RU2254328C1 - Способ получения 4-замещенных алкил 3-оксобутаноатов - Google Patents

Способ получения 4-замещенных алкил 3-оксобутаноатов Download PDF

Info

Publication number
RU2254328C1
RU2254328C1 RU2003138160/04A RU2003138160A RU2254328C1 RU 2254328 C1 RU2254328 C1 RU 2254328C1 RU 2003138160/04 A RU2003138160/04 A RU 2003138160/04A RU 2003138160 A RU2003138160 A RU 2003138160A RU 2254328 C1 RU2254328 C1 RU 2254328C1
Authority
RU
Russia
Prior art keywords
dimethyl
dione
dioxane
chloride
formation
Prior art date
Application number
RU2003138160/04A
Other languages
English (en)
Inventor
И.А. Новаков (RU)
И.А. Новаков
Б.С. Орлинсон (RU)
Б.С. Орлинсон
М.Б. Навроцкий (RU)
М.Б. Навроцкий
Original Assignee
Волгоградский государственный технический университет (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Волгоградский государственный технический университет (ВолгГТУ) filed Critical Волгоградский государственный технический университет (ВолгГТУ)
Priority to RU2003138160/04A priority Critical patent/RU2254328C1/ru
Application granted granted Critical
Publication of RU2254328C1 publication Critical patent/RU2254328C1/ru

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к области синтеза 1,3-дикарбонильных соединений, к новому способу получения 4-замещенных алкил 3-оксобутаноатов:
Figure 00000001
где R=С6H5СН2, 2-F-6-ClC6Н3СН2, 2,6-Cl2С6Н3СН2, 1-C10H7CH2, Ph2СН; Alk=Me;R=1-AdCH2, Alk=i-Pr, которые находят применение в качестве предшественников противовирусных средств пиримидинового ряда. Способ заключается в ацилировании в дихлорметане 2,2-диметил-1,3-диоксан-4,6-диона ацилхлоридами в присутствии триэтиламина с последующим алкоголизом 5-(1-гидроксиэтилиден)-2,2-диметил-1,3-диоксан-4,6-диона, причем ацилирование осуществляется ацилхлоридами в присутствии триметилсилилхлорида, при мольном соотношении 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин, равном 1-2:1:1,1:3,5, с образованием промежуточного продукта 5-[1-(триметилсилилокси)этилиден]-2,2-диметил-1,3-диоксан-4,6-диона, который подвергается гидролизу с образованием 5-(1-гидроксиэтилиден)-2,2-диметил-1,3-диоксан-4,6-диона, с его последующим алкоголизом и образованием целевого продукта. Техническим результатом является повышение выхода и чистоты заявляемых соединений. 1 з.п. ф-лы.

Description

Предлагаемое изобретение относится к области синтеза 1,3-дикарбонильных соединений, конкретно к способу получения 4-замещенных алкил 3-оксобутаноатов формулы:
Figure 00000003
где
R=С6Н5СН2, 2-F-6-СlС6Н3СН2, 2,6-Сl2С6Н3СН2, 1-С10Н7СН2, Ph2CH; Alk=Me.
R=1-AdCH2, Alk=i-Pr,
которые находят применение как предшественники противовирусных средств пиримидинового ряда.
Известны способы получения 4-замещенных алкил 3-оксобутаноатов путем ацилирования 2,2-диметил-1,3-диоксан-4,6-диона в виде натриевой соли, в абсолютном ДМФА, ангидридами карбоновых кислот с последующим алкоголизом продукта ацилирования [Houghton R.P., Lapham D.J. /A modified preparation of β-ketoesters //Synthesis -1982. -P. 451-452].
Недостатком этого метода является необходимость предварительного получения натриевой соли 2,2-диметил-1,3-диоксан-4,6-диона, использование дорогостоящего растворителя (без регенерации) и дорогостоящих ацилирующих агентов. Кроме этого, выход целевых продуктов в этом случае составляет 25-83%.
Известны способы получения 4-замещенных алкил 3-оксобутаноатов путем ацилирования 2,2-диметил-1,3-диоксан-4,6-диона ацилимидазолами в присутствии безводного пиридина [Long-acting dihydropyridine calcium antagonists. 3. Synthesis and structure-activity relationships for a series of 2-[(heterocyclylmethoxy)methyl]derivatives /Alker D., Campbell S.F., Cros P.E., et al. //J. Med. Chem. -1989. -Vol. 32, №10 -P. 2381-2388] или 4-(диметиламино)пиридина в абсолютном дихлорметане с последующим алкоголизом продукта ацилирования [A practical synthesis of thienamycin /Melillo D.G., Shinkai I., Liu Т., et al. //Tetrahedron Lett. -1980. -Vol. 21 -P. 2783-2786].
Недостатком этих способов является использование дорогостоящих ацилирующих агентов, наряду с дорогостоящим основанием (4-(диметиламино)пиридином). Выход целевых продуктов не превышает 12% (при использовании пиридина) и 60-72% (при использовании 4-(диметиламино)пиридина).
Известен способ получения 4-замещенных алкил 3-оксобутаноатов, заключающийся в ацилировании 2,2-диметил-1,3-диоксан-4,6-диона ацилхлоридами в присутствии безводного пиридина в абсолютном дихлорметане с последующим расщеплением продуктов ацилирования алкоголизом [Oikawa Y., Sugano К., Yonemitsu О. /Meldrum's acid in organic synthesis. 2. A general and versatile synthesis of β-ketoesters //J. Org. Chem. -1978. -Vol. 43, №10 -P. 2087-2088].
Несмотря на то, что в случае простых алифатических алкил 3-оксобутаноатов этот метод позволяет получить целевые продукты с выходом до 92% [Oikawa Y., Sugano К., Yonemitsu О. /Meldrum's acid in organic synthesis. 2. A general and versatile synthesis of β-ketoesters //J. Org. Chem. -1978. -Vol. 43, №10 - P. 2087-2088], в случае 4-арилзамещенных алкил 3-оксобутаноатов он не дает стабильного выхода целевых продуктов и, в ряде случаев, позволяет получить целевые продукты с выходом лишь 27-48% [Studies on cerebral protective agents. VI. Synthesis of novel 4-(4-nitrobenzoyl)pyrimidine and related compounds with anti-anoxic activity //Chem. Pharm. Bull. -1994. - Vol. 42, №6 - P. 1279-1285; Synthesis and antiviral activity of new 3,4-dihydro-2-alkoxy-6-benzyl-4-oxopyrimidines (DABOs), specific inhibitors of human immunodeficiency virus type 1 / Massa S., Mat A., Artico M., et al. // Antivir. Chem. Chemother. -1995. -Vol. 6, N 1 -P. 1-8.].
Недостатком данного метода является также относительно низкая степень чистоты целевых продуктов.
Известен способ получения 4-замещенных алкил 3-оксобутаноатов путем ацилирования 2,2-диметил-1,3-диоксан-4,6-диона ацилхлоридами в безводном дихлорметане в присутствии основания Хюнига (N-этил-N,N-диизопропиламина) с последующим алкоголизом продукта ацилирования [Moody C.J., Rahimtoola K.F. / Diels-Alder reactivity of pyrano[4,3-b]indol-3-ones, indole 2,3-quinodimethane analogues // J. Chem. Soc., Perkin. Trans. I -1990.-P. 673-679.].
Недостатком данного метода является использование дорогостоящего основания, в то время как выход целевого продукта не превышает 85%.
Наиболее близким является способ получения 4-замещенных алкил 3-оксобутаноатов путем ацилирования 2,2-диметил-1,3-диоксан-4,6-диона ацилхлоридами в присутствии безводного триэтиламина в безводном дихлорметане с последующим акоголизом продуктов ацилирования [Навроцкий М.Б. Синтез, противовирусная и цитотоксическая активность 6-бензгидрил-2-(алкилтио)-4(3H)-пиримидинонов // Автореферат Канд. Дисс.-Пятигорск, стр.8-10, 2002].
Недостатком этого способа является то, что выход 4-арилзамещенных алкил 3-оксобутаноатов не превышает 78-87%, а выход 4-(1-адамантил)-3-оксобутаноатов - 62%.
Задачей предлагаемого технического решения является разработка нового технологичного способа получения 4-замещенных алкил 3-оксобутаноатов, позволяющего проводить синтез в мягких условиях, с использованием дешевых основания и растворителя и получением целевых продуктов с высокими выходом и степенью чистоты.
Техническим результатом является повышение выхода и чистоты заявляемых соединений.
Предлагаемый технический результат достигается в способе получения 4-замещенных алкил 3-оксобутаноатов общей формулы:
Figure 00000003
где
R=С6Н5СН2, 2-F-6-СlС6Н3СН2, 2,6-Сl2С6Н3СН2, 1-C10H7CH2, Рh2СН; Аlk=Me;
R=1-AdCH2, Alk=i-Pr,
заключающемся в ацилировании в дихлорметане 2,2-диметил-1,3-диоксан-4,6-диона ацилхлоридами в присутствии триэтиламина с последующим алкоголизом 5-(1-гидроксиэтилиден)-2,2-диметил-1,3-диоксан-4,6-диона, причем ацилирование осуществляется ацилхлоридами в присутствии триметилсилилхлорида, при мольном соотношении 2,2-диметил-1,3-диоксан-4,6-дион: ацилхлорид: триметилсилилхлорид: триэтиламин, равном 1-2:1:1,1:3,5, с образованием промежуточного продукта 5-[1-(триметилсилилокси)этилиден]-2,2-диметил-1,3-диоксан-4,6-диона, который подвергается гидролизу с образованием 5-(1-гидроксиэтилиден)-2,2-диметил-1,3-диоксан-4,6-диона, с его последующим алкоголизом и образованием целевого продукта.
В качестве ацилхлоридов используются 2-фенилацетилхлорид, 2-(2-фтор-6-хлорфенил)ацетилхлорид, 2-(2,6-дихлорфенил)ацетилхлорид, 2-(1-нафтил)ацетилхлорид, 2,2-дифенилацетилхлорид или 2-(1-адамантил)ацетилхлорид.
Сущностью предлагаемого способа является ацилирование 2,2-диметил-1,3-диоксан-4,6-диона с сопутствующим силилированием образующегося 5-(1-гидроксиэтилиден)-2,2-диметил-1,3-диоксан-4,6-диона, гидролизом продукта силилирования и алкоголизом гидролизата:
Figure 00000004
где
R=С6Н5СН2, 2-F-6-СlС6Н3СН2, 2,6-Сl2С6Н3СН2, 1-С10Н7СН2, Рh2СН; Alk=Me.
R=1-AdCH2, Alk=i-Pr
Применение триметилсилилхлорида при проведении ацилирования 2,2-диметил-1,3-диоксан-4,6-диона не является традиционным. Эта модификация процесса ацилирования направлена на превращение образующегося 2,2-диметил-5-(2-гидроксиэтилиден)-2,2-диметил-1,3-диоксан-4,6-диона в его триметилсилиловый эфир. Это позволяет полностью предотвратить протекание процесса O-ацилирования 2,2-диметил-5-(2-гидроксиэтилиден)-2,2-диметил-1,3-диоксан-4,6-диона, что существенно повышает выход целевого 4-замещенного 3-оксобутаноата и практически исключает образование побочных продуктов (соответствующей исходному ацилхлориду кислоты и ее алкилового эфира), образующихся по следующим схемам.
Схема образования примеси алкилового эфира кислоты, соответствующей исходному ацилхлориду:
Figure 00000005
Схема образования кислоты, соответствующей исходному ацилхлориду:
Figure 00000006
Необходимость применения избытка триметилсилилхлорида обусловлена гидролитической нестабильностью реагента и его частичным гидролизом при проведении манипуляций. В связи с этим применение стехиометрического количества триметилсилилхлорида приводит к снижению выхода целевого 4-замещенного алкил 3-оксобутаноата. Применение избытка триметилсилилхлорида свыше 1,1 не приводит к повышению выхода целевого продукта.
Триэтиламин берется в избытке в связи с тем, что 2 эквивалента основания расходуются для связывания двух эквивалентов хлористого водорода, отщепляющегося при ацилировании и силилировании, а еще 1,5 эквивалента служат для эффективного депротонирования 2,2-диметил-1,3-диоксан-4,6-диона.
2,2-Диметил-1,3-диоксан-4,6-дион также берется в избытке по отношению к ацилхлориду для обеспечения полной конверсии последнего в целевой продукт. При применении стехиометрического количества 2,2-диметил-1,3-диоксан-4,6-диона приводит к снижению выхода 4-замещенных алкил-3-оксобутаноатов. Применение избытка 2,2-диметил-1,3-диоксан-4,6-диона свыше 1,03 также приводит к снижению выхода целевых продуктов за счет осложнения процедуры его очистки.
Преимуществом данного способа является возможность получения практически любых 4-замещенных алкил 3-оксобутаноатов с выходом, близким количественному, и высокой степенью чистоты.
Предлагаемый способ осуществляется следующим образом.
Получение 4-замещенных 3-оксобутаноатов.
В трехгорлый реактор с магнитной мешалкой, снабженный внутренним термометром, капельной воронкой с компенсатором давления и влагозащитной трубкой, помещается безводный дихлорметан и переосажденный 2,2-диметил-1,3-диоксан-4,6-дион. Полученная смесь перемешивается при охлаждении льдом. Когда температура смеси достигает 0°С, к реакционной массе по каплям, в течение 30 минут прибавляется безводный триэтиламин. После прибавления примерно половины триэтиламина температура реакционной массы достигает 10-15°С, а к концу прибавления триэтиламина вновь опускается до 0°С. Затем к реакционной массе при перемешивании по каплям прибавляется триметилсилилхлорид. При этом также происходит незначительное повышение температуры реакционной массы и последующее ее понижение до 0°С. При этой температуре к реакционной смеси по каплям при интенсивном перемешивании прибавляется раствор ацилхлорида в безводном дихлорметане. Скорость прибавления раствора ацилхлорида регулируется таким образом, чтобы внутренняя температура не превышала 2°С.
После прибавления всего раствора ацилхлорида реакционная масса перемешивается еще 1 час при 0°С. Затем ледяная баня убирается, и реакционная масса перемешивается до тех пор, пока ее температура не достигнет 22°С. При этой температуре реакционная масса перемешивается еще 1-24 часа. Затем реакционная смесь выливается в смесь 2N серной кислоты и льда. Полученная двухфазная система интенсивно встряхивается в делительной воронке. Органический слой отделяется, а водный извлекается дихлорметаном. Объединенные органические вытяжки промываются 2N водным раствором холодной серной кислоты, водой и сушатся безводным сульфатом натрия. После фильтрования от осушителя растворитель удаляется в вакууме водоструйного насоса при температуре бани не выше 40°С. К остатку прибавляется абсолютный алканол, и реакционная смесь кипятится с обратным холодильником и защитой от влаги в течение 3-х часов. После удаления растворителя в вакууме водоструйного насоса остаток очищается вакуумной перегонкой.
Изобретение иллюстрируется следующими примерами:
Пример 1. Метил 3-оксо-4-фенилбутаноат.
Figure 00000007
В трехгорлый реактор на 100 мл с магнитной мешалкой, снабженный внутренним термометром, капельной воронкой с компенсатором давления и влагозащитной трубкой, помещается безводный дихлорметан (20 мл) и переосажденный 2,2-диметил-1,3-диоксан-4,6-дион (7,06 грамма, 49,0 ммоль). Полученная смесь перемешивается при охлаждении льдом. Когда температура смеси достигает 0°С, к реакционной массе по каплям, в течение 30 минут прибавляется безводный триэтиламин (16,82 г, 166,3 ммоль). После прибавления примерно половины триэтиламина температура реакционной массы достигает 10-15°С, а к концу прибавления триэтиламина вновь опускается до 0°С. Затем к реакционной массе при перемешивании по каплям прибавляется триметилсилилхлорид (5,68 г, 52,3 ммоль). При этом также происходит незначительное повышение температуры реакционной массы и последующее ее понижение до 0°С. При этой температуре к реакционной массе по каплям при интенсивном перемешивании прибавляется раствор свежеперегнанного 2-фенилацетилхлорида (7,35 г, 47,5 ммоль) в безводном дихлорметане (15 мл). Скорость прибавления раствора хлорангидрида регулируется таким образом, чтобы внутренняя температура не превышала 2°С (на это требуется около 2,5 часов). После прибавления всего раствора хлорангидрида реакционная масса перемешивается еще 1 час при 0°С. Затем ледяная баня убирается, и реакционная масса перемешивается до тех пор, пока ее температура не достигнет 22°С. При этой температуре реакционная масса перемешивается еще 1 час. Затем реакционная смесь выливается в смесь 2N серной кислоты (65 мл) и 100 г льда. Полученная двухфазная система интенсивно встряхивается в делительной воронке. Органический слой отделяется, а водный -извлекается дихлорметаном (3·15 мл). Объединенные органические вытяжки промываются 2N водным раствором холодной серной кислоты (50 мл), водой (50 мл) и сушатся безводным сульфатом натрия. После фильтрования от осушителя растворитель удаляется в вакууме водоструйного насоса при температуре бани не выше 40°С. К остатку прибавляется абсолютный метанол (75 мл), и реакционная смесь кипятится с обратным холодильником и защитой от влаги в течение 3-х часов. После удаления растворителя в вакууме водоструйного насоса остаток очищается вакуумной перегонкой. Выход метил 3-оксо-4-фенилбутаноата - 9,04 г (99%). Т. кип.111-112°С/3 мм рт. ст.
Соотношения исходных реагентов: 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин составляют 1,03:1:1,1:3,5.
Пример 2. Метил 3-оксо-4-фенилбутаноат.
Figure 00000007
Выполняется аналогично примеру 1, за исключением соотношения исходных реагентов: 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин составляют 1:1:1,1:3,5.
Выход метил 3-оксо-4-фенилбутаноата - 93%.
Пример 3. Метил 3-оксо-4-фенилбутаноат.
Figure 00000007
Выполняется аналогично примеру 1, за исключением соотношения исходных реагентов: 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин составляют 2:1:1,1:3,5.
Выход метил 3-оксо-4-фенилбутаноата - 96%.
Пример 4. Метил 4-(2-фтор-6-хлорфенил)-3-оксобутаноат.
Figure 00000008
Выполняется аналогично примеру 1, за исключением использования 2-(2-фтор-6-хлорфенил)ацетилхлорида в качестве ацилхлорида. Соотношения исходных реагентов: 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин составляют 1,03:1:1,1:3,5.
Выход метил 3-оксо-4-(2-фтор-6-хлорфенил)бутаноата -94%.
Т. кип.131-132°С/3 мм рт. ст. Т. пл. 51.5-53°С (из петр. эфира 40-70).
Масс-спектр, m/z (Iотн, %): 244 (11.1%) [M+], 213 (1.6%), 185 (2.4%), 171 (9.5%), 143 (91.3%), 115 (19.8%), 101 (81.7%), 59 (100%)
Пример 5. Метил 4-(2,6-дихлорфенил)-3-оксобутаноат.
Figure 00000009
Выполняется аналогично примеру 1, за исключением использования 2-(2,6-дихлорфенил)ацетилхлорида в качестве ацилхлорида. Соотношения исходных реагентов: 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин составляют 1,03:1:1,1:3,5.
Выход метил 3-оксо-4-(2,6-дихлорфенил)бутаноата - 94%.
Т. кип.145-146°С/1-2 мм рт. ст. Т. пл. 82,5-84°С (из петр. эфира 40-70).
Масс-спектр, m/z (Iотн, %): 260 (8.9%) [М+], 229 (1.4%), 201 (5.5%), 159 (40.4%), 123 (21.2%), 101 (100%), 73 (13.0%), 59 (76.7%)
Пример 6. Метил 4-(1-нафтил)-3-оксобутаноат.
Figure 00000010
Выполняется аналогично примеру 1, за исключением использования 2-(1-нафтил)ацетилхлорида в качестве ацилхлорида. Соотношения исходных реагентов: 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин составляют 1,03:1:1,1:3,5.
Выход метил 3-оксо-4-(1-нафтил)бутаноата - 97%.
Т. кип.183-184°С/2 мм рт. ст. n24D=1,588
Масс-спектр, m/z (Iотн, %): 242 (11.5%) [M+], 211 (2.7%), 183 (1.8%), 169 (22.1%), 141 (100%), 115 (33.6%), 101 (22.1%), 59 (23.9%)
Пример 7. Метил 4,4-дифенил-3-оксобутаноат.
Figure 00000011
Выполняется аналогично примеру 1, за исключением использования 2,2-дифенилацетилхлорида в качестве ацилхлорида. Соотношения исходных реагентов: 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин составляют 1,03:1:1,1:3,5.
Выход метил 3-оксо-4,4-дифенилбутаноата - 98%.
Т. кип.172-174°С/1-2 мм рт. ст. n28.5D=1,562
Масс-спектр, m/z (Iотн, %): 268 (5.4%) [M+], 195 (2.3%), 167 (100%), 101 (31.5%), 91 (4.6%), 77 (10%), 73 (17.7%), 59 (15.4%)
Пример 8. Изопропил 4-(1-адамантил)-3-оксобутаноат.
Figure 00000012
Выполняется аналогично примеру 1, за исключением использования 2-(1-адамантил)ацетилхлорида в качестве ацилхлорида, времени перемешивания реакционной массы - 24 часа и применения изопропанола, вместо метанола при алкоголизе. Соотношения исходных реагентов: 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин составляют 1,03:1:1,1:3,5.
Выход изопропил 4-(1-адамантил)-3-оксобутаноата -90%.
Т. кип.163-165°С/1-2 мм рт. ст.
Масс-спектр, m/z (Iотн, %): 278 (1.4%) [M+], 235 (1.5%), 219 (1.5%), 191 (1.3%), 177 (5.7%), 149 (3.6%), 135 (100%), 107 (7.1%)
Как следует из представленных примеров, предложенный нами способ получения 4-замещенных алкил 3-оксобутаноатов является технологичным, позволяет получать широкий спектр указанных соединений с высоким выходом и высокой чистотой.

Claims (2)

1. Способ получения 4-замещенных алкил 3-оксобутаноатов общей формулы
Figure 00000013
где R=С6H5СН2, 2-F-6-ClC6Н3СН2, 2,6-Cl2С6Н3СН2, 1-C10H7CH2, Ph2СН; Alk=Me;
R=1-AdCH2, Alk=i-Pr
заключающийся в ацилировании в дихлорметане 2,2-диметил-1,3-диоксан-4,6-диона ацилхлоридами в присутствии триэтиламина с последующим алкоголизом 5-(1-гидроксиэтилиден)-2,2-диметил-1,3-диоксан-4,6-диона, отличающийся тем, что ацилирование осуществляется ацилхлоридами в присутствии триметилсилилхлорида, при мольном соотношении 2,2-диметил-1,3-диоксан-4,6-дион:ацилхлорид:триметилсилилхлорид:триэтиламин, равном 1-2:1:1,1:3,5, с образованием промежуточного продукта 5-[1-(триметилсилилокси)этилиден]-2,2-диметил-1,3-диоксан-4,6-диона, который подвергается гидролизу с образованием 5-(1-гидроксиэтилиден)-2,2-диметил-1,3-диоксан-4,6-диона, с его последующим алкоголизом и образованием целевого продукта.
2. Способ по п.1, отличающийся тем, что в качестве ацилхлоридов используются 2-фенилацетилхлорид, 2-(2-фтор-6-хлорфенил)ацетилхлорид, 2-(2,6-дихлорфенил)ацетилхлорид, 2-(1-нафтил)ацетилхлорид, 2,2-дифенилацетилхлорид или 2-(1-адамантил)ацетилхлорид.
RU2003138160/04A 2003-12-31 2003-12-31 Способ получения 4-замещенных алкил 3-оксобутаноатов RU2254328C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003138160/04A RU2254328C1 (ru) 2003-12-31 2003-12-31 Способ получения 4-замещенных алкил 3-оксобутаноатов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003138160/04A RU2254328C1 (ru) 2003-12-31 2003-12-31 Способ получения 4-замещенных алкил 3-оксобутаноатов

Publications (1)

Publication Number Publication Date
RU2254328C1 true RU2254328C1 (ru) 2005-06-20

Family

ID=35835770

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003138160/04A RU2254328C1 (ru) 2003-12-31 2003-12-31 Способ получения 4-замещенных алкил 3-оксобутаноатов

Country Status (1)

Country Link
RU (1) RU2254328C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110308A2 (en) * 2007-03-09 2008-09-18 Syngenta Participations Ag Novel herbicides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Навроцкий М.Б. Синтез и изучение фармакологической активности новых производных 6-арилметил-4(3Н)-пиримидинона: Автореферат канд. дисс. Пятигорск, 2002 с. 8-10. WO 99/16740 A1 (THE PROCTER & GAMBLE COMPANY), 08.04.1999. DE 19730940 C1 (The Associated Octel Co., Ltd.), 24.09.1998. DE 4116906 A1 (Wacker-Chemie GmbH), 26.11.1992. Навроцкий М.Б. Синтез, противовирусная и цитотоксическая активность 2-(алкилтио)-6-бензгидрил-4(3Н)-пиримидинонов. Химико-фармацевтический журнал, № 9, с. 22-24, 2003. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110308A2 (en) * 2007-03-09 2008-09-18 Syngenta Participations Ag Novel herbicides
WO2008110308A3 (en) * 2007-03-09 2008-12-11 Syngenta Participations Ag Novel herbicides
US8084649B2 (en) 2007-03-09 2011-12-27 Syngenta Crop Protection, Inc. Herbicides
AU2008226027B2 (en) * 2007-03-09 2014-01-30 Syngenta Limited Novel herbicides

Similar Documents

Publication Publication Date Title
US4147702A (en) 1,4-Dioxane polycarboxylates
CZ299215B6 (cs) Zpusob výroby hemivápenaté soli (E)-7-[4-(4-fluorofenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl] (3R,5S)-3,5-dihydroxy-6-heptenovékyseliny
TWI294426B (en) Process for the preparation of ccr-2 antagonist
Hui et al. A rapid and efficient Biginelli reaction catalyzed by zinc triflate
HUT71118A (en) 7-oxabicycloheptane-carboxylic-acid prostaglandin analog intermediates and method for preparing them
KR100535450B1 (ko) 피리미딘유도체의제조방법
RU2254328C1 (ru) Способ получения 4-замещенных алкил 3-оксобутаноатов
KR100598079B1 (ko) 신규의 보로네이트 에스테르
KR101091130B1 (ko) 로슈바스타틴의 전구체 및 그의 제조 방법
JP5968900B2 (ja) ロスバスタチン塩の製法
WO2008103016A1 (en) Atorvastatin intermediates and method for producing the same
WO2009047576A1 (en) Process for preparation of pharmaceutical intermediates
US6806380B2 (en) Modified safe and efficient process for the environmentally friendly synthesis of imidoesters
US20060199855A1 (en) Process for producing atorvastatin hemicalcium
KR101063146B1 (ko) 피타바스타틴 중간체의 제조방법 및 이를 이용한 피타바스타틴 헤미 칼슘염의 제조방법
KR101253367B1 (ko) 5―클로로―2,4-디히드록시피리딘의 제조방법
JP2000143593A (ja) 2―(トリハロアセチル)―3―(置換アミノ)―2―プロペノエ―トの製造方法
WO1997041124A1 (fr) Procede pour la preparation de tetrahydroindolizines
KR20120092788A (ko) 스타틴의 중간체, 이의 제조방법 및 이를 이용한 로수바스타틴의 제조방법
US6051711A (en) Synthesis of swainsonine salts
IL206433A (en) A method for producing a cyclopropanecarboxylic acid compound and an intermediate for it
JP2013510111A (ja) 1,3−二置換ピラゾール化合物の調製方法
CN101293854B (zh) 培美曲塞的新中间体及制备方法与应用
TWI551592B (zh) 以兩步驟來製備3,5-二側氧己酸酯
JPH05255231A (ja) ω−(O−置換ウレタン)−アルキルカルボン酸エステルの製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130101