RU2250158C2 - Устройство для сухого резания - Google Patents

Устройство для сухого резания Download PDF

Info

Publication number
RU2250158C2
RU2250158C2 RU2002135277/02A RU2002135277A RU2250158C2 RU 2250158 C2 RU2250158 C2 RU 2250158C2 RU 2002135277/02 A RU2002135277/02 A RU 2002135277/02A RU 2002135277 A RU2002135277 A RU 2002135277A RU 2250158 C2 RU2250158 C2 RU 2250158C2
Authority
RU
Russia
Prior art keywords
nozzle
voltage
capacitor
resistor
air conduit
Prior art date
Application number
RU2002135277/02A
Other languages
English (en)
Other versions
RU2002135277A (ru
Inventor
Е.А. Чекалова (RU)
Е.А. Чекалова
В.Д. Гурин (RU)
В.Д. Гурин
Original Assignee
Московский государственный технологический университет "СТАНКИН"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский государственный технологический университет "СТАНКИН" filed Critical Московский государственный технологический университет "СТАНКИН"
Priority to RU2002135277/02A priority Critical patent/RU2250158C2/ru
Publication of RU2002135277A publication Critical patent/RU2002135277A/ru
Application granted granted Critical
Publication of RU2250158C2 publication Critical patent/RU2250158C2/ru

Links

Abstract

Изобретение относится к устройствам для охлаждения зоны резания металлорежущего станка. Устройство содержит управляемый датчик напряжения, подключенный к соплу воздуховода ионизатора. Сопло выполнено с возможностью регулировки выходящего потока, а в корпусе сопла расположен внутренний воздуховод со множеством сквозных отверстий, расположенных хаотично вдоль его оси. Воздуховод служит конденсатором, емкость и собственная индуктивность которого выбраны из условия работы сопла в пульсирующем режиме. Изобретение позволяет повысить эффективность охлаждения и снизить загрязненность рабочей зоны. 1 ил.

Description

Изобретение относится к устройствам для охлаждения зоны резания металлорежущего станка и может быть использовано в машиностроении.
Известно устройство для охлаждения потока, содержащее управляемый датчик напряжения, подключенный к соплу воздуховода ионизатора.
Недостатками известного устройства является неудобство эксплуатации, обусловленное необходимостью использования автономного источника тока, а также недостаточная эффективность охлаждения и надежность работы устройства.
Целью устройства является повышение эффективности охлаждения, повышение производительности труда в механообработке и снижение загрязненности в рабочей зоне.
Это достигается тем, что устройство, содержащее управляемый датчик напряжения, подключенный к соплу воздуховода ионизатора, регулирует ионизированный газовый поток на выходе из сопла, а в корпусе сопла находится внутренний воздуховод, который служит конденсатором и имеет множество сквозных отверстий, расположенных хаотично вдоль оси воздуховода.
Кроме того, емкость и собственная индуктивность конденсатора выбирается для обеспечения работы сопла в пульсирующем режиме. Процесс пассивации идет значительно быстрее благодаря высокой концентрации озона, кислорода и заряженных частиц различного слоя. Происходит увеличение скорости диффузии электрически заряженных частиц в зону пластической деформации за счет возникновения в струе воздуха значительной (порядка нескольких киловольт) разности потенциалов.
Имеются технические решения для охлаждения воздуха, подаваемого в зону резания по средствам пропускания через высоковольтный разрядный промежуток, например, патент США 3938345 кл. 62-3, 1976 г.
На чертеже схематично показано устройство для охлаждения зоны резания, общий вид.
Устройство для сухого резания (чертеж) состоит из генератора (1), управляемого напряжением, с резистором (2) начальной установки частоты. Согласующий эмиттерный повторитель (3) с резистором (4) подключен к усилителю мощности (5) с импульсным трансформатором (6) диодом защиты (7).
С выхода импульсного трансформатора через резистор (8) на базу мощного транзистора (9) подают импульсы запуска строчного высоковольтного трансформатора (10) с диодом защиты (11) и конденсатором (12) и варистором (13). К выходу высоковольтной обмотки трансформатора (10) подключен высоковольтный высокочастотный диод (14) и балластный резистор (15).
Конденсатор (16) и параллельно ему для защиты варистор (17). Резисторы (18) и (19) выполняют роль шунта в токозадающей цепи. Конденсатором (20) блокируются выбросы высоковольтных импульсов. Последовательно резистору (19) включен ограничивающий резистор (21). Сигнал снимается на входе стабилизатора (22) и отображается на цифровом микроамперметре (25). Блок (22) включает в себя регулируемый стабилизированный блок питания. Одновременно вокруг высоковольтного провода расположен трансформатор тока (23), выход которого подключен к усилителю переменного тока (24) с демодулятором. С выхода демодулятора и усилителя постоянного тока (24) сигнал поступает на вход генератора регулируемого напряжением - на резистор (2).
Кроме того, с выхода резистора (18) включен многооборотный резистор (19) на землю для общего регулирования выходного тока и ионизации. Параллельно резистору (18) включен микроамперметр (25). Регулировка тока для предотвращения самопроизвольной девиации частоты в нагрузке так же, как и амплитуды, осуществляется в цепи трансформатора тока, микроамперметра (25), стабилизатора (22), усилителя (24) и резистора (2) на входе блока (1) преобразователя напряжений - частота.
Сопло формирования ионизационного потока состоит из герметичного корпуса (26) с центральным воздуховодом (27). Конструкция конденсатора состоит из цельного цилиндрического (желательно из фторопласта) конденсатора. Центральный воздуховод (27), который служит конденсатором и имеет множество сквозных отверстий, расположенных хаотично вдоль оси воздуховода. Кроме того, емкость и собственная индуктивность конденсатора выбирается для обеспечения работы сопла в пульсирующем режиме.
Работает приспособление следующим образом.
При подключении напряжения на входе сопла (26) появляется высокое напряжение. Резистором (19) устанавливается нужный ток на приборе (25) после приближения конца сопла к режущей кромке. Также на выходе сопла имеется насадка (28), регулирующая внутренний зазор выходящего потока, для получения ламинарного или турбулентного режима обдува.
В это же время импульсы генератора управляемого напряжения 1 поступают на базу согласующегося эмиттерного повторителя (3), а с его выхода - на вход усилителя мощности (5), подключенного к импульсному трансформатору (6), который в свою очередь питает более мощный транзистор (9), питающий импульсный (строчный) трансформатор (10).
Первичная обмотка трансформатора (10) питается от мощного транзистора, управляемого стабилизатором (22). Параллельно первичной обмотке трансформатора (10) включен защитный диод (11), блокировочный конденсатор (12) и вариатор (13).
На выходной обмотке высоковольтного трансформатора (10), включенной через диод (14) и резистор (15), формируется высокочастотное пульсирующее высокое напряжение. Нижняя обмотка трансформатора (10) заземлена через шунт (18) и конденсатор (20).
Переменный многооборотный резистор (19) включен с нижней (заземленной части по переменному току) на землю через ограничительный резистор (21). Кроме того, часть этого напряжения поступает на вход регулируемого стабилизатора напряжения (22) и цифровой микроамперметр (25).
Трансформатор тока (23) включен непосредственно вокруг высоковольтного провода. С выхода трансформатора тока (23) напряжение усиливается, демодулируется в блоке (24) и подается на вход генератора, управляемого напряжением (1) - входной резистор (2). Высоковольтный провод подключен к одному из выводов ионизирующего конденсатора в корпусе (26). Второй выход конденсатора подключен к воздуховоду (27) и на “землю”. Возможна перемена полярности. Управляемый напряжением генератор (1) с обратной связью, стабилизирует не только частоту на выходном конденсаторе, но и амплитуду.
Воздух, проходя по трубопроводу (27), через конденсатор заряжается озоном. Процесс пассивации идет значительно быстрее благодаря высокой концентрации озона, кислорода и заряженных частиц различного слоя. Происходит увеличение скорости диффузии электрически заряженных частиц в зону пластической деформации за счет возникновения в струе воздуха значительной (порядка нескольких киловольт) разности потенциалов.
Таким образом, продувая конденсатор, заряженными частицами ионов между обкладками конденсатора получаем ионизированный поток на выходе сопла.

Claims (1)

  1. Устройство для обдувки при сухом резании, содержащее управляемый датчик напряжения, подключенный к соплу воздуховода ионизатора, отличающееся тем, что сопло выполнено с возможностью регулировки выходящего потока, а в корпусе сопла расположен внутренний воздуховод со множеством сквозных отверстий, расположенных хаотично вдоль его оси, выполненный в виде конденсатора, емкость и собственная индуктивность которого выбраны из условия работы сопла в пульсирующем режиме.
RU2002135277/02A 2002-12-25 2002-12-25 Устройство для сухого резания RU2250158C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002135277/02A RU2250158C2 (ru) 2002-12-25 2002-12-25 Устройство для сухого резания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002135277/02A RU2250158C2 (ru) 2002-12-25 2002-12-25 Устройство для сухого резания

Publications (2)

Publication Number Publication Date
RU2002135277A RU2002135277A (ru) 2005-03-10
RU2250158C2 true RU2250158C2 (ru) 2005-04-20

Family

ID=35364021

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002135277/02A RU2250158C2 (ru) 2002-12-25 2002-12-25 Устройство для сухого резания

Country Status (1)

Country Link
RU (1) RU2250158C2 (ru)

Also Published As

Publication number Publication date
RU2002135277A (ru) 2005-03-10

Similar Documents

Publication Publication Date Title
US7031133B2 (en) Aerosol charge altering device
US5578112A (en) Modular and low power ionizer
KR100877356B1 (ko) 공기 이온화기, 및 공기 이온화기 내로 흘러 들어가는 공기에서 이온을 제거하는 방법
EP1036429B1 (en) Method and device for ion generation
US4951172A (en) Method and apparatus for regulating air ionization
KR100239017B1 (ko) 코로나 방전을 이용한 실내 공기 오염 물질 제거장치 및 방법
US7054130B2 (en) Apparatus and method for improving uniformity and charge decay time performance of an air ionizer blower
JPS61290699A (ja) バランスされた静電除去用ガスイオン化銃
MX2022014876A (es) Sistema de purificacion de aire de dos etapas para lugares cerrados.
RU2250158C2 (ru) Устройство для сухого резания
KR20210111749A (ko) 비열 플라즈마 생성 방법 및 시스템
JP2015144982A (ja) プラズマ処理方法
RU2279962C1 (ru) Устройство для получения озонированного воздуха при резании
RU144782U1 (ru) Устройство очистки газовых сред
JP3871055B2 (ja) プラズマ発生方法及びプラズマ発生装置
JP2005519446A (ja) 殺菌システムのための殺菌性ガス生成源
JP2004194930A (ja) 殺菌方法および殺菌装置
Gasparik et al. Effect of CO2 and water vapors on NOx removal efficiency under conditions of DC corona discharge in cylindrical discharge reactor
RU170188U1 (ru) Устройство очистки газовых сред
JP4315710B2 (ja) 除電器
SU1483205A1 (ru) Устройство дл обработки влажного воздуха
JP6662252B2 (ja) 流体浄化装置および流体浄化方法
RU2156927C1 (ru) Устройство для охлаждения инструмента
RU182472U1 (ru) Устройство очистки газовых сред
CN201010523Y (zh) 一氧化氮发生器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20051226