RU2260676C2 - Система гидравлического привода, нефтяная скважина и способ управления скважинным устройством - Google Patents

Система гидравлического привода, нефтяная скважина и способ управления скважинным устройством Download PDF

Info

Publication number
RU2260676C2
RU2260676C2 RU2002126206/03A RU2002126206A RU2260676C2 RU 2260676 C2 RU2260676 C2 RU 2260676C2 RU 2002126206/03 A RU2002126206/03 A RU 2002126206/03A RU 2002126206 A RU2002126206 A RU 2002126206A RU 2260676 C2 RU2260676 C2 RU 2260676C2
Authority
RU
Russia
Prior art keywords
downhole device
actuator
working fluid
pump
hydraulic
Prior art date
Application number
RU2002126206/03A
Other languages
English (en)
Other versions
RU2002126206A (ru
Inventor
Харолд Дж. ВАЙНГАР (US)
Харолд Дж. Вайнгар
Роберт Рекс БЕРНЕТТ (US)
Роберт Рекс БЕРНЕТТ
Вилль м Маунтджой СЕВЕДЖ (US)
Вилльям Маунтджой Севедж
Фредерик Гордон мл. КАРЛ (US)
Фредерик Гордон Мл. КАРЛ
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Publication of RU2002126206A publication Critical patent/RU2002126206A/ru
Application granted granted Critical
Publication of RU2260676C2 publication Critical patent/RU2260676C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/003Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings with electrically conducting or insulating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/066Valve arrangements for boreholes or wells in wells electrically actuated
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/08Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/16Control means therefor being outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Pipeline Systems (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Earth Drilling (AREA)
  • Valve Device For Special Equipments (AREA)
  • Actuator (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

Изобретения относятся к эксплуатации нефтяных скважин и могут быть использованы для подачи питания и сигналов связи в скважинное устройство. Нефтяная скважина имеет ствол с размещенной в нем трубопроводной структурой. Имеются система связи, осуществляющая передачу изменяющегося во времени сигнала вдоль трубопроводной структуры, и гидравлическая система, электрически подсоединенная к трубопроводной структуре, приспособленная для подсоединения к скважинному устройству приема питания из сигнала и управления скважинным устройством. Система связи также содержит устройство полного сопротивления, размещенное вокруг трубопроводной структуры, для образования проводящего участка, в котором обеспечивается препятствие прохождению сигнала, представляющего собой ток. Для управления скважинным устройством повышают давление рабочей жидкости, используя ток. Система гидравлического привода содержит электродвигатель для приема указанного сигнала, приводящий в действие насос для повышения давления рабочей жидкости. К насосу подсоединен привод, приводимый в действие посредством рабочей жидкости и приспособленный для крепления в рабочем состоянии к скважинному устройству для управления им. Сигнал может содержать сигнал связи для выборочного управления скважинным устройством, в частности клапаном. Изобретения позволяют уменьшить потери электрической мощности при передаче сигналов управления скважинному устройству. 3 н. и 23 з.п.ф-лы, 6 ил.

Description

Настоящее изобретение относится, в общем, к нефтяным скважинам, а более конкретно - к нефтяным скважинам, имеющим систему связи для подачи питания и сигналов связи в скважинную гидравлическую систему, которая в рабочем состоянии подсоединена к скважинному устройству для обеспечения работы скважинного устройства.
Известно несколько способов размещения электронных схем, датчиков или скважинных управляемых клапанов вдоль колонны насосно-компрессорной трубы для нефтедобычи, но все эти известные устройства обычно используют внутренний или внешний кабель, проходящий вдоль колонны насосно-компрессорных труб, для подачи питания и сигналов связи в скважину. Конечно, на практике крайне нежелательно и трудно использовать кабель вдоль колонны насосно-компрессорных труб, совмещенный с колонной насосно-компрессорных труб или расположенный в кольце между колонной насосно-компрессорных труб и обсадной колонной. Использование кабеля представляет трудности для рабочих буровых скважин при сборке и спуске колонны насосно-компрессорных труб в буровую скважину. Кроме того, кабель подвергается коррозии и сильному изнашивания из-за перемещения колонны насосно-компрессорных труб внутри буровой скважины. Пример скважинной системы связи с использованием кабеля раскрыт в заявке РСТ/ЕР 97/01621.
В патенте США № 4839644 описаны способ и система для беспроводной двухсторонней связи в обсаженной скважине, имеющей колонну насосно-компрессорных труб. Однако эта система описывает коммуникационную схему для связи энергии электромагнитного излучения типа ТЕМ с использованием кольца между обсадной колонной и насосно-компрессорной трубой. Эта индуктивная связь требует по существу непроводящего флюида, такого как сырая нефть, в кольце между обсадной колонной и насосно-компрессорной трубой. Поэтому изобретение, описанное в патенте США № 4839644, не получило широкого применения на практике в качестве схемы для скважинной двухсторонней связи.
Другая система для скважинной связи с использованием телеметрической системы регистрации импульсов давления в столбе бурового раствора описана в патентах США № 4648471 и 5887657. Хотя телеметрическую систему регистрации импульсов давления в столбе бурового раствора можно успешно использовать при низких скоростях передачи данных, она имеет ограниченную пригодность там, где требуются высокие скорости передачи данных или где нежелательно иметь сложное скважинное телеметрическое оборудование для регистрации импульсов давления в столбе бурового раствора. Другие способы связи в скважине описаны в патентах США № 4468665, 4573675, 4739325, 5130706, 5467083, 5493288, 5576703, 5574374 и 5883510. Аналогично несколько постоянных скважинных датчиков и систем управления было описано в патентах США № 4972704, 5001675, 5134285, 5278758, 5662165, 5730219, 5934371 и 5941307.
В патенте США 5257663 раскрыт способ управления пакером в скважине, включающий подачу тока вдоль трубопроводной структуры в - скважину с поверхности, повышение давления рабочей жидкости с использованием указанного тока и управление раскрытием пакера с использованием рабочей жидкости с повышенным давлением.
В других заявках настоящего заявителя описаны способы подачи электрического питания и сигналов связи в различные скважинные устройства в нефтяных скважинах. В этих способах применяются эксплуатационная насосно-компрессорная колонна в качестве питающей цепи и обсадная колонна в качестве цепи обратного тока для схемы питания и передачи сигналов связи или альтернативно обсадная колонна в качестве питающей цепи с грунтовым заземлением в качестве цепи обратного тока. В любой конфигурации электрические потери в схеме передачи сильно изменяются в зависимости от специфических условий для конкретной буровой скважины. Питание, подаваемое по обсадной колонне с помощью грунтового заземления в качестве цепи обратного тока, особенно восприимчиво к потерям тока. Утечка электрического тока, в общем, происходит через цемент завершения в пласт заземления. Чем больше проводимость цемента и пласта заземления, тем больше потери тока при протекании тока по обсадной колонне.
Поэтому существует потребность возмещения потерь питания, которые будут проявляться на практике при использовании скважинной системы беспроводной связи. Так как эти потери ограничивают величину мгновенной электрической мощности, необходимой для питания, то существует также потребность в системе и способе хранения энергии для последующего использования в скважинных устройствах, особенно в энергоемких устройствах, таких как запорные клапаны, или в другом оборудовании, обеспечивающем безопасность работ. Хотя одну из проблем скважинного хранения энергии можно решить с помощью накопления электрического заряда, например в конденсаторах, или аккумулирования энергии химическим способом, например в аккумуляторах, ограниченный срок службы таких устройств делает их использование неидеальным при эксплуатации нефтяной скважины.
Техническим результатом настоящего изобретения является решения проблем, существующих при возмещении потерь энергии вдоль пути ее передачи и при обеспечении рабочего источника мгновенной энергии в скважине.
Согласно изобретению создан способ управления скважинным устройством в нефтяной скважине, имеющей ствол скважины и трубопроводную структуру, размещенную в стволе скважины, при котором подают ток, изменяющийся во времени, вдоль трубопроводной структуры в скважину, повышают давление рабочей жидкости в скважине с использованием тока, изменяющегося во времени, управляют скважинным устройством с использованием рабочей жидкости повышенного давления и размещают вокруг трубопроводной структуры устройство полного сопротивления для образования проводящего участка трубопроводной структуры, обеспечивающего препятствие протеканию тока, изменяющегося во времени.
Способ может содержать управление электродвигателем в скважине и запуск насоса с помощью электродвигателя для повышения давления рабочей жидкости.
Управление скважинным устройством может дополнительно содержать использование привода, подсоединенного в рабочем состоянии к скважинному устройству и гидравлически подсоединенного к насосу, и выборочный запуск привода с помощью рабочей жидкости повышенного давления для приведения в действие скважинного устройства.
Выборочный запуск привода может дополнительно содержать использование вспомогательного клапана, гидравлически подсоединенного между насосом и приводом, и регулировку вспомогательного клапана для выборочного запуска привода.
Способ может дополнительно содержать хранение рабочей жидкости резервуаре и вывод рабочей жидкости из резервуара.
Способ может дополнительно содержать сбор рабочей жидкости повышенного давления в гидроаккумуляторе и выборочный выпуск рабочей жидкости повышенного давления из гидроаккумулятора для управления скважинным устройством.
Способ может дополнительно содержать сбор рабочей жидкости повышенного давления в гидроаккумуляторе, использование привода, подсоединенного в рабочем состоянии к скважинному устройству и гидравлически подсоединенного к гидроаккумулятору, выборочный выпуск рабочей жидкости повышенного давления из гидроаккумулятора для запуска привода и, таким образом, управления скважинным устройством.
Выборочный выпуск рабочей жидкости может дополнительно содержать использование вспомогательного клапана, гидравлически подсоединенного между гидроаккумулятором и приводом, и регулировку вспомогательного клапана для выборочного запуска привода.
Способ может дополнительно содержать использование привода, подсоединенного в рабочем состоянии к скважинному устройству и гидравлически подсоединенного к насосу, выборочное управление вспомогательным клапаном, гидравлически подсоединенным между насосом и приводом, для запуска привода и, таким образом, управления скважинным устройством.
В качестве скважинного устройства можно использовать главный клапан, и привод открывает и закрывает главный клапан.
Способ может дополнительно содержать сбор рабочей жидкости повышенного давления в гидроаккумуляторе, использование привода, подсоединенного в рабочем состоянии к скважинному устройству и гидравлически подсоединенного к гидроаккумулятору, выборочное управление вспомогательным клапаном, гидравлически подсоединенным между гидроаккумулятором и приводом, для запуска привода и, таким образом, управления скважинным устройством.
В качестве скважинного устройства можно использовать главный клапан, и привод открывает и закрывает главный клапан.
Согласно изобретению создана нефтяная скважина, содержащая ствол скважины, трубопроводную структуру, размещенную в стволе скважины, систему связи, соединенную в рабочем состоянии с трубопроводной структурой для передачи сигнала, изменяющегося во времени, вдоль трубопроводной структуры, и гидравлическую систему, электрически подсоединенную к трубопроводной структуре, приспособленную для подсоединения к скважинному устройству и для приема питания из сигнала, изменяющегося во времени, и для управления скважинным устройством. Система связи содержит устройство полного сопротивления, размещенное вокруг трубопроводной структуры, для образования проводящего участка, в котором обеспечивается препятствие прохождению сигнала, изменяющегося во времени, представляющего собой ток.
Сигнал, изменяющийся во времени, может включать сигнал связи для выборочного управления скважинным устройством.
Скважинным устройством может являться скважинный предохранительный отклоняющий клапан.
Гидравлическая система может дополнительно содержать электродвигатель для приема тока, изменяющегося во времени, из трубопроводной структуры, насос для выборочного повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, привод, гидравлически подсоединенный к насосу и в рабочем состоянии подсоединенный к скважинному устройству, при этом рабочая жидкость повышенного давления используется для запуска привода и, таким образом, управления скважинным устройством.
Гидравлическая система может дополнительно содержать электродвигатель для приема тока, изменяющегося во времени, из трубопроводной структуры, насос для выборочного повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, вспомогательный клапан, гидравлически подсоединенный к насосу, привод, гидравлически подсоединенный к вспомогательному клапану и в рабочем состоянии подсоединенный к скважинному устройству, при этом вспомогательный клапан приспособлен выборочно направлять рабочую жидкость повышенного давления в привод и, таким образом, запускать привод и управлять скважинным устройством. Скважинным устройством может являться клапан. Гидравлическая система может дополнительно содержать электродвигатель для приема тока, изменяющегося во времени, из трубопроводной структуры, насос для выборочного повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления, привод, гидравлически подсоединенный к вспомогательному клапану и в рабочем состоянии подсоединенный к скважинному устройству, при этом рабочая жидкость повышенного давления, подаваемая с помощью гидроаккумулятора, способна приводить в действие привод и, таким образом, управлять скважинным устройством.
Гидравлическая система может дополнительно содержать электродвигатель для приема тока, изменяющегося во времени, из трубопроводной структуры, насос для выборочного повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления, вспомогательный клапан, гидравлически подсоединенный к насосу, привод, гидравлически подсоединенный к вспомогательному клапану и в рабочем состоянии подсоединенный к скважинному устройству, при этом вспомогательный клапан приспособлен выборочно направлять рабочую жидкость повышенного давления в привод и, таким образом, запускать привод и управлять скважинным устройством.
Согласно изобретению создана также система гидравлического привода, содержащая электродвигатель, приспособленный для приема сигнала, изменяющегося во времени и подаваемого вдоль трубопроводной структуры, насос для повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, привод, гидравлически подсоединенный к насосу, приспособленный для крепления в рабочем состоянии к скважинному устройству, выборочного приведения в действие с помощью рабочей жидкости повышенного давления и, таким образом, запуска привода и управления скважинным устройством. Система содержит также устройство полного сопротивления, размещенное вокруг трубопроводной структуры для образования проводящего участка трубопроводной структуры, в котором обеспечивается препятствие прохождению сигнала, изменяющегося во времени, представляющего собой ток, и ток, изменяющийся во времени, пропускается вдоль проводящей части трубопроводной структуры, окруженной устройством полного сопротивления.
Сигнал, изменяющийся во времени, может включать сигнал связи для выборочного управления скважинным устройством.
Система может дополнительно содержать вспомогательный клапан, гидравлически подсоединенный между насосом и приводом и приспособленный выборочно направлять рабочую жидкость повышенного давления в привод.
Система может дополнительно содержит гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления.
Система может дополнительно содержать гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления, вспомогательный клапан, гидравлически подсоединенный между гидроаккумулятором и приводом и приспособленный выборочно направлять рабочую жидкость повышенного давления в привод.
Система может дополнительно содержать гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления, вспомогательный клапан, гидравлически подсоединенный между гидроаккумулятором и приводом и приспособленный выборочно направлять рабочую жидкость повышенного давления в привод, электрически изолирующую муфту, размещенную на трубопроводной структуре, при этом устройство полного сопротивления выполнено в виде индукционного дросселя, размещенного вокруг трубопроводной структуры, и ток, изменяющийся во времени, направлен вдоль трубороводной структуры между электрически изолирующей муфтой и индукционным дросселем.
Другие цели и преимущества настоящего изобретения приведены в следующем подробном описании со ссылками на сопроводительные чертежи, на которых изображено следующее:
фиг.1 изображает схему нефтяной скважины, имеющей систему беспроводной связи и гидравлическую систему согласно настоящему изобретению;
фиг.2 изображает схему морской нефтяной скважины, имеющей систему беспроводной связи и гидравлическую систему согласно настоящему изобретению;
фиг.3 изображает в увеличенном масштабе схему трубопроводной структуры нефтяной скважины, имеющей увеличенный коллектор, размещенный в гидравлической системе, согласно настоящему изобретению;
фиг.4 изображает электрическую и водопроводную схему гидравлической системы, показанной на фиг.3;
фиг.5 изображает в увеличенном масштабе схему трубопроводной структуры нефтяной скважины, имеющей увеличенный коллектор, размещенный в гидравлической системе регулировки, согласно альтернативному варианту осуществления настоящего изобретения;
фиг.6 изображает электрическую схему гидравлической системы регулировки, показанной на фиг.5.
Термин "трубопроводная структура", который используется в настоящей заявке, может представлять собой одну-единственную трубу, насосно-компрессорную трубу, обсадную колонну буровой скважины, насосную штангу, ряд взаимосвязанных труб, штанги, металлические фермы, решетки сквозной фермы, опоры, отводные или боковые удлинители буровой скважины, сеть взаимосвязанных труб или другие структуры, известные специалистам. В предпочтительном варианте осуществления изобретение используется в контексте нефтяной скважины, где трубопроводная структура содержит трубчатую, металлическую, электропроводную трубу или колонны насосно-компрессорных труб, но изобретение не ограничено этим. Для настоящего изобретения, по меньшей мере, часть трубопроводной структуры должна быть электропроводной, при этом такая электропроводная часть может представлять собой в целом трубопроводную структуру (например, стальные трубы, медные трубы) или проходящую в продольном направлении электропроводную часть, совмещенную с проходящей в продольном направлении неэлектропроводной частью. Другими словами, электропроводная трубопроводная структура представляет собой структуру, которая обеспечивает путь тока от одного участка, где источник питания электрически подсоединен к другому участку, и устройство и/или цепь обратного тока электрически связаны. Трубопроводная структура обычно представляет собой известную круглую металлическую насосно-компрессорную колонну, но геометрия в поперечном сечении трубопроводной структуры или любой ее части может меняться по форме (например, круглая, прямоугольная, квадратная, овальная) и по размеру (например, длина, диаметр, толщина стенки) вдоль любой части трубопроводной структуры.
Термин "клапан" относится к любому устройству, которое выполняет функции регулировки потока флюида. Примеры клапанов включают, но не ограничиваются, сильфонные газлифтные клапаны и управляемые газлифтные клапаны, каждый из которых можно использовать для регулировки потока транспортирующего газа в колонну насосно-компрессорных труб буровой скважины.
Внутренняя работа клапанов может в значительной степени отличаться, и в настоящей заявке не ограничиваются клапанами, описанными с любой конкретной конфигурацией, до тех пор, пока клапан выполняет функции регулировки потока. Некоторые из различных типов механизмов регулировки потока включают, но не ограничиваются, конфигурации шарового клапана, конфигурации игольчатого клапана, конфигурации запорного клапана и конфигурации клетевого клапана. Клапаны обычно подразделяются на два класса: регулирующие клапаны, предназначенные только для полного открывания или полного закрывания, при этом промежуточные положения рассматриваются переходными. Последний класс клапанов может использоваться для защиты персонала или оборудования во время профилактического технического обслуживания и ремонта или может образовывать часть системы аварийной остановки буровой скважины, в случае которого они должны быть способны работать быстро и без продолжительной подготовки. Подповерхностные предохранительные клапаны служат примером этого типа клапана. Клапаны можно устанавливать в скважинном местоположении в буровой скважине различными способами, некоторые из которых включают в себя конфигурации установки с перемещаемой насосно-компрессорной колонной, конфигурации оправки для съемного клапана или постоянные конфигурации установки, таких как установка клапана в расширенном коллекторе насосно-компрессорной колонны.
Термин "модем" используется здесь в общем для ссылки на любое устройство связи для передачи и/или приема электрических сигналов связи через электрический проводник (например, металл). Следовательно, термин "модем", который используется здесь, не ограничен акронимом для модулятора (устройства, которое преобразовывает голос или сигнал данных к виду, пригодному для передачи)/демодулятора (устройства, которое восстанавливает первоначальный сигнал, которым была промодулирована высокочастотная несущая). Кроме того, термин "модем", который используется здесь, не ограничен известными компьютерными модемами, которые преобразовывают цифровые сигналы в аналоговые сигналы и наоборот (например, для передачи цифровых информационных сигналов по аналоговой коммутируемой телефонной сети общего пользования). Например, если датчик выдает данные измерений в аналоговом формате, то такие измерения могут только модулировать (например, с использованием модуляции с расширением спектра) и передавать, и, следовательно, не нужно выполнять аналого-цифрового преобразования. В качестве другого примера, релейный/подчиненный модем или устройство связи должны только идентифицировать, фильтровать, усиливать и/или ретранслировать принимаемый сигнал.
Термин "процессор" используется в настоящей заявке для обозначения любого устройства, которое позволяет выполнять арифметические и/или логические операции. Процессор может дополнительно включать в себя блок управления, память, арифметико-логическое устройство.
Термин "датчик", который используется в настоящей заявке, относится к любому устройству, которое обнаруживает, определяет, контролирует, записывает или, другими словами, регистрирует абсолютное значение или изменение значения физической величины. Датчики, которые описаны в настоящей заявке, можно использовать для измерения температуры, давления (как абсолютного, так и дифференциального), скорости потока и сейсмических данных, акустических данных, уровня рН, уровней солености, положений клапана или других физических данных.
Термин "беспроводный", который используется в настоящей заявке, означает отсутствие известного, изолированного электрического провода, например, проходящего от скважинного устройства до поверхности. Использование насосно-компрессорной колонны и/или обсадной колонны в качестве проводника рассматривается как "беспроводное".
Термин "электронный блок" в настоящей заявке относится к устройству управления. Электронные блоки могут существовать во многих конфигурациях и их можно устанавливать в местоположении скважины различными способами. В одной конфигурации установки электронный блок фактически располагается внутри клапана и обеспечивает управление работой электродвигателя внутри клапана. Электронные блоки можно также устанавливать снаружи любого конкретного клапана. Некоторые электронные блоки будут устанавливать внутри оправки для съемного клапана или расширенных карманов насосно-компрессорных труб, хотя другие можно постоянно прикрепить к насосно-компрессорной колонне. Электронные блоки часто электрически подсоединены к датчикам и помогают при передаче информации с датчика на поверхность скважины. Вероятно, что датчики, связанные с конкретным электронным блоком, могут быть даже смонтированы в корпусе внутри электронного блока. И, наконец, электронный блок часто тесно связан с и может фактически содержать модем для приема, передачи и ретрансляции сигналов связи из и на поверхность буровой скважины. Сигналы, которые принимают с поверхности с помощью электронного блока, часто используются для осуществления изменений внутри скважинных управляемых устройств, таких как клапаны. Сигналы, посланные или ретранслированные на поверхность с помощью электронного блока, обычно содержат информацию относительно физических условий в скважине, переданных с помощью датчиков.
Аналогично, в соответствии с известной терминологией, употребляемой в практике нефтяного промысла, определения "верхний", "нижний", "вверх по стволу скважины" и "скважинный", которые используются здесь, являются относительными и касаются расстояния, измеренного вдоль ствола скважины вглубь от поверхности, которое в наклонных или горизонтальных скважинах может или нет совпадать с вертикальной проекцией, измеренной по отношению к данным наблюдений.
На фиг.1 изображена нефтяная скважина 10 согласно настоящему изобретению. Нефтяная скважина 10 включает ствол 11 скважины, проходящий с поверхности 12 в эксплуатационную зону 14, расположенную в скважине. Эксплуатационная платформа 20 расположена на поверхности 12 и включает подвеску 22 для поддержки обсадной колонны 24 и колонны 26 насосно-компрессорных труб. Тип обсадной колонны 24 является таким, который обычно используется в нефтегазовой промышленности. Обсадную колонну 24 обычно устанавливают в секции и цементируют в стволе 11 скважины во время завершения скважины. Колонна 26 насосно-компрессорных труб, которая также называется эксплуатационной насосно-компрессорной колонной, в общем, известна и содержит множество удлиненных трубчатых секций трубы, соединенных с помощью резьбовых соединений на каждом конце секций трубы. Эксплуатационная платформа 20 также включает дроссельный клапан 30 для подачи газа, который позволяет подавать сжатый газ в кольцевое пространство 31 между обсадной колонной 24 и колонной 26 насосно-компрессорных труб. И, наоборот, выходной клапан 32 позволяет выводить нефть и пузырьки газа из внутренней части колонны 26 насосно-компрессорных труб во время добычи нефти.
Нефтяная скважина 10 включает систему 34 связи для подачи питания и двухсторонней связи в местоположении скважины в буровой скважине 10. Система 34 связи включает нижний индукционный дроссель 42, который установлен на колонне 26 насосно-компрессорных труб и действует как последовательное полное сопротивление для протекающего электрического тока. Размер и материал нижнего индукционного дросселя 42 можно изменять для изменения значения последовательного полного сопротивления, однако нижний индукционный дроссель 42 изготовлен из ферромагнитного материала. Индукционный дроссель 42 установлен концентрически и снаружи колонны 26 насосно-компрессорных труб и обычно пропитывается эпоксидной смолой для того, чтобы противостоять небрежному обращению.
Изолирующая соединительная муфта 40 для насосно-компрессорных труб (которая также называется электроизоляционной муфтой) размещена на колонне 26 насосно-компрессорных труб рядом с поверхностью буровой скважины. Изолирующая соединительная муфта 40 для насосно-компрессорных труб наряду с нижним индукционным дросселем 42 обеспечивает электрическую изоляцию для участка колонны 26 насосно-компрессорных труб, расположенной между изолирующей соединительной муфтой 40 для насосно-компрессорных труб и индукционным дросселем 42. Участок колонны 26 насосно-компрессорных труб, расположенный между изолирующей соединительной муфтой 40 для насосно-компрессорных труб и индукционным дросселем 42, можно рассматривать как путь для подачи питания и сигналов связи. В альтернативе или в дополнение к изолирующей соединительной муфте 40 для насосно-компрессорных труб верхний индукционный дроссель (не показан) можно разместить вокруг колонны 26 насосно-компрессорных труб или можно использовать изолирующую подвеску насосно-компрессорных труб (не показана).
Блок 44 компьютера и источника питания, включающий источник 46 питания и устройство 48 связи с расширенным спектром (например, модем), расположен снаружи ствола 11 скважины на поверхности 12. Блок 44 компьютера и источника питания электрически подсоединен к колонне 26 насосно-компрессорных труб ниже изолирующей соединительной муфты 40 для насосно-компрессорных труб для подачи тока, изменяющегося во времени, в колонну 26 насосно-компрессорных труб. Цепь обратного тока для обеспечения питания подводится к обсадной колонне 24. В процессе работы колонна 26 насосно-компрессорных труб, используемая в качестве проводника, обладает довольно большими потерями из-за большой длины, встречающейся часто на практике, колонны насосно-компрессорных труб, вдоль которой подается ток. Однако метод связи с расширенным спектром допускает наличие шумов и низкие уровни сигнала и может эффективно работать даже при высоких потерях -100 дБ.
Способ электрической изоляции участка колонны насосно-компрессорных труб, который изображен на фиг.1, не является единственным способом подачи питания и сигналов связи в скважинное местоположение. В предпочтительном варианте осуществления (фиг.1) питание и сигналы связи подают на колонну 26 насосно-компрессорных труб, при этом цепь обратного тока обеспечивается с помощью обсадной колонны 24. Кроме того, цепь обратного тока можно выполнить с помощью заземления. Электрическое подсоединение к "земле" можно выполнить путем пропускания провода через обсадную колонну 24 или подсоединения провода к колонне насосно-компрессорных труб ниже нижнего дросселя 42 (если нижняя часть колонны насосно-компрессорных труб была заземлена).
Альтернативный путь подачи питания и сигналов связи можно выполнить с помощью обсадной колонны 24. В конфигурации, подобной той, которая используется в колонне 26 насосно-компрессорных труб, часть обсадной колонны 24 может быть электрически изолирована для обеспечения телеметрической магистральной сети для подачи питания и передачи сигналов связи в скважине. Если бы индукционные дроссели использовались для изоляции части обсадной колонны 24, дроссели располагались бы концентрически вокруг внешней стороны обсадной колонны. Вместо использования дросселей с обсадной колонной 24 можно использовать электрически изолирующие соединители, подобные изолирующей соединительной муфте 40 для насосно-компрессорных труб. В вариантах осуществления, в которых используется обсадная колонна 24 для подачи питания и сигналов связи в скважину, цепь обратного тока можно выполнить через колонну 26 насосно-компрессорных труб или через грунтовое заземление.
Пакер 49 размещен внутри обсадной колонны 24 ниже нижнего индукционного дросселя 42. Пакер 49 расположен выше эксплуатационной зоны 14 и служит для изоляции эксплуатационной зоны 14 и для электрического подсоединения металлической колонны 26 насосно-компрессорных труб к металлической обсадной колонне 24. Как правило, электрические соединения между колонной 26 насосно-компрессорных труб и обсадной колонной 24 не позволяют передавать электрические сигналы или принимать их вверх и вниз по стволу 11 скважины с использованием колонны 26 насосно-компрессорных труб в качестве одного проводника и обсадной колонны 24 в качестве другого проводника. Однако комбинация изолирующей соединительной муфты 40 для насосно-компрессорных труб и нижнего индукционного дросселя 42 образует электрически изолированный участок колонны 26 насосно-компрессорных труб, что позволяет выполнить систему и способ подачи питания и сигналов связи вверх и вниз по буровой скважине 11 нефтяной скважины 10.
На фиг.2 изображена морская нефтяная скважина 60.
Нефтяная скважина 60 включает эксплуатационную платформу 62 на поверхности 63 воды, поставленную на якорь на земляном дне 64 с элементами 66 поддержки. Нефтяная скважина 60 имеет многочисленные сходства с нефтяной скважиной 10 (фиг.1). Ствол 11 скважины 60 начинается на дне 64. Обсадная колонна 24 размещена в стволе 11 скважины, и подвеска 22 насосно-компрессорной колонны обеспечивает скважинную поддержку колонны 26 насосно-компрессорных труб. Одним из основных отличий между нефтяной скважиной 10 и нефтяной скважиной 60 является то, что колонна 26 насосно-компрессорных труб в нефтяной скважине 60 проходит через воду 67 перед ее достижением стволом 11 скважины.
Индукционный дроссель 42 размещен на колонне 26 насосно-компрессорных труб немного выше устья 68 скважины на дне 64. Изолирующая соединительная муфта для насосно-компрессорных труб (подобна изолирующей соединительной муфте 40 для насосно-компрессорных труб, но не показана) выполнена в части колонны 26 насосно-компрессорных труб на эксплуатационной платформе 62. Ток, изменяющийся во времени, подается в участок колонны 26 насосно-компрессорных труб между изолирующей соединительной муфтой для насосно-компрессорных труб и индукционным дросселем 42 для обеспечения питания и связи в устье 68 скважины.
Специалистам будет ясно, что при нормальных условиях короткозамкнутая цепь будет возникать для тока, который проходит вдоль колонны 26 насосно-компрессорных труб, так как колонна насосно-компрессорных труб окружена электропроводной морской водой. Однако антикоррозийное покрытие на колонне 26 насосно-компрессорных труб обычно является непроводящим и образует электроизоляционную "оболочку" вокруг колонны насосно-компрессорных труб, таким образом обеспечивая протекание тока даже в случае, когда колонна 26 насосно-компрессорных труб погружена в воду. В альтернативном размещении питание можно подать в устье 68 скважины с помощью изолированного кабеля (не показан) и затем подать в скважину тем же самым способом, выполненным в нефтяной скважине 10. При таком размещении изолирующая соединительная муфта для насосно-компрессорных труб и индукционный дроссель 42 будут размещаться в стволе 11 нефтяной скважины 60.
Как показано на фиг.2, а также на фиг.1 и 3, гидравлическая система 70 обеспечивает работу скважинного устройства или целевого устройства (не показано). Гидравлическая система 70 расположена внутри расширенного коллектора 72 на колонне 26 насосно-компрессорных труб. На фиг.3 скважинным устройством является отсечной клапан 74, однако гидравлическая система 70 позволяет приводить в действие множество различных скважинных устройств. Отсечной клапан 74 последовательно приводится в действие с помощью рабочей жидкости для гидравлической системы, давление которой повышается с помощью насоса 76. Электродвигатель 78 включается с помощью тока, изменяющегося во времени, который подается вдоль колонны 26 насосно-компрессорных труб. Электродвигатель 78 в рабочем состоянии подсоединен к насосу 76 для запуска насоса 76. Электродвигатель 78, приводящий в действие гидравлический насос 76, имеет маленькую потребляемую мощность, поэтому он может работать с ограниченным питанием, которое доступно на глубине в скважине. При соответствующей конструкции гидравлического насоса 76 и других элементов гидравлической системы 70, особенно в конструкции уплотнителей, которые минимизируют утечку рабочей жидкости для гидравлической системы в этих элементах, низкая величина имеющегося питания не ограничивает гидравлическое давление, которое может быть получено, а скорее ограничивает скорость потока рабочей жидкости для гидравлической системы.
На фиг.4 изображены более подробно трубопроводные и электрические соединения для гидравлической системы 70. Кроме насоса 76 и электродвигателя 78 гидравлическая система 70 включает питательный бачок 80, вспомогательный клапан 82, привод 84 клапана и необходимый трубопровод и аппаратные средства для подачи рабочей жидкости между этими элементами. Бачок 80 гидравлически подсоединен к насосу 76 для подачи рабочей жидкости в насос 76. Вспомогательный клапан 82 гидравлически подсоединен к насосу 76, приводу 84 и бачку 80. Вспомогательный клапан 82 выборочно направляет рабочую жидкость под давлением в привод 84 для приведения в действие привода 84. Привод 84 включает поршень 86, имеющий первую сторону 87 и вторую сторону 88. Поршень 86 в рабочем состоянии подсоединен к клапану 74 для открывания и закрывания клапана 74. При выборочном направлении рабочей жидкости под давлением на разные стороны поршня 86 клапан 74 может выборочно открываться или закрываться. Например, в одной конфигурации рабочую жидкость можно направить в камеру чуть выше первой стороны 87 поршня 86. Флюид под давлением будет оказывать усилие на поршень 86, заставляя поршень 86 перемещаться вниз, таким образом закрывая клапан 74. Флюид в камере, расположенной рядом со второй стороной 88 поршня 86, будет перемещаться в бачок 80. В этой конфигурации клапан 74 может открываться за счет регулировки вспомогательного клапана 82 так, чтобы рабочая жидкость под давлением подавалась в камеру, расположенную рядом со второй стороной 88 поршня 86. Флюид под давлением будет давить вверх на поршень 86, таким образом перемещая поршень 86 вверх и открывая клапан 74. Вытесняемая рабочая жидкость в камере, расположенной рядом с передней стороной 87, будет направляться в бачок 80.
Как упомянуто ранее, электрический ток подается в электродвигатель 78 вдоль колонны 26 насосно-компрессорных труб. Модем 89 размещен внутри расширенного коллектора 72 для приема сигналов из модема 48 на поверхность 12. Модем 89 электрически подсоединен к контроллеру 90 для управления работой электродвигателя 78. Контроллер 90 также электрически подсоединен к вспомогательному клапану 82 для управления работой вспомогательного клапана, таким образом гарантируя правильную работу клапана, который направляет рабочую жидкость из насоса 76 в привод 84 и бачок 80.
В процессе работы электрический ток подается в скважину вдоль колонны 26 насосно-компрессорных труб в модем 89. Контроллер 90 принимает команды из модема 89 и направляет питание в электродвигатель 78. Контроллер 90 также устанавливает параметры настройки для вспомогательного клапана 82 с тем, чтобы рабочая жидкость правильно направлялась по всей гидравлической системе 70. После включения электродвигателя 78 он приводит в действие насос 76, который выводит рабочую жидкость под давлением из бачка 80. Насос 76 оказывает давление на рабочую жидкость, проталкивая флюид во вспомогательный клапан 82. Из вспомогательного клапана 82 рабочая жидкость под давлением выборочно направляется к одной стороне поршня 86 для приведения в действие привода 84. В зависимости от стороны поршня 86, к которой был подан флюид, клапан 74 будет открываться или закрываться. При перемещении поршня 86 вытесняемая рабочая жидкость направляется из привода 84 в бачок 80.
Гидравлическая система 70 может также включать компенсатор 92 давления в забое скважины (фиг.3) для уравнивания статического давления замкнутого потока рабочей жидкости для гидравлической системы со статическим давлением скважинных флюидов в буровой скважине. Использование компенсатора давления минимизирует дифференциальное давление с противоположных сторон любых вращающихся или скользящих уплотнителей между гидравлическим контуром и флюидами буровой скважины, если эти уплотнители присутствуют в конструкции, и таким образом минимизируют механическое напряжение на таких уплотнителях.
При заполнении нефтью расширенного коллектора 72 давление в нем уравновешивается давлением любого флюида, присутствующего в кольцевом пространстве 31. Перенося одну сторону компенсатора давления 92 на внешнюю сторону коллектора 72, давление нефти внутри расширенного коллектора 72 может совпадать с давлением флюида внутри кольцевого пространства 31. Регулировка давления внутри коллектора позволяет обеспечить более эффективную работу многих из элементов гидравлической системы 70.
На фиг.5 и 6 изображен дополнительный вариант осуществления гидравлической системы 70. Элементы этой гидравлической системы по существу подобны тем, которые изображены на фиг.3 и 4. Однако в этом конкретном варианте осуществления гидроаккумулятор 96 гидравлически связан между насосом 76 и вспомогательным клапаном 82 для сбора рабочей жидкости повышенного давления для гидравлической системы, подаваемой насосом 76. Управление гидравлической системой 70 идентично описанному ранее за исключением того, что гидроаккумулятор 96 теперь используется для подачи рабочей жидкости повышенного давления для гидравлической системы в привод 84. Гидроаккумулятор 96 позволяет периодически выполнять незамедлительно гидравлические операции (например, быстрое открытие или закрытие клапана). В этом состоит отличие от предыдущего варианта осуществления, в котором использовался насос для постепенной подачи рабочей жидкости повышенного давления для гидравлической системы в привод 84.
Гидроаккумулятор 96 включает поршень 98, плотно расположенный с возможностью скольжения внутри корпуса и смещаемый в одном направлении с помощью пружины 100. Отверстие 102 компенсатора расположено в корпусе и позволяет нефти под давлением внутри расширенного коллектора 72 оказывать дополнительное усилие на поршень 98, которое добавляется к усилию, которое создает пружина 100. Электродвигатель 78 и насос 76 создают в гидроаккумуляторе 96 высокое давление за счет подачи рабочей жидкости повышенного давления для гидравлической системы в главную камеру 104 напротив смещенного поршня 98. Когда усилие, оказываемое рабочим флюидом гидросистемы внутри главной камеры 104, равняется усилиям на противоположной стороне поршня 98, насос 76 прекращает работу, и рабочая жидкость гидросистемы накапливается внутри гидроаккумулятора 96 до тех пор, пока это необходимо.
Накопленную рабочую жидкость гидросистемы повышенного давления выпускают под управлением вспомогательного клапана 82 для того, чтобы запустить привод 84 и таким образом привести в действие главный клапан 74. Благодаря энергии, накопленной в гидроаккумуляторе 96, клапан 74 может открываться или закрываться сразу после поступления команды на открывание или закрывание. Размер гидроаккумулятора 96 выбирается таким, чтобы обеспечить, по меньшей мере, один полный цикл (открытие или закрытие) клапана 74. Таким образом, способы настоящего изобретения предусматривают успешную работу клапанов, для которых требуется кратковременное питание высокой мощности, таких как подповерхностные предохранительные клапаны.
Ясно, что разнообразные гидравлические устройства можно заменить на запорный клапан 74, который был описан только в иллюстративных целях. Должно быть также ясно, что система 34 связи и гидравлическая система 70, выполненные с помощью настоящего изобретения, хотя и расположены на колонне 26 насосно-компрессорных труб в предыдущем описании, могут быть расположены на обсадной колонне 24 буровой скважины или на любой другой трубопроводной структуре, связанной с буровой скважиной.
Даже при том, что многие из примеров, обсужденных здесь, являются применениями настоящего изобретения в нефтяных скважинах, настоящее изобретение можно также применять и в других типах скважин, включающих в себя, но не ограничивающих, водозаборные скважины и скважины для добычи природного газа.
Специалистам будет ясно, что настоящее изобретение может применяться во многих зонах, где существует потребность в системе связи и гидравлической системе внутри ствола скважины, буровой скважины или любой другой труднодоступной зоне. Кроме того, специалистам будет ясно, что настоящее изобретение может применяться во многих зонах, где уже имеется проводящая трубопроводная структура и потребность в выборе направления подачи питания и сигналов связи в гидравлическую систему, расположенную вблизи трубопроводной структуры. Водяная спринклерная система или сеть в здании для тушения пожаров является примером трубопроводной структуры, которая уже существует и может быть подобным или похожим путем, который необходим для выбора направления пути подачи питания и сигналов связи в гидравлическую систему. В этом случае в качестве цепи обратного тока можно использовать другую трубопроводную структуру или другую часть той же самой трубопроводной структуры. Стальную структуру здания можно также использовать в качестве трубопроводной структуры и/или цепи обратного тока для подачи питания и передачи сигналов связи в гидравлическую систему согласно настоящему изобретению. Стальную арматуру в бетонной дамбе или на улице можно использовать в качестве трубопроводной структуры и/или цепи обратного тока для подачи питания и передачи сигналов связи в гидравлическую систему согласно настоящему изобретению. Линии передачи и сеть трубопроводов между скважинами или сквозь большие отрезки земли можно использовать в качестве трубопроводной структуры и/или цепи обратного тока для подачи питания и передачи сигналов связи в гидравлическую систему согласно настоящему изобретению. Поверхностные сети нефтепроводов для нефтеперерабатывающего завода можно использовать в качестве трубопроводной структуры и/или цепи обратного тока для подачи питания и передачи сигналов связи в гидравлическую систему согласно настоящему изобретению. Таким образом, существуют многочисленные приложения настоящего изобретения во многих различных сферах или областях применения.
Из вышесказанного ясно, что выполнено изобретение, имеющее значительные преимущества. Хотя изобретение показано только в нескольких своих формах, оно не ограничено и восприимчиво к различным изменениям и модификациям без отклонения от своей сущности.

Claims (26)

1. Способ управления скважинным устройством в нефтяной скважине, имеющей ствол скважины и трубопроводную структуру, размещенную в стволе скважины, при котором подают ток, изменяющийся во времени, вдоль трубопроводной структуры в скважину, повышают давление рабочей жидкости в скважине с использованием тока, изменяющегося во времени, управляют скважинным устройством с использованием рабочей жидкости повышенного давления, отличающийся тем, что размещают вокруг трубопроводной структуры устройство полного сопротивления для образования проводящего участка трубопроводной структуры, в котором обеспечивается препятствие протеканию тока, изменяющегося во времени.
2. Способ по п.1, отличающийся тем, что содержит управление электродвигателем в скважине и запуск насоса с помощью электродвигателя для повышения давления рабочей жидкости.
3. Способ по п.2, отличающийся тем, что управление скважинным устройством дополнительно содержит использование привода, подсоединенного в рабочем состоянии к скважинному устройству и гидравлически подсоединенного к насосу, и выборочный запуск привода с помощью рабочей жидкости повышенного давления для приведения в действие скважинного устройства.
4. Способ по п.3, отличающийся тем, что выборочный запуск привода дополнительно содержит использование вспомогательного клапана, гидравлически подсоединенного между насосом и приводом, и регулировку вспомогательного клапана для выборочного запуска привода.
5. Способ по п.1, отличающийся тем, что дополнительно содержит хранение рабочей жидкости в резервуаре и вывод рабочей жидкости из резервуара.
6. Способ по п.1, отличающийся тем, что дополнительно содержит сбор рабочей жидкости повышенного давления в гидроаккумуляторе и выборочный выпуск рабочей жидкости повышенного давления из гидроаккумулятора для управления скважинным устройством.
7. Способ по п.1, отличающийся тем, что дополнительно содержит сбор рабочей жидкости повышенного давления в гидроаккумуляторе, использование привода, подсоединенного в рабочем состоянии к скважинному устройству и гидравлически подсоединенного к гидроаккумулятору, выборочный выпуск рабочей жидкости повышенного давления из гидроаккумулятора для запуска привода и, таким образом, управления скважинным устройством.
8. Способ по п.7, отличающийся тем, что выборочный выпуск рабочей жидкости дополнительно содержит использование вспомогательного клапана, гидравлически подсоединенного между гидроаккумулятором и приводом, и регулировку вспомогательного клапана для выборочного запуска привода.
9. Способ по п.1, отличающийся тем, что дополнительно содержит использование привода, подсоединенного в рабочем состоянии к скважинному устройству и гидравлически подсоединенного к насосу, выборочное управление вспомогательным клапаном, гидравлически подсоединенным между насосом и приводом, для запуска привода и, таким образом, управления скважинным устройством.
10. Способ по п. 9, отличающийся тем, что в качестве скважинного устройства используют главный клапан и привод открывает и закрывает главный клапан.
11. Способ по п.1, отличающийся тем, что дополнительно содержит сбор рабочей жидкости повышенного давления в гидроаккумуляторе, использование привода, подсоединенного в рабочем состоянии к скважинному устройству и гидравлически подсоединенного к гидроаккумулятору, выборочное управление вспомогательным клапаном, гидравлически подсоединенным между гидроаккумулятором и приводом, для запуска привода и, таким образом, управления скважинным устройством.
12. Способ по п.11, отличающийся тем, что в качестве скважинного устройства используют главный клапан и привод открывает и закрывает главный клапан.
13. Нефтяная скважина, содержащая ствол скважины, трубопроводную структуру, размещенную в стволе скважины, систему связи, соединенную в рабочем состоянии с трубопроводной структурой для передачи сигнала, изменяющегося во времени, вдоль трубопроводной структуры, и гидравлическую систему, электрически подсоединенную к трубопроводной структуре, приспособленную для подсоединения к скважинному устройству, приема питания из сигнала, изменяющегося во времени, и управления скважинным устройством, отличающаяся тем, система связи содержит устройство полного сопротивления, размещенное вокруг трубопроводной структуры, для образования проводящего участка, в котором обеспечивается препятствие прохождению сигнала, изменяющегося во времени, представляющего собой ток.
14. Нефтяная скважина по п.13, в которой сигнал, изменяющийся во времени, включает сигнал связи для выборочного управления скважинным устройством.
15. Нефтяная скважина по п.13, в которой скважинным устройством является скважинный предохранительный отклоняющий клапан.
16. Нефтяная скважина по п.13, в которой гидравлическая система дополнительно содержит электродвигатель для приема тока, изменяющегося во времени, из трубопроводной структуры, насос для выборочного повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, привод, гидравлически подсоединенный к насосу и в рабочем состоянии подсоединенный к скважинному устройству, при этом рабочая жидкость повышенного давления используется для запуска привода и, таким образом, управления скважинным устройством.
17. Нефтяная скважина по п.13, в которой гидравлическая система дополнительно содержит электродвигатель для приема тока, изменяющегося во времени, из трубопроводной структуры, насос для выборочного повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, вспомогательный клапан, гидравлически подсоединенный к насосу, привод, гидравлически подсоединенный к вспомогательному клапану и в рабочем состоянии подсоединенный к скважинному устройству, при этом вспомогательный клапан приспособлен выборочно направлять рабочую жидкость повышенного давления в привод и, таким образом, запускать привод и управлять скважинным устройством.
18. Нефтяная скважина по п.17, в которой скважинным устройством является клапан.
19. Нефтяная скважина по п.13, в которой гидравлическая система дополнительно содержит электродвигатель для приема тока, изменяющегося во времени, из трубопроводной структуры, насос для выборочного повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления, привод, гидравлически подсоединенный к вспомогательному клапану и в рабочем состоянии подсоединенный к скважинному устройству, при этом рабочая жидкость повышенного давления, подаваемая с помощью гидроаккумулятора, способна приводить в действие привод и, таким образом, управлять скважинным устройством.
20. Нефтяная скважина по п.13, в которой гидравлическая система дополнительно содержит электродвигатель для приема тока, изменяющегося во времени, из трубопроводной структуры, насос для выборочного повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления, вспомогательный клапан, гидравлически подсоединенный к насосу, привод, гидравлически подсоединенный к вспомогательному клапану и в рабочем состоянии подсоединенный к скважинному устройству, при этом вспомогательный клапан приспособлен выборочно направлять рабочую жидкость повышенного давления в привод и, таким образом, запускать привод и управлять скважинным устройством.
21. Система гидравлического привода, содержащая электродвигатель, приспособленный для приема сигнала, изменяющегося во времени и подаваемого вдоль трубопроводной структуры, насос для повышения давления рабочей жидкости, подсоединенный в рабочем состоянии к электродвигателю и способный приводиться в действие с помощью электродвигателя, привод, гидравлически подсоединенный к насосу, приспособленный для крепления в рабочем состоянии к скважинному устройству, выборочного приведения в действие с помощью рабочей жидкости повышенного давления и, таким образом, запуска привода и управления скважинным устройством, отличающаяся тем, что содержит устройство полного сопротивления, размещенное вокруг трубопроводной структуры для образования проводящего участка трубопроводной структуры, в котором обеспечивается препятствие прохождению сигнала, изменяющегося во времени, представляющего собой ток, и ток, изменяющийся во времени, пропускается вдоль проводящей части трубопроводной структуры, окруженной устройством полного сопротивления.
22. Система гидравлического привода по п.21, отличающаяся тем, что сигнал, изменяющийся во времени, включает сигнал связи для выборочного управления скважинным устройством.
23. Система гидравлического привода по п.21, отличающаяся тем, что дополнительно содержит вспомогательный клапан, гидравлически подсоединенный между насосом и приводом и приспособленный выборочно направлять рабочую жидкость повышенного давления в привод.
24. Система гидравлического привода по п.21, отличающаяся тем, что дополнительно содержит гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления.
25. Система гидравлического привода по п.21, отличающаяся тем, что дополнительно содержит гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления, вспомогательный клапан, гидравлически подсоединенный между гидроаккумулятором и приводом и приспособленный выборочно направлять рабочую жидкость повышенного давления в привод.
26. Система гидравлического привода по п.21, отличающаяся тем, что дополнительно содержит гидроаккумулятор, гидравлически подсоединенный к насосу для сбора рабочей жидкости повышенного давления, вспомогательный клапан, гидравлически подсоединенный между гидроаккумулятором и приводом и приспособленный выборочно направлять рабочую жидкость повышенного давления в привод, электрически изолирующую муфту, размещенную на трубопроводной структуре, при этом устройство полного сопротивления выполнено в виде индукционного дросселя, размещенного вокруг трубопроводной структуры, и ток, изменяющийся во времени, направлен вдоль трубопроводной структуры между электрически изолирующей муфтой и индукционным дросселем.
RU2002126206/03A 2000-03-02 2001-03-02 Система гидравлического привода, нефтяная скважина и способ управления скважинным устройством RU2260676C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18653100P 2000-03-02 2000-03-02
US60/186,531 2000-03-02

Publications (2)

Publication Number Publication Date
RU2002126206A RU2002126206A (ru) 2004-02-20
RU2260676C2 true RU2260676C2 (ru) 2005-09-20

Family

ID=22685314

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002126206/03A RU2260676C2 (ru) 2000-03-02 2001-03-02 Система гидравлического привода, нефтяная скважина и способ управления скважинным устройством

Country Status (10)

Country Link
US (1) US6851481B2 (ru)
EP (1) EP1259705A1 (ru)
AU (2) AU4341201A (ru)
BR (1) BR0108895B1 (ru)
CA (1) CA2401707C (ru)
MX (1) MXPA02008578A (ru)
NO (1) NO324777B1 (ru)
OA (1) OA12390A (ru)
RU (1) RU2260676C2 (ru)
WO (1) WO2001065061A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443852C2 (ru) * 2010-04-05 2012-02-27 Валеев Марат Давлетович Установка для периодической раздельной добычи нефти из двух пластов
WO2014066627A1 (en) * 2012-10-24 2014-05-01 California Institute Of Technology Hydraulic high pressure valve controller using the in-situ pressure difference
RU2529072C2 (ru) * 2012-07-04 2014-09-27 Олег Марсович Гарипов Способ воздействия на застойную зону интервалов пластов гарипова и установка для его реализации
US9951612B2 (en) 2014-09-23 2018-04-24 Halliburton Energy Services, Inc. Well construction real-time telemetry system

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20311033U1 (de) 2003-07-17 2004-11-25 Cooper Cameron Corp., Houston Pumpvorrichtung
EP1364230A1 (en) * 2001-02-02 2003-11-26 DBI Corporation Downhole telemetry and control system
US7063143B2 (en) 2001-11-05 2006-06-20 Weatherford/Lamb. Inc. Docking station assembly and methods for use in a wellbore
US6702025B2 (en) * 2002-02-11 2004-03-09 Halliburton Energy Services, Inc. Hydraulic control assembly for actuating a hydraulically controllable downhole device and method for use of same
GB2387891A (en) * 2002-04-26 2003-10-29 Abb Offshore Systems Ltd Electrothermal actuator
US7350590B2 (en) * 2002-11-05 2008-04-01 Weatherford/Lamb, Inc. Instrumentation for a downhole deployment valve
US7255173B2 (en) 2002-11-05 2007-08-14 Weatherford/Lamb, Inc. Instrumentation for a downhole deployment valve
NO322680B1 (no) * 2004-12-22 2006-11-27 Fmc Kongsberg Subsea As System for a kontrollere en ventil
DE202005006719U1 (de) 2005-04-27 2006-08-31 Cooper Cameron Corp., Houston Pumpvorrichtung
US8875810B2 (en) 2006-03-02 2014-11-04 Baker Hughes Incorporated Hole enlargement drilling device and methods for using same
US9187959B2 (en) 2006-03-02 2015-11-17 Baker Hughes Incorporated Automated steerable hole enlargement drilling device and methods
US7635029B2 (en) * 2006-05-11 2009-12-22 Schlumberger Technology Corporation Downhole electrical-to-hydraulic conversion module for well completions
US8118098B2 (en) * 2006-05-23 2012-02-21 Schlumberger Technology Corporation Flow control system and method for use in a wellbore
US7341105B2 (en) * 2006-06-20 2008-03-11 Holcim (Us) Inc. Cementitious compositions for oil well cementing applications
US8196668B2 (en) 2006-12-18 2012-06-12 Schlumberger Technology Corporation Method and apparatus for completing a well
US20080179063A1 (en) * 2007-01-25 2008-07-31 Smith David R Chemically enhanced gas-lift for oil and gas wells
US7665527B2 (en) * 2007-08-21 2010-02-23 Schlumberger Technology Corporation Providing a rechargeable hydraulic accumulator in a wellbore
NO332761B1 (no) 2007-09-07 2013-01-07 Framo Eng As Undersjoisk ventilsystem og fremgangsmate for beskyttelse herav
US8453749B2 (en) * 2008-02-29 2013-06-04 Halliburton Energy Services, Inc. Control system for an annulus balanced subsurface safety valve
GB2457979B (en) * 2008-03-01 2012-01-18 Red Spider Technology Ltd Electronic Completion Installation Valve
CA2728414C (en) 2008-06-18 2017-05-23 Expro North Sea Limited Flow line electric impedance generation
US8784545B2 (en) 2011-04-12 2014-07-22 Mathena, Inc. Shale-gas separating and cleanout system
CA2675784C (en) * 2008-08-14 2016-11-22 Philippe Marchal Insulated double-walled well completion tubing for high temperature use
BRPI0913461B1 (pt) * 2008-09-09 2019-04-02 Halliburton Energy Services Inc Sistema e método para atuar seletivamente de uma localização remota múltiplas ferramentas de poço dentro do poço em um poço
AU2008361676B2 (en) * 2008-09-09 2013-03-14 Welldynamics, Inc. Remote actuation of downhole well tools
US20100186960A1 (en) * 2009-01-29 2010-07-29 Reitsma Donald G Wellbore annular pressure control system and method using accumulator to maintain back pressure in annulus
RU2539046C2 (ru) 2009-03-27 2015-01-10 УанСабси ЛЛС Подводный инвертор с питанием на постоянном токе
US20110220367A1 (en) * 2010-03-10 2011-09-15 Halliburton Energy Services, Inc. Operational control of multiple valves in a well
US8733448B2 (en) * 2010-03-25 2014-05-27 Halliburton Energy Services, Inc. Electrically operated isolation valve
US8476786B2 (en) 2010-06-21 2013-07-02 Halliburton Energy Services, Inc. Systems and methods for isolating current flow to well loads
CN103025592B (zh) * 2010-06-30 2016-08-03 普拉德研究及开发股份有限公司 用于油田设备预测和健康管理的系统、方法和装置
US8905128B2 (en) 2010-07-20 2014-12-09 Schlumberger Technology Corporation Valve assembly employable with a downhole tool
AU2011285918B2 (en) 2010-08-03 2014-08-14 Halliburton Energy Services, Inc. Safety switch for well operations
US9441453B2 (en) * 2010-08-04 2016-09-13 Safoco, Inc. Safety valve control system and method of use
WO2012018730A2 (en) * 2010-08-04 2012-02-09 Safoco, Inc. Safety valve control system and method of use
US8813857B2 (en) 2011-02-17 2014-08-26 Baker Hughes Incorporated Annulus mounted potential energy driven setting tool
US9121250B2 (en) 2011-03-19 2015-09-01 Halliburton Energy Services, Inc. Remotely operated isolation valve
US9291036B2 (en) * 2011-06-06 2016-03-22 Reel Power Licensing Corp. Method for increasing subsea accumulator volume
US8757274B2 (en) 2011-07-01 2014-06-24 Halliburton Energy Services, Inc. Well tool actuator and isolation valve for use in drilling operations
US8881798B2 (en) 2011-07-20 2014-11-11 Baker Hughes Incorporated Remote manipulation and control of subterranean tools
US20130175958A1 (en) * 2011-08-04 2013-07-11 Samuel T. McJunkin Systems and methods for transmitting and/or utilizing hvdc power in a submarine environment
US9243478B2 (en) * 2011-08-29 2016-01-26 Schlumberger Technology Corporation Piping system having an insulated annulus
WO2013062907A1 (en) * 2011-10-25 2013-05-02 Safoco, Inc. Safety valve control system and method of use
US9534459B2 (en) 2011-12-02 2017-01-03 Schlumberger Technology Corporation Pump actuated valve
WO2013112133A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
WO2013110980A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US9353586B2 (en) 2012-05-11 2016-05-31 Mathena, Inc. Control panel, and digital display units and sensors therefor
EP2893129B1 (en) * 2012-08-24 2018-10-10 FMC Technologies, Inc. Retrieval of subsea production and processing equipment
US9316063B2 (en) 2012-11-29 2016-04-19 Chevron U.S.A. Inc. Transmitting power within a wellbore
US9670739B2 (en) 2012-11-29 2017-06-06 Chevron U.S.A. Inc. Transmitting power to gas lift valve assemblies in a wellbore
US8857522B2 (en) * 2012-11-29 2014-10-14 Chevron U.S.A., Inc. Electrically-powered surface-controlled subsurface safety valves
CN103104217B (zh) * 2013-02-06 2015-07-08 北京六合伟业科技股份有限公司 随钻电缆井下液控套管阀
US20140253341A1 (en) * 2013-03-11 2014-09-11 Abrado, Inc. Method and apparatus for communication of wellbore data, including visual images
US9399892B2 (en) 2013-05-13 2016-07-26 Baker Hughes Incorporated Earth-boring tools including movable cutting elements and related methods
US9759014B2 (en) 2013-05-13 2017-09-12 Baker Hughes Incorporated Earth-boring tools including movable formation-engaging structures and related methods
WO2014201573A1 (en) 2013-06-21 2014-12-24 Evolution Engineering Inc. Mud hammer
USD763414S1 (en) 2013-12-10 2016-08-09 Mathena, Inc. Fluid line drive-over
US9267334B2 (en) 2014-05-22 2016-02-23 Chevron U.S.A. Inc. Isolator sub
CA2990957A1 (en) 2014-06-25 2015-12-30 Daniel Maurice Lerner Piping assembly control system with addressed datagrams
US10018009B2 (en) 2015-02-26 2018-07-10 Cameron International Corporation Locking apparatus
WO2016149811A1 (en) * 2015-03-20 2016-09-29 Cenovus Energy Inc. Hydrocarbon production apparatus
US9850725B2 (en) 2015-04-15 2017-12-26 Baker Hughes, A Ge Company, Llc One trip interventionless liner hanger and packer setting apparatus and method
US10487629B2 (en) 2015-04-30 2019-11-26 Halliburton Energy Services, Inc. Remotely-powered casing-based intelligent completion assembly
GB2552613B (en) * 2015-04-30 2021-04-14 Halliburton Energy Services Inc Casing-based intelligent completion assembly
US10472934B2 (en) 2015-05-21 2019-11-12 Novatek Ip, Llc Downhole transducer assembly
US10113399B2 (en) 2015-05-21 2018-10-30 Novatek Ip, Llc Downhole turbine assembly
US10914138B2 (en) * 2016-05-20 2021-02-09 Tubel Llc Downhole power generator and pressure pulser communications module on a side pocket
CN106223936B (zh) * 2016-08-21 2023-07-11 中国石油化工股份有限公司 油井分层段生产参数的无线监测及调控方法
WO2018093355A1 (en) 2016-11-15 2018-05-24 Schlumberger Technology Corporation Systems and methods for directing fluid flow
US10439474B2 (en) 2016-11-16 2019-10-08 Schlumberger Technology Corporation Turbines and methods of generating electricity
HRP20230289T1 (hr) 2017-03-31 2023-04-28 Metrol Technology Ltd Nadziranje bušotinskih postrojenja
GB2554497B8 (en) * 2017-06-29 2020-03-11 Equinor Energy As Tubing hanger installation tool
US10871068B2 (en) 2017-07-27 2020-12-22 Aol Piping assembly with probes utilizing addressed datagrams
CN109505589B (zh) * 2018-11-28 2023-09-26 中国石油天然气股份有限公司 一种油井热洗清蜡井筒温度场分布测试方法及管柱
WO2020153961A1 (en) 2019-01-24 2020-07-30 Halliburton Energy Services, Inc. Locally powered electric ball valve mechanism
US11867022B2 (en) 2019-01-24 2024-01-09 Halliburton Energy Services, Inc. Electric ball valve mechanism
BR112021020534A2 (pt) * 2019-06-12 2021-12-14 Halliburton Energy Services Inc Válvula eletro/hidráulica para uso em um poço de produção de hidrocarboneto, válvula de segurança de subsuperfície eletricamente controlada da superfície e método para operar uma válvula de segurança de subsuperfície controlada eletricamente da superfície
BR112021022227A2 (pt) * 2019-06-12 2021-12-28 Halliburton Energy Services Inc Válvula eletro/hidráulica para uso em um poço de produção de hidrocarbonetos, válvula de segurança de subsuperfície eletricamente controlada da superfície e método para operar uma válvula de segurança de subsuperfície eletricamente controlada da superfície
CN110306975B (zh) * 2019-06-29 2022-12-30 贵州大学 一种煤层瓦斯压力探测杆
BR102019021843A2 (pt) * 2019-10-17 2021-04-27 Ouro Negro Tecnologias Em Equipamentos Industriais S/A Sistema de controle e segurança de valvula por acionamento elétrico para injeção de gas em coluna de produção de óleo

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2917004A (en) 1954-04-30 1959-12-15 Guiberson Corp Method and apparatus for gas lifting fluid from plural zones of production in a well
US3083771A (en) 1959-05-18 1963-04-02 Jersey Prod Res Co Single tubing string dual installation
US3247904A (en) 1963-04-01 1966-04-26 Richfield Oil Corp Dual completion tool
US3427989A (en) 1966-12-01 1969-02-18 Otis Eng Corp Well tools
US3602305A (en) 1969-12-31 1971-08-31 Schlumberger Technology Corp Retrievable well packer
US3566963A (en) 1970-02-25 1971-03-02 Mid South Pump And Supply Co I Well packer
US3732728A (en) 1971-01-04 1973-05-15 Fitzpatrick D Bottom hole pressure and temperature indicator
US3793632A (en) 1971-03-31 1974-02-19 W Still Telemetry system for drill bore holes
US3814545A (en) 1973-01-19 1974-06-04 W Waters Hydrogas lift system
US3837618A (en) * 1973-04-26 1974-09-24 Co Des Freins Et Signaux Westi Electro-pneumatic valve
US3980826A (en) 1973-09-12 1976-09-14 International Business Machines Corporation Means of predistorting digital signals
CA1062336A (en) 1974-07-01 1979-09-11 Robert K. Cross Electromagnetic lithosphere telemetry system
US4068717A (en) 1976-01-05 1978-01-17 Phillips Petroleum Company Producing heavy oil from tar sands
US4295795A (en) 1978-03-23 1981-10-20 Texaco Inc. Method for forming remotely actuated gas lift systems and balanced valve systems made thereby
DE2943979C2 (de) 1979-10-31 1986-02-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Anordnung zur Übertragung von Meßwerten von mehreren entlang einer langgestreckten Unterwasserstruktur hintereinander geschalteten Meßstellen auf eine Zentralstation
US4393485A (en) 1980-05-02 1983-07-12 Baker International Corporation Apparatus for compiling and monitoring subterranean well-test data
US4468665A (en) 1981-01-30 1984-08-28 Tele-Drill, Inc. Downhole digital power amplifier for a measurements-while-drilling telemetry system
US4739325A (en) 1982-09-30 1988-04-19 Macleod Laboratories, Inc. Apparatus and method for down-hole EM telemetry while drilling
US4578675A (en) 1982-09-30 1986-03-25 Macleod Laboratories, Inc. Apparatus and method for logging wells while drilling
US4630243A (en) 1983-03-21 1986-12-16 Macleod Laboratories, Inc. Apparatus and method for logging wells while drilling
CA1212312A (en) 1983-07-14 1986-10-07 Econolift Systems Ltd. Electronically controlled gas lift apparatus
US4648471A (en) 1983-11-02 1987-03-10 Schlumberger Technology Corporation Control system for borehole tools
US4545731A (en) 1984-02-03 1985-10-08 Otis Engineering Corporation Method and apparatus for producing a well
US4576231A (en) 1984-09-13 1986-03-18 Texaco Inc. Method and apparatus for combating encroachment by in situ treated formations
US4709234A (en) 1985-05-06 1987-11-24 Halliburton Company Power-conserving self-contained downhole gauge system
US4662437A (en) 1985-11-14 1987-05-05 Atlantic Richfield Company Electrically stimulated well production system with flexible tubing conductor
US4681164A (en) 1986-05-30 1987-07-21 Stacks Ronald R Method of treating wells with aqueous foam
US4738313A (en) 1987-02-20 1988-04-19 Delta-X Corporation Gas lift optimization
US4839644A (en) 1987-06-10 1989-06-13 Schlumberger Technology Corp. System and method for communicating signals in a cased borehole having tubing
US4901069A (en) 1987-07-16 1990-02-13 Schlumberger Technology Corporation Apparatus for electromagnetically coupling power and data signals between a first unit and a second unit and in particular between well bore apparatus and the surface
US4852648A (en) * 1987-12-04 1989-08-01 Ava International Corporation Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead
US4981173A (en) 1988-03-18 1991-01-01 Otis Engineering Corporation Electric surface controlled subsurface valve system
US4886114A (en) 1988-03-18 1989-12-12 Otis Engineering Corporation Electric surface controlled subsurface valve system
US4864293A (en) 1988-04-29 1989-09-05 Flowmole Corporation Inground boring technique including real time transducer
US4972704A (en) 1989-03-14 1990-11-27 Shell Oil Company Method for troubleshooting gas-lift wells
US5001675A (en) 1989-09-13 1991-03-19 Teleco Oilfield Services Inc. Phase and amplitude calibration system for electromagnetic propagation based earth formation evaluation instruments
US5176164A (en) 1989-12-27 1993-01-05 Otis Engineering Corporation Flow control valve system
US5172717A (en) 1989-12-27 1992-12-22 Otis Engineering Corporation Well control system
US5008664A (en) 1990-01-23 1991-04-16 Quantum Solutions, Inc. Apparatus for inductively coupling signals between a downhole sensor and the surface
US5278758A (en) 1990-04-17 1994-01-11 Baker Hughes Incorporated Method and apparatus for nuclear logging using lithium detector assemblies and gamma ray stripping means
JPH04111127A (ja) 1990-08-31 1992-04-13 Toshiba Corp 演算処理装置
GB9025230D0 (en) 1990-11-20 1991-01-02 Framo Dev Ltd Well completion system
US5251328A (en) 1990-12-20 1993-10-05 At&T Bell Laboratories Predistortion technique for communications systems
US5134285A (en) 1991-01-15 1992-07-28 Teleco Oilfield Services Inc. Formation density logging mwd apparatus
GB2253908B (en) 1991-03-21 1995-04-05 Halliburton Logging Services Apparatus for electrically investigating a medium
US5160925C1 (en) 1991-04-17 2001-03-06 Halliburton Co Short hop communication link for downhole mwd system
US5130706A (en) 1991-04-22 1992-07-14 Scientific Drilling International Direct switching modulation for electromagnetic borehole telemetry
US5574374A (en) 1991-04-29 1996-11-12 Baker Hughes Incorporated Method and apparatus for interrogating a borehole and surrounding formation utilizing digitally controlled oscillators
US5283768A (en) 1991-06-14 1994-02-01 Baker Hughes Incorporated Borehole liquid acoustic wave transducer
US5493288A (en) 1991-06-28 1996-02-20 Elf Aquitaine Production System for multidirectional information transmission between at least two units of a drilling assembly
US5191326A (en) 1991-09-05 1993-03-02 Schlumberger Technology Corporation Communications protocol for digital telemetry system
FR2681461B1 (fr) 1991-09-12 1993-11-19 Geoservices Procede et agencement pour la transmission d'informations, de parametres et de donnees a un organe electro-magnetique de reception ou de commande associe a une canalisation souterraine de grande longueur.
US5236047A (en) 1991-10-07 1993-08-17 Camco International Inc. Electrically operated well completion apparatus and method
US5246860A (en) 1992-01-31 1993-09-21 Union Oil Company Of California Tracer chemicals for use in monitoring subterranean fluids
US5267469A (en) 1992-03-30 1993-12-07 Lagoven, S.A. Method and apparatus for testing the physical integrity of production tubing and production casing in gas-lift wells systems
GB9212685D0 (en) 1992-06-15 1992-07-29 Flight Refueling Ltd Data transfer
FR2695450B1 (fr) 1992-09-07 1994-12-16 Geo Res Cartouche de contrôle et de commande d'une vanne de sécurité.
FR2697119B1 (fr) 1992-10-16 1995-01-20 Schlumberger Services Petrol Dispositif émetteur à double raccord isolant, destiné à l'emploi dans un forage.
AU685132B2 (en) 1993-06-04 1998-01-15 Gas Research Institute, Inc. Method and apparatus for communicating signals from encased borehole
US5353627A (en) 1993-08-19 1994-10-11 Texaco Inc. Passive acoustic detection of flow regime in a multi-phase fluid flow
US5467083A (en) 1993-08-26 1995-11-14 Electric Power Research Institute Wireless downhole electromagnetic data transmission system and method
DE4329729A1 (de) 1993-09-03 1995-03-09 Ieg Ind Engineering Gmbh Verfahren und Einrichtung zur Entnahme von Gas- oder Flüssigkeitsproben aus verschiedenen Schichten
US5473321A (en) 1994-03-15 1995-12-05 Halliburton Company Method and apparatus to train telemetry system for optimal communications with downhole equipment
US5425425A (en) 1994-04-29 1995-06-20 Cardinal Services, Inc. Method and apparatus for removing gas lift valves from side pocket mandrels
NO941992D0 (no) 1994-05-30 1994-05-30 Norsk Hydro As Injektor for injisering av sporstoff i et olje- og/eller gassreservoar
US5458200A (en) 1994-06-22 1995-10-17 Atlantic Richfield Company System for monitoring gas lift wells
EP0721053A1 (en) 1995-01-03 1996-07-10 Shell Internationale Researchmaatschappij B.V. Downhole electricity transmission system
US5732776A (en) 1995-02-09 1998-03-31 Baker Hughes Incorporated Downhole production well control system and method
US6012015A (en) 1995-02-09 2000-01-04 Baker Hughes Incorporated Control model for production wells
NO325157B1 (no) 1995-02-09 2008-02-11 Baker Hughes Inc Anordning for nedihulls styring av bronnverktoy i en produksjonsbronn
US5706896A (en) 1995-02-09 1998-01-13 Baker Hughes Incorporated Method and apparatus for the remote control and monitoring of production wells
US5960883A (en) 1995-02-09 1999-10-05 Baker Hughes Incorporated Power management system for downhole control system in a well and method of using same
US5887657A (en) 1995-02-09 1999-03-30 Baker Hughes Incorporated Pressure test method for permanent downhole wells and apparatus therefore
US5896924A (en) 1997-03-06 1999-04-27 Baker Hughes Incorporated Computer controlled gas lift system
US5730219A (en) 1995-02-09 1998-03-24 Baker Hughes Incorporated Production wells having permanent downhole formation evaluation sensors
US5561245A (en) 1995-04-17 1996-10-01 Western Atlas International, Inc. Method for determining flow regime in multiphase fluid flow in a wellbore
US5531270A (en) 1995-05-04 1996-07-02 Atlantic Richfield Company Downhole flow control in multiple wells
US5782261A (en) 1995-09-25 1998-07-21 Becker; Billy G. Coiled tubing sidepocket gas lift mandrel system
US5797453A (en) 1995-10-12 1998-08-25 Specialty Machine & Supply, Inc. Apparatus for kicking over tool and method
US5995020A (en) 1995-10-17 1999-11-30 Pes, Inc. Downhole power and communication system
MY115236A (en) 1996-03-28 2003-04-30 Shell Int Research Method for monitoring well cementing operations
WO1997037102A2 (en) 1996-04-01 1997-10-09 Baker Hughes Incorporated Downhole flow control devices
US5883516A (en) 1996-07-31 1999-03-16 Scientific Drilling International Apparatus and method for electric field telemetry employing component upper and lower housings in a well pipestring
US5723781A (en) 1996-08-13 1998-03-03 Pruett; Phillip E. Borehole tracer injection and detection method
US6070608A (en) 1997-08-15 2000-06-06 Camco International Inc. Variable orifice gas lift valve for high flow rates with detachable power source and method of using
JPH10145161A (ja) 1996-11-13 1998-05-29 Nec Corp プリディストーション自動調整回路
US5955666A (en) 1997-03-12 1999-09-21 Mullins; Augustus Albert Satellite or other remote site system for well control and operation
US6012016A (en) 1997-08-29 2000-01-04 Bj Services Company Method and apparatus for managing well production and treatment data
US5971072A (en) * 1997-09-22 1999-10-26 Schlumberger Technology Corporation Inductive coupler activated completion system
US5959499A (en) 1997-09-30 1999-09-28 Motorola, Inc. Predistortion system and method using analog feedback loop for look-up table training
US5988276A (en) 1997-11-25 1999-11-23 Halliburton Energy Services, Inc. Compact retrievable well packer
US6144316A (en) * 1997-12-01 2000-11-07 Halliburton Energy Services, Inc. Electromagnetic and acoustic repeater and method for use of same
US6148915A (en) 1998-04-16 2000-11-21 Halliburton Energy Services, Inc. Apparatus and methods for completing a subterranean well
US6192983B1 (en) 1998-04-21 2001-02-27 Baker Hughes Incorporated Coiled tubing strings and installation methods
US6160492A (en) * 1998-07-17 2000-12-12 Halliburton Energy Services, Inc. Through formation electromagnetic telemetry system and method for use of the same
US6633236B2 (en) * 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443852C2 (ru) * 2010-04-05 2012-02-27 Валеев Марат Давлетович Установка для периодической раздельной добычи нефти из двух пластов
RU2529072C2 (ru) * 2012-07-04 2014-09-27 Олег Марсович Гарипов Способ воздействия на застойную зону интервалов пластов гарипова и установка для его реализации
WO2014066627A1 (en) * 2012-10-24 2014-05-01 California Institute Of Technology Hydraulic high pressure valve controller using the in-situ pressure difference
US9951612B2 (en) 2014-09-23 2018-04-24 Halliburton Energy Services, Inc. Well construction real-time telemetry system
RU2661962C1 (ru) * 2014-09-23 2018-07-23 Хэллибертон Энерджи Сервисиз, Инк. Телеметрическая система, работающая в реальном времени, применяемая при строительстве скважины

Also Published As

Publication number Publication date
OA12390A (en) 2006-04-18
RU2002126206A (ru) 2004-02-20
NO20024138D0 (no) 2002-08-30
BR0108895B1 (pt) 2011-01-25
AU2001243412B2 (en) 2004-10-14
EP1259705A1 (en) 2002-11-27
AU4341201A (en) 2001-09-12
BR0108895A (pt) 2004-06-29
US6851481B2 (en) 2005-02-08
US20030051881A1 (en) 2003-03-20
WO2001065061A1 (en) 2001-09-07
CA2401707C (en) 2009-11-03
NO20024138L (no) 2002-11-01
CA2401707A1 (en) 2001-09-07
NO324777B1 (no) 2007-12-10
MXPA02008578A (es) 2003-04-14

Similar Documents

Publication Publication Date Title
RU2260676C2 (ru) Система гидравлического привода, нефтяная скважина и способ управления скважинным устройством
AU2001243412A1 (en) Electro-hydraulically pressurized downhole valve actuator
US6981553B2 (en) Controlled downhole chemical injection
US7322410B2 (en) Controllable production well packer
US7114561B2 (en) Wireless communication using well casing
US6633164B2 (en) Measuring focused through-casing resistivity using induction chokes and also using well casing as the formation contact electrodes
US5745047A (en) Downhole electricity transmission system
RU2256074C2 (ru) Система управления связями и подачей электрического тока, нефтяная скважина для добычи нефтепродуктов (варианты) и способ добычи нефтепродуктов из нефтяной скважины
AU2001250795B2 (en) Wireless downhole well interval inflow and injection control
AU2001243413A1 (en) Controlled downhole chemical injection
EP1259709B1 (en) Controllable production well packer
AU2001245433A1 (en) Controllable production well packer
AU772610B2 (en) Downhole wireless two-way telemetry system
CA2401723C (en) Wireless communication using well casing
US11764509B2 (en) Sliding electrical connector for multilateral well
CN113513309A (zh) 可回接式电控井筒隔离智能完井工具及工作方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130303