RU2253870C1 - РЕКОМБИНАНТНЫЕ БЕЛКИ, СОДЕРЖАЩИЕ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ЭПИТОПЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ, И ПОСЛЕДОВАТЕЛЬНОСТИ СИНТЕТИЧЕСКИХ ГЕНОВ, КОДИРУЮЩИХ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ДЕТЕРМИНАНТЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ - Google Patents
РЕКОМБИНАНТНЫЕ БЕЛКИ, СОДЕРЖАЩИЕ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ЭПИТОПЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ, И ПОСЛЕДОВАТЕЛЬНОСТИ СИНТЕТИЧЕСКИХ ГЕНОВ, КОДИРУЮЩИХ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ДЕТЕРМИНАНТЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ Download PDFInfo
- Publication number
- RU2253870C1 RU2253870C1 RU2004112501/15A RU2004112501A RU2253870C1 RU 2253870 C1 RU2253870 C1 RU 2253870C1 RU 2004112501/15 A RU2004112501/15 A RU 2004112501/15A RU 2004112501 A RU2004112501 A RU 2004112501A RU 2253870 C1 RU2253870 C1 RU 2253870C1
- Authority
- RU
- Russia
- Prior art keywords
- sars
- cov
- seq
- protein
- sequences
- Prior art date
Links
Landscapes
- Peptides Or Proteins (AREA)
Abstract
Изобретение относится к диагностике атипичных пневмоний с помощью молекулярно-биологических методов, а также к биотехнологии и генной инженерии. Предложены на основе идентифицированных антигенных эпитопов белков SARS-CoV ДНК-последовательности синтетических генов, кодирующих фрагменты рекомбинантного белка, содержащие антигенные детерминанты белков коронавируса SARS-CoV, представленные нуклеотидными последовательностями SEQ ID NO: 1 - SEQ ID NO: 8, а также фрагменты белка SARS-CoV вируса, кодируемые данными ДНК-последовательностями, представленные на фиг.1 аминокислотными последовательностями SEQ ID NO: 10 - SEQ ID NO: 17, при этом фрагменты выделены с использованием предварительно полученного слитого белка путем присоединения к его N-терминальному концу белка GST-S-трансферазы, имеющего последовательность SEQ ID NO: 9. Слитые белки обеспечивают получение диагностических препаратов и могут быть использованы при диагностике SARS-CoV вируса острого респираторного вируса. 2 н.п. ф-лы.
Description
Изобретение относится к биотехнологии и генной инженерии, а именно к предсказанию диагностически-значимых антигенных эпитопов белков коронавируса (SARS-CoV), связанного с тяжелым острым респираторным синдромом, а также к получению рекомбинантных белков, содержащих предсказанные теоретическим путем диагностически-значимые антигенные детерминанты белков коронавируса (SARS-CoV), связанного с тяжелым острым респираторным синдромом.
Возбудитель тяжелого острого респираторного синдрома (ТОРС или англ. - SARS) принадлежит к семейству коронавирусов, вызывающих известные заболевания людей и домашних животных. По антигенным свойствам коронавирусы разделяют на 3 группы. К I группе принадлежит респираторный коронавирус человека 229Е, коронавирусы кошек, собак и свиней. Ко II группе принадлежит человеческий коронавирус ОС43, вирус гепатита мышей и коронавирус телят. Кишечные коронавирусы человека и вирусы инфекционного бронхита птиц составляют III группу. По данным анализа нуклеотидной последовательности коронавируса, вызывающего SARS, филогенетически он не принадлежит ни к одной из известных антигенных групп коронавирусов и имеет ряд существенных отличий в геноме от известных ранее вирусов этого семейства. Все известные коронавирусы вызывают, как правило, либо респираторные инфекции различной степени тяжести, либо кишечные инфекции и неврологические синдромы. Инфекция передается аэрозольным, фекально-оральным и контактным путями. Все коронавирусы обладают широким тропизмом и поэтому могут поражать помимо дыхательных путей также печень, почки, сердце и глаза. Типичная коронавирусная инфекция клинически проявляется гриппоподобным заболеванием и/или желудочно-кишечным расстройством. SARS представляет собой наиболее тяжелую форму коронавирусной инфекции, которая в России больше известна под названием “атипичная пневмония”.
Это заболевание впервые было обнаружено в ноябре 2002 г. и получило наиболее широкое распространение в странах Юго-Восточной Азии (Китай, Гонконг, Тайвань, Сингапур, Вьетнам, Малайзия, Таиланд) и Северной Америки (США, Канада). Кроме того, случаи заболевания зарегистрированы в некоторых странах Европы (Франция, Германия, Италия, Ирландия, Румыния, Испания, Швейцария и Великобритания), Южной Америки (Бразилия), Японии и Южной Африки. По данным ВОЗ по состоянию на 19 июня 2003 г. всего в мире заболело более 8400 человек, из которых 806 умерло (Бюллетень Вакцинация, грипп, №3 (27) май/июнь 2003 г.).
Наибольшее значение для диагностики атипичных пневмоний в настоящее время приобретают иммунологические и молекулярно-биологические методы (иммуноферментный анализ, иммунофлюоресценция, полимеразная цепная реакция). Носительство и персистенция, характерные для инфекций, вызываемых данной группой возбудителей, обусловливают необходимость особенно тщательной интерпретации серологических реакций и результатов молекулярно-биологических методов исследования. Дальнейшее совершенствование диагностики атипичных пневмоний связано с поиском новых специфичных антигенных и нуклеотидных маркеров возбудителей, постановкой этиологического диагноза в начальной фазе заболевания, снижением стоимости наиболее чувствительных диагностических тест-систем.
К настоящему времени ученым нескольких исследовательских лабораторий Америки, Голландии и Германии независимо друг от друга удалось полностью расшифровать геном этого вируса. Как оказалось, геном представлен последовательностью 29727 нуклеотидов. Он включает 11 открытых рамок считывания (ORF) и его структурная организация близка к другим представителям семейства коронавирусов. Предложено название для нового вируса: SARS - ассоциированный коронавирус Урбани (Urbani SARS-associated coronavirus) в честь врача Carolo Urbani, погибшего при проведении исследований в самом начале эпидемии SARS.
Сейчас помимо известного штамма Урбани изучены еще три варианта вируса SARS. При сравнении полученных данных показано, что все геномы чрезвычайно близки друг с другом и отличаются только по 24 из 29727 позиций нуклеотидов. Геном вируса представлен полиаденилированой РНК, содержащей в своем составе 41% Г и Ц нуклеотидных остатков (Г/Ц-насыщенность геномов известных коронавирусов составляет 37-42%). Расположение ORF в геноме типично для коронавирусов. На 5’-конце - ген rep, включающий ORF1 и ORF2, которые кодируют полипептиды, подвергающиеся процессингу с образованием ферментов вируса; затем - гены, кодирующие структурные белки, четыре из которых: S (шипа), Е (оболочки), М (мембраны) и N (нуклеокапсида) являются характерными для всех коронавирусов. Продукты rep гена образуются в результате прямой трансляции геномной РНК, тогда как для синтеза других вирусных белков необходима предварительная транскрипция с образованием отдельных молекул мРНК.
Ген гемагглютининэстеразы, присутствующий у коронавирусов второй и некоторых представителей третьей группы, в геноме SARS-CoV не обнаружен.
Сравнительный анализ нуклеотидных последовательностей, кодирующих ферменты и структурные белки вируса SARS и других коронавирусов, указывает на высокую гомологию данных участков геномов. Вместе с тем различия в соответствующих нуклеотидных последовательностях позволяют провести четкую границу между вирусом SARS и другими коронавирусами. Полная расшифровка генома вируса SARS ясно демонстрирует то, что данный вирус несет в себе черты рода коронавирусов и в то же время отличается от всех известных представителей этой группы.
Несмотря на известную нуклеотидную последовательность генома вируса SARS, вопрос о его происхождения до сих пор остается открытым, и потенциальный предшественник данного вируса среди коронавирусов животных еще не известен.
Иммуногистохимические и иммунофлюоресцентные тесты показали наличие реакции на поликлональные антитела к коронавирусам I группы.
В настоящее время разработаны диагностические тесты на основе иммуноферментного анализа, сконструированные с использованием лизатов нативных SARS-CoV.
Например, были синтезированы пептиды величиной 16-25 аминокислотных остатков относительно высокой гидрофильности. Четыре эпитопных участка, S599, M137, N66 и N371-404, в белках S, М и N SARS-CoV соответственно были определены скринингом синтезированных пептидов. Особенно N371 и N385, на СООН конце N белка, ингибировали связывание антител к лизату SARS-коронавируса и связывали антитела в n>94% образцов от SARS исследуемых пациентов. Таким образом, некоторые из пептидов оказались высокоиммуногенными и были предложены для серологического анализа (Wang J и др. Assessment of Immunoreactive Synthetic Peptides from the Structural Proteins of Severe Acute Respiratory Syndrome Coronavirus, Clin Chem. 2003 Nov 13).
В настоящее время не описано рекомбинантных белков, содержащих диагностически-значимые антигенные детерминанты белков коронавируса, связанного с тяжелым острым респираторным синдромом (SARS-CoV).
Задача изобретения состояла в идентификации диагностически - значимых антигенных эпитопов белков данного вируса и конструировании синтетических генов, позволяющих синтезировать рекомбинантные белки, содержащие предсказанные эпитопы.
Разработка рекомбинантных антигенов проводилась на основе данных анализа опубликованной аминокислотной последовательности SARS-CoV коронавируса штамма Urban! (accession number AY 278741).
Анализ выбранных белковых последовательностей проводили при помощи программы DNASTAR Lasergene (Windows версия; DNASTAR Inc., Madison, WI) (http://www. dnastar. com/). Было проведено сравнение выбранных белковых последовательностей SARS-CoV вируса для идентификации консервативных аминокислотных последовательностей. На основе анализа индекса антигенности, гидрофильности, наличия Р- и рэндом структур, вероятности нахождения на поверхности вируса и подвижности были предсказаны и выбраны для синтеза рекомбинантных белков последовательности, содержащие потенциальные эпитопы белков SARS-CoV вируса.
Одним из приемлемых антигенов для определения вирусспецифичных антител является нуклеокапсидный белок, поскольку для него специфичны большинство антител, образующихся в организме во время инфекции. Известно, что уровень экспрессии этого белка в инфицированных клетках очень высок. В структуре нуклеокапсидного белка имеются как консервативные, так и вариабельные эпитопы. Таким образом, для детекции антивирусных антител предпочтителен выбор данного компонента вируса.
Кроме нуклеокапсидного белка антигенными свойствами обладают также белки Е, М, S, включающие определенные фрагменты.
В нуклеокапсидном белке (N) SARS-CoV вируса было идентифицировано 3 антигенных эпитопа, расположенных в пределах 1-49 аминокислоты (последовательность 1), 191-221 аминокислоты (последовательность 2), 339-390 аминокислоты последовательность 3).
В аминокислотной последовательности поверхностного белка Е SARS-CoV вируса было идентифицировано два маленьких эпитопа, расположенные на N- и С-концах белковой молекулы. Ввиду небольшого размера белковой молекулы (76 аминокислот) было решено синтезировать полный белок (последовательность 4).
При анализе аминокислотной последовательности матричного белка М была идентифицирована эпитопная композиция, расположенная на С-конце белковой последовательности, в пределах 182-221 аа (последовательность 5). При анализе аминокислотной последовательности S белка SARS-CoV вируса были идентифицированы потенциальные антигенные эпитопы в пределах 12-53 аминокислоты (последовательность 7), в пределах 90-115 аминокислоты (последовательность 8), в пределах 171-203 аминокислоты (последовательность 9), в пределах 408-470 аминокислоты (последовательность 11), в пределах 540-573 аминокислоты (последовательность 12), в пределах 1051-1076 аминокислоты (последовательность 14), в пределах 1121-1154 аминокислоты (последовательность 15), в пределах 1162-1190 аминокислоты (последовательность 16). Нами было решено не синтезировать в виде отдельного белка последовательность 2, а получить мозаичный белок, содержащий 2 предсказанных эпитопа нуклеокапсидного белка SARS-CoV вируса, расположенных в пределах 1-49аа и 191-221аа (последовательность 6). Аминокислотные последовательности, идентифицированные на основе анализа S белка, были объединены в три мозаичных белка (последовательности 10, 13, 17).
Аминокислотная последовательность была ретранслирована в нуклеотидную последовательность, которая использовалась для дизайна синтетических олигонуклеотидов. Синтетические олигонуклеотиды были использованы для синтеза генов.
Дизайн синтетических олигонуклеотидов и праймеров проводили с заменой вирусных кодонов на кодоны, оптимальные для экспрессии в клетках Escherichia coli.
Конструирование рекомбинантной последовательности 1-SEQ ID NO: 1.
Для получения рекомбинантной последовательности 1 проводят один раунд амплификации ДНК методом ПЦР, используя в качестве матрицы ДНК 2-х синтетических комплементарных олигонуклеотидов размером 78 нуклеотидов каждый и ДНК двух синтетических олигонуклеотидов в качестве праймеров, содержащих сайты узнавания для рестриктаз BamHl и Xho l.
ПЦР проводят в следующих условиях: 25 циклов ПЦР (45 с 94°С, 20 с 50°С, 1 мин 72°С) и инкубация 7 мин при 72°С. В результате получают фрагмент ДНК размером 147 п.о.
Данный фрагмент представляет собой ДНК-последовательность, кодирующую фрагмент белка нуклекапсида SARS-CoV вируса с 1-49 аминокислоту - SEQ ID NO: 1 (см. Приложение 1 в конце текста).
Конструирование рекомбинантной последовательности 3-SEQ ID NO: 2.
Для получения рекомбинантной последовательности 3 проводят один раунд амплификации ДНК методом ПЦР, используя в качестве матрицы ДНК 2-х синтетических комплементарных олигонуклеотидов, размером 104 и 81 нуклеотидов каждый и ДНК двух синтетических олигонуклеотидов в качестве праимеров, содержащих сайты узнавания для рестриктаз BamHl и Xho l.
ПЦР проводят в следующих условиях: 25 циклов ПЦР (45 с 94°С, 20 с 50°С, 1 мин 72°С) и инкубация 7 мин при 72°С. В результате получают фрагмент ДНК размером 156 п.о.
Данный фрагмент представляет собой ДНК-последовательность, кодирующую фрагмент белка нуклеокапсида SARS-CoV вируса с 339-390 аминокислоту-SEQ ID NO: 2 (см. Приложение 1).
Конструирование рекомбинантной последовательности 6 - SEQ ID NO: 3
Для получения рекомбинантной последовательности 6 проводят два раунда амплификации ДНК методом ПЦР, используя в качестве матрицы ДНК 4-х синтетических комплементарных олигонуклеотидов размером 69, 69, 66, 81 нуклеотидов каждый и ДНК 4-х синтетических олигонуклеотидов в качестве праймеров, два из которых содержат сайты узнавания для рестриктаз BamHl и Хhо l.
Каждый раунд ПЦР проводят в следующих условиях: 25 циклов ПЦР (45 с 94°С, 20 с 50°С, 1 мин 72°С) и инкубация 7 мин при 72°С. В результате получают фрагмент ДНК размером 240 п.о.
Данный фрагмент представляет собой ДНК-последовательность мозаичного гена, кодирующую фрагмент белка нуклеокапсида SARS-CoV вируса с 1 по 49 аминокислоту и с 191-221 аминокислоту, при этом две аминокислотные последовательности вирусного белка соединены 3 Gly аминокислотами-SEQ ID NO: 3 (см. Приложение 1).
Конструирование рекомбинантной последовательности 4 - SEQID NO: 4.
Для получения рекомбинантной последовательности 4 проводят два раунда амплификации ДНК методом ПЦР, используя в качестве матрицы ДНК 4-х синтетических комплементарных олигонуклеотидов размером 61, 60, 63, 84 нуклеотидов каждый и ДНК 4-х синтетических олигонуклеотидов в качестве праймеров, два из которых содержат сайты узнавания для рестриктаз BamHl и Xho l.
Каждый раунд ПЦР проводят в следующих условиях: 25 циклов ПНР (45 с 94°С, 20 с 50°С, 1 мин 72°С) и инкубация 7 мин при 72°С. В результате получают фрагмент ДНК размером 228 п.о.
Данный фрагмент представляет собой ДНК-последовательность синтетического гена, кодирующую фрагмент белка Е SARS-CoV вируса с 1 по 76 аминокислоту - SEQ ID NO: 4 (см. Приложение 1).
Конструирование рекомбинантной последовательности 5-SEQ ID NO: 5
Для получения рекомбинантной последовательности 5 проводят один раунд амплификации ДНК методом ПЦР, используя в качестве матрицы ДНК 2-х синтетических комплементарных олигонуклеотидов размером 69 и 63 нуклеотидов каждый и ДНК двух синтетических олигонуклеотидов в качестве праймеров, содержащих сайты узнавания для рестриктаз BamHl и Xho l.
ПЦР проводят в следующих условиях: 25 циклов ПЦР (45 с 94°С, 20 с 50°С, 1 мин 72°С) и инкубация 7 мин при 72°С. В результате получают фрагмент ДНК размером 156 п.о.
Данный фрагмент представляет собой ДНК-последовательность мозаичного гена, кодирующую фрагмент белка S SARS-CoV вируса с 12 по 53 аминокислоту, с 90-115 аминокислоту, с 171 по 203 аминокислоту, при этом между аминокислотными последовательностями вирусного белка расположены 3 Gly аминокислоты - SEQ ID NO: 5 (см. Приложение 1).
Конструирование рекомбинантной последовательности 10 - SEQ ID NO: 6.
Для получения рекомбинантной последовательности 10 два раунда амплификации ДНК методом ПЦР, используя в качестве матрицы ДНК 4-х синтетических комплементарных олигонуклеотидов размером 96, 84, 96, 81 нуклеотидов каждый и ДНК 4-х синтетических олигонуклеотидов в качестве праймеров, два из которых содержат сайты узнавания для рестриктаз ВатНl и Хhо l.
ПЦР проводят в следующих условиях: 25 циклов ПЦР (45 с 94°С, 20 с 50°С, 1 мин 72°С) и инкубация 7 мин при 72°С. В результате получают фрагмент ДНК размером 321 п.о.
Данный фрагмент представляет собой ДНК-последовательность мозаичного гена, кодирующую фрагмент белка S SARS-CoV вируса с 408 по 470 аминокислоту и с 540-573 аминокислоту, при этом две аминокислотные последовательности вирусного белка соединены 3 Gly аминокислотами - SEQ ID NO: 6 (см. Приложение 1).
Конструирование рекомбинантной последовательности 13 - SEQ ID NO: 7.
Для получения рекомбинантной последовательности 13 два раунда амплификации ДНК методом ПЦР, используя в качестве матрицы ДНК 4-х синтетических комплементарных олигонуклеотидов размером 78, 87, 84, 87 нуклеотидов каждый и ДНК 4-х синтетических олигонуклеотидов в качестве праймеров, два из которых содержат сайты узнавания для рестриктаз BamHl и Xho l.
ПЦР проводят в следующих условиях: 25 циклов ПЦР (45 с 94°С, 20 с 50°С, 1 мин 72°С) и инкубация 7 мин при 72°С. В результате получают фрагмент ДНК размером 303 п.о.
Данный фрагмент представляет собой ДНК-последовательность мозаичного гена, кодирующую фрагмент белка S SARS-CoV вируса с 1051 по 1076 аминокислоту, с 1121-1154 аминокислоту, с 1162 по 1190 аминокислоту, при этом между аминокислотными последовательностями вирусного белка расположены 3 Gly аминокислоты-SEQ ID NO: 7 (см. Приложение 1).
Конструирование рекомбинантной последовательности 17-SEQ ID NO: 8.
Для получения рекомбинантной последовательности 17 два раунда амплификации ДНК методом ПЦР, используя в качестве матрицы ДНК 4-х синтетических комплементарных олигонуклеотидов размером 96, 84, 96, 81 нуклеотидов каждый и ДНК 4-х синтетических олигонуклеотидов в качестве праймеров, два из которых содержат сайты узнавания для рестриктаз BamHl и Xho l.
ПЦР проводят в следующих условиях: 25 циклов ПЦР (45 с 94°С, 20 с 50°С, 1 мин 72°С) и инкубация 7 мин при 72°С. В результате получают фрагмент ДНК размером 285 п.о.
Данный фрагмент представляет собой ДНК-последовательность гена, кодирующую фрагмент белка М SARS-CoV вируса с 182 по 221 аминокислоту - SEQ ID NO: 8 (см. Приложение 1).
Фрагменты рекомбинантных белков, кодируемые ДНК-последовательностями, были синтезированы в виде слитых белков (фьюжн-белков) с Glutathione-S-transferase, что позволяло проводить их очистку методом аффинной хроматографии.
Последовательности слитых белков включают последовательность белка
GST-S-transferase (1-244 аминокислота) - SEQ ID NO: 9 (см. Приложение 1) и последовательность соответствующего фрагмента белка SARS-CoV вируса SEQ ID NO 10 - SEQ ID NO 17.
Последовательности фрагментов белков, кодируемых ДНК-последовательностями, приведены как SEQ ID NO: 10 - SEQ ID NO: 17 в Приложении 1.
Слитые белки используются для производства диагностических препаратов. Вышеописанное изобретение может найти широкое применение в области диагностики и медицины.
Claims (2)
1. ДНК-последовательность синтетического гена, кодирующая фрагмент, содержащий антигенные детерминанты белков коронавируса SARS-CoV, выбранная из группы, представленной на фиг.1 нуклеотидными последовательностями SEQ ID NO : 1 - SEQ ID NO : 8.
2. Фрагмент, содержащий антигенные детерминанты белков коронавируса SARS-CoV, кодируемый ДНК-последовательностью по п.1, выбранный из группы, представленной на фиг.1 аминокислотными последовательностями SEQ ID NO : 10 - SEQ ID NO : 17, при этом фрагмент выделен с использованием предварительно полученного слитого белка путем присоединения к его N-терминальному концу белка GST-S-трансферазы, имеющего последовательность SEQ ID NO : 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004112501/15A RU2253870C1 (ru) | 2004-04-26 | 2004-04-26 | РЕКОМБИНАНТНЫЕ БЕЛКИ, СОДЕРЖАЩИЕ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ЭПИТОПЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ, И ПОСЛЕДОВАТЕЛЬНОСТИ СИНТЕТИЧЕСКИХ ГЕНОВ, КОДИРУЮЩИХ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ДЕТЕРМИНАНТЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004112501/15A RU2253870C1 (ru) | 2004-04-26 | 2004-04-26 | РЕКОМБИНАНТНЫЕ БЕЛКИ, СОДЕРЖАЩИЕ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ЭПИТОПЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ, И ПОСЛЕДОВАТЕЛЬНОСТИ СИНТЕТИЧЕСКИХ ГЕНОВ, КОДИРУЮЩИХ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ДЕТЕРМИНАНТЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2253870C1 true RU2253870C1 (ru) | 2005-06-10 |
Family
ID=35834613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2004112501/15A RU2253870C1 (ru) | 2004-04-26 | 2004-04-26 | РЕКОМБИНАНТНЫЕ БЕЛКИ, СОДЕРЖАЩИЕ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ЭПИТОПЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ, И ПОСЛЕДОВАТЕЛЬНОСТИ СИНТЕТИЧЕСКИХ ГЕНОВ, КОДИРУЮЩИХ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ДЕТЕРМИНАНТЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2253870C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2723008C1 (ru) * | 2020-05-19 | 2020-06-08 | федеральное государственное бюджетное учреждение «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации | Способ получения штамма клеток яичника китайского хомячка, продуцента рекомбинантного белка RBD вируса SARS-CoV-2, штамм клеток яичника китайского хомячка, продуцент рекомбинантного белка RBD вируса SARS-CoV-2, способ получения рекомбинантного белка RBD вируса SARS-CoV-2, тест-система для иммуноферментного анализа сыворотки или плазмы крови человека и ее применение |
CN111978378A (zh) * | 2020-08-10 | 2020-11-24 | 武汉大学 | SARS-CoV-2抗原多肽及其应用 |
US11202825B2 (en) | 2016-01-27 | 2021-12-21 | The Pirbright Institute | Attenuated infectious bronchitis virus |
WO2024182781A1 (en) * | 2023-03-02 | 2024-09-06 | Vir Biotechnology, Inc. | Coronavirus compositions and uses thereof |
-
2004
- 2004-04-26 RU RU2004112501/15A patent/RU2253870C1/ru active IP Right Revival
Non-Patent Citations (1)
Title |
---|
Wang J.et al. Clin. Chem. 2003, Nov.13. * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11202825B2 (en) | 2016-01-27 | 2021-12-21 | The Pirbright Institute | Attenuated infectious bronchitis virus |
RU2723008C1 (ru) * | 2020-05-19 | 2020-06-08 | федеральное государственное бюджетное учреждение «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации | Способ получения штамма клеток яичника китайского хомячка, продуцента рекомбинантного белка RBD вируса SARS-CoV-2, штамм клеток яичника китайского хомячка, продуцент рекомбинантного белка RBD вируса SARS-CoV-2, способ получения рекомбинантного белка RBD вируса SARS-CoV-2, тест-система для иммуноферментного анализа сыворотки или плазмы крови человека и ее применение |
RU2723008C9 (ru) * | 2020-05-19 | 2021-02-09 | федеральное государственное бюджетное учреждение «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации | Способ получения штамма клеток яичника китайского хомячка, продуцента рекомбинантного белка RBD вируса SARS-CoV-2, штамм клеток яичника китайского хомячка, продуцент рекомбинантного белка RBD вируса SARS-CoV-2, способ получения рекомбинантного белка RBD вируса SARS-CoV-2, тест-система для иммуноферментного анализа сыворотки или плазмы крови человека и ее применение |
CN111978378A (zh) * | 2020-08-10 | 2020-11-24 | 武汉大学 | SARS-CoV-2抗原多肽及其应用 |
WO2024182781A1 (en) * | 2023-03-02 | 2024-09-06 | Vir Biotechnology, Inc. | Coronavirus compositions and uses thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5829830B2 (ja) | E型肝炎ウイルスのポリペプチド断片、それを含むワクチン組成物及び診断キット、並びにその使用 | |
CN111647053A (zh) | 多肽及其在新型冠状病毒检测、抗体或疫苗筛选中的应用 | |
WO2002081754A1 (en) | Nucleic acid vaccines for prevention of flavivirus infection | |
Seif et al. | Finer mapping of neutralizing epitope (s) on the C-terminal of Japanese encephalitis virus E-protein expressed in recombinant Escherichia coli system | |
Tao et al. | Identification and genetic characterization of new bovine viral diarrhea virus genotype 2 strains in pigs isolated in China | |
WO2018176075A1 (en) | Chimeric insect-specific flaviviruses | |
Kubickova et al. | A broadly cross-reactive monoclonal antibody against hepatitis E virus capsid antigen | |
CN115850501A (zh) | 非洲猪瘟病毒p30、p72和p54嵌合重组表达蛋白、其制备方法与应用 | |
Yang et al. | Isolation and molecular characterization of feline panleukopenia viruses from Korean cats | |
JP2007513604A (ja) | 新規エンテロウイルス、ワクチン、医薬および診断キット | |
RU2253870C1 (ru) | РЕКОМБИНАНТНЫЕ БЕЛКИ, СОДЕРЖАЩИЕ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ЭПИТОПЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ, И ПОСЛЕДОВАТЕЛЬНОСТИ СИНТЕТИЧЕСКИХ ГЕНОВ, КОДИРУЮЩИХ ДИАГНОСТИЧЕСКИ ЗНАЧИМЫЕ АНТИГЕННЫЕ ДЕТЕРМИНАНТЫ БЕЛКОВ КОРОНАВИРУСА (SARS-CoV), СВЯЗАННОГО С ТЯЖЕЛЫМ ОСТРЫМ РЕСПИРАТОРНЫМ СИНДРОМОМ | |
CN110845584B (zh) | 一种猪瘟病毒囊膜蛋白寡聚蛋白体及其制备方法和应用 | |
Liang et al. | Identification of a conserved linear neutralizing epitope recognized by monoclonal antibody 9A9 against serotype A foot-and-mouth disease virus | |
CA2370495A1 (en) | Peptides from the tt virus sequence and monospecific antibodies binding to the tt virus | |
US6322965B1 (en) | Chimera antigen peptide | |
EP2366708A1 (en) | Canine astrovirus AstV strain Bari/08 identified in dogs with gastro-enteritis | |
Zhang et al. | An ELISA for antibodies to infectious bronchitis virus based on nucleocapsid protein produced in Escherichia coli | |
EP2881468B1 (en) | Pestivirus species | |
CN107619435B (zh) | 一种猪瘟病毒e2蛋白的抗原表位、抗体的制备及应用 | |
US20130071421A1 (en) | Turkey viral hepatitis virus and uses thereof | |
CN113444154A (zh) | 一种多肽及其在新型冠状病毒检测、抗体或疫苗筛选中的应用 | |
Lee et al. | Characterization of particles formed by the precursor protein VPX of infectious bursal disease virus in insect Hi-5 cells: implication on its proteolytic processing | |
FR2866025A1 (fr) | Utilisation des proteines et des peptides codes par le genome d'une nouvelle souche de coronavirus associe au sras | |
CN115894718B (zh) | 一种非洲猪瘟病毒的抗原表位肽及其应用 | |
KR101313906B1 (ko) | 베큘로바이러스의 다각체 단백질과 돼지 콜레라 바이러스 표면 항원 e2가 융합된 융합 단백질을 발현하는 재조합 누에 핵다각체병 바이러스 및 상기 융합 단백질의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20060427 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20060427 |
|
NF4A | Reinstatement of patent |
Effective date: 20071010 |
|
RZ4A | Other changes in the information about an invention | ||
PD4A | Correction of name of patent owner |