events

Date Code Title Description
FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20040810

PC4A Invention patent assignment

Effective date: 20060621

TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 35-2005 FOR TAG: (72)

PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170420