RU2261935C2 - Способ обработки изделия с равноосной структурой из жаропрочного сплава - Google Patents

Способ обработки изделия с равноосной структурой из жаропрочного сплава Download PDF

Info

Publication number
RU2261935C2
RU2261935C2 RU2003137754/02A RU2003137754A RU2261935C2 RU 2261935 C2 RU2261935 C2 RU 2261935C2 RU 2003137754/02 A RU2003137754/02 A RU 2003137754/02A RU 2003137754 A RU2003137754 A RU 2003137754A RU 2261935 C2 RU2261935 C2 RU 2261935C2
Authority
RU
Russia
Prior art keywords
heat
coating
resistant
alloy
article
Prior art date
Application number
RU2003137754/02A
Other languages
English (en)
Other versions
RU2003137754A (ru
Inventor
С.А. Будиновский (RU)
С.А. Будиновский
Е.Н. Каблов (RU)
Е.Н. Каблов
дж н С.А. Мубо (RU)
С.А. Мубояджян
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority to RU2003137754/02A priority Critical patent/RU2261935C2/ru
Publication of RU2003137754A publication Critical patent/RU2003137754A/ru
Application granted granted Critical
Publication of RU2261935C2 publication Critical patent/RU2261935C2/ru

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к области металлургии, в частности к способу обработки изделия с равноосной структурой из жаропрочного сплава, и может найти применение в авиационном и энергетическом машиностроении при изготовлении деталей горячего тракта газотурбинных двигателей. Наносят покрытие из жаропрочного никелевого сплава для монокристального литья на изделие с равноосной структурой из жаропрочного никелевого сплава. Проводят упрочнение путем первой вакуумной термообработки изделия с полученным покрытием в диапазоне температур от температуры отжига до температуры растворения упрочняющей γ'-фазы жаропрочного сплава изделия. После этого подвергают пластической деформации поверхность изделия с нанесенным покрытием. Затем осуществляют вторую вакуумную термообработку изделия с полученным покрытием в диапазоне температур от температуры отжига до температуры растворения упрочняющей γ'-фазы жаропрочного сплава изделия. Технический результат заключается в продлении срока службы рабочих лопаток турбин из жаропрочных сплавов, не содержащих редких и дорогостоящих легирующих элементов, в снижении трудоемкости, энергоемкости и стоимости производства газотурбинных двигателей. 2 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом машиностроении при изготовлении деталей горячего тракта газотурбинных двигателей, преимущественно лопаток газовых турбин.
Известен способ обработки изделий типа лопаток турбин, при котором на поверхности пера лопаток из высокотемпературной импульсной плазмы образуют покрытие толщиной до 20 мкм, а затем проводят упрочнение поверхности виброшлифованием (патент РФ №2094486, 1997 г.).
Обработка поверхности изделий из жаропрочного сплава высокотемпературной импульсной плазмой приводит к изменениям структурно-фазового состава поверхности сплава. Измененный слой приобретает повышенные характеристики коррозионной стойкости, но имеет более низкую прочность по сравнению с жаропрочным сплавом изделий, что уменьшает величину несущего сечения изделий на толщину измененного слоя, соизмеримую с толщиной стенки пера рабочих лопаток турбин. Кроме того, малая толщина покрытия не обеспечивает длительных ресурсов работы изделий типа лопаток турбин при высоких температурах из-за диффузионного взаимодействия покрытия с жаропрочным сплавом.
Известен способ обработки изделий из жаропрочных никелевых сплавов, при котором для предотвращения разупрочнения поверхностного слоя сплава изделий при высоких температурах, в результате образования вторичной реакционной зоны под защитным покрытием, проводят вакуумную термообработку изделий по режиму, обеспечивающему выравнивание содержания легирующих элементов в дендритных осях и междендритных пространствах материала изделий (патент ЕР №1146134, 2001 г.).
Однако способ не исключает разупрочнения поверхностного слоя и уменьшения несущего сечения изделий при формировании диффузионного защитного покрытия и дальнейшего взаимодействия с жаропрочным никелевым сплавом изделий при их эксплуатации. Кроме того, для достижения результата способ требует длительной вакуумной термообработки изделий при температурах выше температуры растворения упрочняющей γ'-фазы из-за низкой скорости диффузии некоторых легирующих элементов (рения).
Известен способ обработки изделий из литейного сплава на никелевой основе с упрочняющей γ'-фазой, имеющего равноосную или направленную структуру, включающий нагрев изделия до температуры начала растворения γ'-фазы, выдержку и охлаждение с заданной скоростью [патент США №4753686, 1988 г.].
Недостаточно высокая температура плавления и растворения упрочняющей γ'-фазы ограничивают прочность и термическую стабильность сплава на никелевой основе при эксплуатации изделия в области рабочих температур и, соответственно, ресурс его работы.
Недостатками известных способов являются пониженные прочностные свойства поверхностного слоя жаропрочного сплава, уменьшение несущего сечения изделий из-за изменения элементного состава сплава изделий при образовании покрытия и в процессе дальнейшей эксплуатации из-за диффузионного взаимодействия покрытия с защищаемым сплавом.
Наиболее близким аналогом, взятым за прототип, является способ обработки изделий, включающий образование на поверхности изделий защитного покрытия, поверхностную обработку для снижения шероховатости поверхности покрытия и последующее упрочнение (патент РФ №2115763, 1998 г.).
Недостатком известного способа является низкая прочность покрытия, уменьшение площади несущего сечения деталей при эксплуатации из-за коррозии и диффузионного взаимодействия покрытия со сплавом детали, неудовлетворительная жаростойкость покрытия в области высоких температур.
Технической задачей изобретения является повышение прочности поверхностного слоя изделия с равноосной структурой из жаропрочного сплава, увеличение площади его несущего сечения, увеличение ресурса работы изделия в области высоких температур.
Технический результат достигается тем, что предложен способ обработки изделия с равноосной структурой из жаропрочного сплава, включающий нанесение на поверхность изделия покрытия с последующим упрочнением поверхности, отличающийся тем, что на поверхность изделия наносят покрытие из жаропрочного никелевого сплава для монокристального литья, а упрочнение поверхности проводят путем первой вакуумной термообработки изделия с покрытием из жаропрочного никелевого сплава для монокристального литья, последующей пластической деформации поверхности изделия, а затем второй вакуумной термообработки изделия.
Вакуумную термообработку изделия проводят в диапазоне от температуры отжига до температуры растворения упрочняющей фазы жаропрочного сплава изделия с равноосной структурой. Покрытие из жаропрочного никелевого сплава для монокристального литья наносят ионно-плазменным напылением. На покрытие из сплава для монокристального литья наносят дополнительно жаростойкое алюминидное покрытие.
Нанесение на поверхность изделия с равноосной структурой из жаропрочного сплава покрытия из сплава для монокристального литья приводит к повышению прочности поверхностного слоя изделия в результате образования на поверхности изделий покрытия и зоны диффузионного взаимодействия покрытия с основой, близких по элементному и фазовому составу жаропрочному сплаву изделия с равноосной структурой. Но в отличие от сплава основы покрытие из сплава для монокристального литья и его зона диффузионного взаимодействия с основой, в силу особенностей своего элементного состава, имеют более высокие температуры солидуса, температуры растворения упрочняющей γ'-фазы и, соответственно, прочность в области высоких температур. Легирование поверхности изделий с равноосной структурой из жаропрочного сплава элементами, повышающими его прочность, происходит в процессе вакуумных термообработок. Для интенсификации процессов диффузии после первой вакуумной термообработки проводят пластическую деформацию поверхности, например, стальными или керамическими шарами. Это стимулирует процессы роста зерна в покрытии из жаропрочного никелевого сплава для монокристального литья и диффузионного взаимодействия покрытия с жаропрочным сплавом изделий при второй вакуумной термообработке. В результате прочность покрытия возрастает, а жаропрочный сплав основы упрочняется с поверхности за счет дополнительного легирования элементами сплава покрытия, повышающими его термическую стабильность и прочность. Нанесение упрочняющего покрытия из сплава для монокристального литья на поверхность изделия с равноосной структурой из жаропрочного сплава увеличивает площадь несущего сечения изделия, исключает возможность разупрочнения поверхностного слоя основы в случае формирования жаростойкого алюминидного покрытия. Кроме того, при эксплуатации изделия с равноосной структурой в области высоких температур дальнейшая диффузия легирующих элементов, повышающих температуры солидуса сплава и растворения упрочняющей γ'-фазы, от поверхности в основу будет приводить к упрочнению внутренних слоев жаропрочного сплава и тормозить процессы коагуляции или растворения γ'-фазы, приводящих к его разупрочнению.
В результате упрочнения поверхностного слоя изделия с равноосной структурой из жаропрочного сплава, увеличения несущего сечения изделия и увеличения толщины зоны диффузионного взаимодействия покрытия из жаропрочного никелевого сплава для монокристального литья с основой при эксплуатации ресурс работы изделия в области высоких температур возрастает.
Предложенный способ может быть использован для обработки лопаток турбин из сплавов ЖС6У, ЖС6К, ВЖЛ12У, ЖС26, ЖС26У и т.д. В качестве упрочняющего покрытия могут быть использованы сплавы для монокристального литья ЖС32, ЖС36, ЖС40, ЖС47 и т.д.
Пример осуществления.
На образцы из жаропрочного никелевого сплава ЖС6У с равноосной структурой диаметром рабочей части 5 мм на установке МАП-1 по серийной технологии было нанесено ионно-плазменное покрытие из сплава ЖС36 для монокристального литья толщиной 80 мкм. Образцы с покрытием были отожжены в вакууме при температуре 1000°С в течение 4 часов. Затем поверхность образцов с покрытием была подвергнута пластической деформации путем обработки стальными шариками диаметром 4-10 мм в центробежно-ротационной установке при 250 об/мин в течение 15 мин. После удаления с поверхности образцов с покрытием из жаропрочного никелевого сплава для монокристального литья слоя шлама и загрязнений промывкой в бензине, ацетоне и опескоструивания сухим электрокорундом при давлении сжатого воздуха (4-6) атм образцы отжигались в вакууме по режиму закалки сплава ЖС6У при температуре 1210°С в течение 75 мин. Затем на часть образцов по серийной технологии на установке МАП-1 было нанесено ионно-плазменное жаростойкое алюминидное покрытие СДП-2 (NiCrAlY) толщиной 40 мкм.
Провели испытания образцов из жаропрочного сплава ЖС6У, изготовленных по данному способу, способу прототипа, а также образцов в необработанном состоянии с покрытием СДП-2 на длительную прочность при температуре испытаний 1000°С и нагрузке 170 МПа. По результатам испытаний рассчитали значение длительной прочности сплава ЖС6У на базе испытаний 100 часов при температуре 1000°С, определили среднее значение долговечности и металлографическими методами определили толщину разупрочненной зоны на поверхности основного металла образцов под покрытием. Полученные средние значения перечисленных выше характеристик представлены в таблице.
Из представленных в таблице данных видно, что изготовление образцов из жаропрочного никелевого сплава ЖС6У, имеющего равноосную структуру, по предлагаемому способу позволяет увеличить долговечность образцов в 1,5 раза, а длительную прочность на 10%. При этом толщина разупрочненного слоя уменьшается более чем в 8-10 раз.
Вид образцов из сплава ЖС6У Характеристики прочности Толщина разупрочненного слоя на поверхности образцов после испытаний при 1000°С на базе 100 ч, мкм
Длительная прочность при температуре 1000°С на базе испытаний 100 ч, МПа Долговечность образцов при температуре 1000°С и нагрузке 170 МПА
Без покрытия 165 95 150
С покрытием СДП-2 173 105 40
Изготовленные по предлагаемому способу 187 145 5
Изготовленные по предлагаемому способу, без внешнего покрытия СДП-2 181 141 10
Виброшлифовка покрытия СДП-2 до шероховатости 5(прототип) 160 90 60
Изготовление изделий с равноосной структурой из жаропрочных никелевых сплавов, преимущественно рабочих лопаток турбин, по данному способу с формированием на поверхности покрытия из жаропрочного никелевого сплава для монокристального литья практически не увеличивает массы деталей в отличие от способов повышения прочности литейных сплавов на никелевой основе, связанных с объемным легированием, что приводит к заметному росту их плотности, исключает возможность образования вторичной реакционной зоны под жаростойким покрытием, которая значительно снижает длительную прочность изделия из литейных никелевых сплавов при эксплуатации.
Изобретение может быть использовано при проведении ремонта рабочих лопаток турбин, а также для восстановления несущего сечения и геометрии поверхности пера рабочих лопаток турбин.
Применение изобретения в промышленности при изготовлении рабочих лопаток турбин в 1,5-2 раза продлит срок службы рабочих лопаток турбин из жаропрочных никелевых сплавов, не содержащих редких и дорогостоящих легирующих элементов, а также снизит трудоемкость, энергоемкость и стоимость производства ГТД.

Claims (3)

1. Способ обработки изделия с равноосной структурой из жаропрочного никелевого сплава, включающий нанесение покрытия на поверхность изделия и последующее упрочнение, отличающийся тем, что наносят покрытие из жаропрочного никелевого сплава для монокристального литья, а упрочнение проводят путем первой вакуумной термообработки изделия с полученным покрытием в диапазоне температур от температуры отжига до температуры растворения упрочняющей γ'-фазы жаропрочного сплава изделия, последующей пластической деформации поверхности изделия с нанесенным покрытием и затем второй вакуумной термообработки изделия с полученным покрытием в диапазоне температур от температуры отжига до температуры растворения упрочняющей γ'-фазы жаропрочного сплава изделия.
2. Способ по п.1, отличающийся тем, что покрытие наносят ионно-плазменным напылением.
3. Способ по любому из п.1 или 2, отличающийся тем, что на покрытие из сплава для монокристального литья дополнительно наносят алюминидное покрытие.
RU2003137754/02A 2003-12-30 2003-12-30 Способ обработки изделия с равноосной структурой из жаропрочного сплава RU2261935C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003137754/02A RU2261935C2 (ru) 2003-12-30 2003-12-30 Способ обработки изделия с равноосной структурой из жаропрочного сплава

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003137754/02A RU2261935C2 (ru) 2003-12-30 2003-12-30 Способ обработки изделия с равноосной структурой из жаропрочного сплава

Publications (2)

Publication Number Publication Date
RU2003137754A RU2003137754A (ru) 2005-06-10
RU2261935C2 true RU2261935C2 (ru) 2005-10-10

Family

ID=35833953

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003137754/02A RU2261935C2 (ru) 2003-12-30 2003-12-30 Способ обработки изделия с равноосной структурой из жаропрочного сплава

Country Status (1)

Country Link
RU (1) RU2261935C2 (ru)

Also Published As

Publication number Publication date
RU2003137754A (ru) 2005-06-10

Similar Documents

Publication Publication Date Title
US7115175B2 (en) Modified advanced high strength single crystal superalloy composition
JP5398123B2 (ja) ニッケル系合金
IL47181A (en) High temperature nicocraiy coatings
JP5787643B2 (ja) ニッケル基超合金から成る単結晶部品の製造方法
CN108468015B (zh) 一种镍基高温合金表面渗铝方法和产品及镍基高温合金表面铝铬硅固体粉末渗铝剂
US5712050A (en) Superalloy component with dispersion-containing protective coating
JP7273714B2 (ja) ニッケルをベースとする超合金、単結晶ブレード、およびターボマシン
JPH08176767A (ja) (α/β)−チタンをベースとした合金からタービン羽根を造るための方法
JPS5989745A (ja) 高温用金属コ−テイング組成物
JP2021172852A (ja) Ni基合金補修部材および該補修部材の製造方法
CN105568194A (zh) 利用稳态磁场热处理提高dz483高温合金力学性能的方法
US11268170B2 (en) Nickel-based superalloy, single-crystal blade and turbomachine
JPH11246924A (ja) Ni基単結晶超合金、その製造方法およびガスタービン部品
CN109385590A (zh) 一种单晶高温合金再结晶的控制方法
RU2261935C2 (ru) Способ обработки изделия с равноосной структурой из жаропрочного сплава
JP2003034853A (ja) Ni基合金の熱処理方法
JPH11131206A (ja) 溶射コーティング用粉末材料及びそれを用いた高温部材
Belyaev et al. High-cycle fatigue of single crystals of nickel-base superalloy VZhM4
CN113667916B (zh) 一种深过冷处理gh605高温合金及其制备方法
US11198931B2 (en) Process for preventing recrystallization of shot peened blade roots during a heat treatment process
Belan et al. Microstructural analysis of DV–2 Ni–base superalloy turbine blade after high temperature damage
JPH05195186A (ja) 分散物を含有した保護被膜を有する超合金製品およびそれの製造方法
JP2706328B2 (ja) Ni基超耐熱合金用耐食・耐酸化コーティング時の熱処理方法
RU2230821C1 (ru) Способ термической обработки отливки из жаропрочного монокристаллического никелевого сплава
RU2230822C1 (ru) Способ упрочнения изделия из литейного сплава на никелевой основе

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180215

Effective date: 20180215