RU2243148C1 - Способ уменьшения концентрации изотопов водорода в газовой среде - Google Patents
Способ уменьшения концентрации изотопов водорода в газовой средеInfo
- Publication number
- RU2243148C1 RU2243148C1 RU2003108183/15A RU2003108183A RU2243148C1 RU 2243148 C1 RU2243148 C1 RU 2243148C1 RU 2003108183/15 A RU2003108183/15 A RU 2003108183/15A RU 2003108183 A RU2003108183 A RU 2003108183A RU 2243148 C1 RU2243148 C1 RU 2243148C1
- Authority
- RU
- Russia
- Prior art keywords
- soil
- catalyst
- air
- oxidation
- hydrogen
- Prior art date
Links
Images
Landscapes
- Catalysts (AREA)
Abstract
Изобретение предназначено для ядерной, атомной и водородной энергетики, охраны окружающей среды и может быть использовано при очистке технологических газов и воздуха в помещениях. В рабочую ячейку помещают катализатор - биологически активную почву, например культивируемую огородную почву с влажностью 0,5-20 мас.%. Подают воздух с расходом 6 л/мин. Окисление изотопов водорода, находящихся в воздухе, проводят на катализаторе при комнатной температуре. Образующаяся при окислении изотопов водорода вода поглощается почвой. Изобретение позволяет очистить воздух от изотопов водорода при значительном содержании СО, сохранить активность катализатора при высокой влажности, удешевить способ за счет использования доступного катализатора, 2 ил.
Description
Предлагаемое изобретение относится к области физической химии, а именно к технологии очистки воздуха помещения и технологических газовых сред от изотопов водорода, в том числе от трития, и может быть использовано для охраны окружающей среды в тех областях науки и техники, где проводятся работы с изотопами водорода и где существует опасность их выхода в воздушную среду помещения.
Известные способы очистки газов от изотопов водорода основываются на физических и химических методах очистки [1, стр.198-210].
Физические методы очистки основаны на различиях физических свойств газов и включают в себя использование мембран из материалов с избирательной проницаемостью по водороду, низкотемпературную дистилляцию, адсорбцию и абсорбцию водорода на различных материалах [1, стр.198-203].
Химические методы очистки основаны на окислении изотопов водорода и последующем улавливании образующегося оксида на различных ловушках [1, стр.204-214].
Наиболее близким по технической сущности к заявляемому способу относится способ удаления водорода из газа [2].
Способ заключается в том, что воздух, содержащий водород, забирают из помещения, пропускают через аппарат, содержащий катализатор, на котором водород окисляется при комнатной температуре, образующуюся воду адсорбируют на том же катализаторе, после чего очищенный воздух направляют обратно в помещение. При этом в качестве катализатора используют материал, состоящий из носителя-оксида олова и алюминия, пропитанного на 0,25-2,5 мас.% платиной и на 0,25-2,5 мас.% палладием.
К недостаткам этого способа можно отнести следующие.
Во-первых, при наличии в воздухе пассивирующих примесей, например СО, эффективность работы катализатора резко уменьшается, вследствие адсорбции этих примесей на активной поверхности палладия и платины.
Во-вторых, поскольку очистка воздуха происходит при комнатной температуре, то катализатор неизбежно будет адсорбировать пары воды из воздуха. По мере увлажнения катализатора его каталитическая активность будет уменьшаться, вплоть до практически полного прекращения процесса окисления. Поэтому, через определенные периоды работы, при достижении критической степени увлажнения, необходимо проводить восстановление катализатора, заключающееся в удалении накопившейся в нем воды путем нагрева.
В-третьих, в данном способе используются дорогостоящие материалы: платина и палладий.
Задача, решаемая настоящим изобретением, заключается в разработке способа, обеспечивающего при комнатной температуре очистку от изотопов водорода газа, содержащего СО.
Технический результат, достигаемый при использовании предлагаемого изобретения, заключается в следующем: очистка от изотопов водорода газа, содержащего СО до 10 об.%; упрощение способа за счет исключения необходимости периодического удаления влаги из используемого материала-катализатора, удешевление способа за счет использования более доступного и дешевого материала.
Для решения поставленной задачи и достижения указанного технического результата в известном способе уменьшения концентрации изотопов водорода в газовой среде, содержащей кислород, заключающемся в окислении изотопов водорода на катализаторе с последующим поглощением образующейся воды, согласно изобретению в качестве катализатора используют биологически активную почву.
Под биологически активной почвой понимается почва, в которой присутствует жизнедеятельность растений и микроорганизмов, в том числе так называемых водородных бактерий, способствующих окислению изотопов водорода [3, 4].
Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного тем, что в качестве материала, способствующего окислению водорода, при наличии СО в газе, используют биологически активную почву.
Таким образом заявляемый способ соответствует критерию изобретения “новизна”.
Известно, что окисление изотопов водорода, в том числе трития, протекает в почве со скоростью, сравнимой на палладиевом катализаторе [3, 4]. Высокая скорость окисления изотопов водорода в почве обусловлена биохимическим механизмом реакции, протекающей с участием почвенных (водородных) бактерий [3, 4]. Каталитическая активность образца почвы (по отношению к процессу окисления водорода) зависит от ее температуры, влажности и глубины отбора, от предварительной химической и физической обработки [4]. Однако авторам предлагаемого изобретения неизвестны публикации о каталитической активности почвы при наличии СО в газовой среде, что позволяет сделать вывод о соответствии заявляемого способа критерию “изобретательский уровень”.
Следует отметить, что потеря каталитических свойств катализаторов на основе платины и палладия, при наличии паров воды и СО в воздухе, обусловлена их адсорбцией на активной поверхности катализатора. Авторами заявляемого изобретения установлено, что в отличие от подобных физико-химических катализаторов биологически активная почва сохраняет свои каталитические свойства в широком интервале влажности почвы и при наличии СО в воздухе.
На фиг.1 представлены экспериментальные данные по кинетике окисления трития при комнатной температуре на палладиевом катализаторе и на почве при наличии и отсутствии СО в воздухе. Содержание влаги в образцах составляло ≈0 мас.% - для палладиевого катализатора и ≈20 мас.% - для почвы.
Кривая 1 - окисление трития на палладиевом катализаторе при отсутствии СО в воздухе.
Кривая 2 - окисление трития на почве при отсутствии СО в воздухе.
Кривая 3 - окисление трития на почве при наличии 10 об.% СО в воздухе.
Кривая 4 - окисление трития на палладиевом катализаторе при наличии 10 об.% СО в воздухе.
На фиг.2 представлены экспериментальные данные по относительной каталитической активности палладиевого катализатора и почвы в зависимости от степени их увлажнения. В данном случае относительная каталитическая активность характеризуется скоростью окисления трития в начальный момент времени, приведенной к соответствующей максимальной скорости в исследованных интервалах степеней увлажнения материалов.
Кривая 1 - палладиевый катализатор.
Кривая 2 - почва.
Для подтверждения критерия “промышленная применимость” заявляемый способ опробован на примере очистки воздуха от трития с использованием почвы и палладиевого катализатора.
В опытах использовали образцы культивируемой (огородной) почвы массой ≈170 г и влажностью от 0,5 до 20 мас.%. Почву засыпали в рабочую ячейку ровным слоем так, что площадь контакта почвы с воздухом составляла ≈280 см2. Рабочую ячейку подсоединяли к замкнутому контуру, имеющего ионизационную камеру проточного типа и побудитель расхода. Общий свободный внутренний объем контура после сборки составлял ≈22 л. Перед началом каждого опыта в контуре создавали концентрацию трития ≈1,5·10-7 Ки/л. Затем включали побудитель расхода и поддерживали расход воздуха на уровне ≈6 л/мин. В ходе опытов, проведенных при комнатной температуре от 15 до 22°С, степенях увлажнения почвы от 0,5 до 20 мас.%, при отсутствии и наличии СО в воздухе, регистрировали кинетику уменьшения концентрации трития в результате его окисления и поглощения в почве. При этом образующаяся при окислении трития вода практически вся поглощалась почвой. В случае почвы с высокой степенью увлажнения можно использовать, при необходимости, дополнительный поглотитель влаги (для гарантированного поглощения всей образующейся воды).
Для сравнения аналогичным образом проведены опыты с использованием палладиевого катализатора АПН на образце массой ≈21 г и с площадью внешней поверхности ≈290 см2.
Результаты опытов представлены на фиг.1 и 2. Из фиг.1 видно, что в отсутствие СО в воздухе каталитическая активность почвы (кривая 2) сравнима с каталитической активностью палладиевого катализатора (кривая 1). При наличии СО в воздухе в количестве 10 об.% палладиевый катализатор полностью теряет свою каталитическую активность (кривая 4). Каталитическая активность почвы, при тех же условиях, хоть и уменьшается, но остается на заметном уровне (кривая 3).
Из фиг.2 видно, что палладиевый катализатор практически теряет свою каталитическую активность при степенях завлажнения более 3 мас.% (кривая 1). Почва же сохраняет свою каталитическую активность, по крайней мере, до степени завлажнения ≈20% (кривая 2).
Полученные результаты подтверждают, что совокупность признаков заявляемого способа позволяет достичь указанный технический результат - осуществить очистку воздуха, содержащего СО, от изотопов водорода, в том числе трития, при использовании значительно менее чувствительного к увлажнению и более дешевого материала-почвы, чем катализаторы на основе платины и палладия.
Способ может быть использован в термоядерной, атомной и водородной энергетике, где проводятся работы с изотопами водорода и где существует опасность их выхода в воздушную среду помещения, в том числе при ликвидации последствий аварийных выбросов, возникших в результате пожаров, приводящих к увеличению содержания СО в воздухе.
Литература
1. Л.Ф.Беловодский, В.К.Гаевой, В.И.Гришмановский. Тритий. - М.: Энергоатомиздат, 1985.
2. Способ удаления водорода из газов. Заявка ЕПВ № 0089183, публ. 21.09.83 МПК 6 С 01 В 3/58, В 01 J 23/56, 23/62.
3. И.В.Боднар, В.Р.Крюков, М.С.Федоров, Г.А.Заварзин. Удаление Н2 при фоновых концентрациях аэробными водородными бактериями.… - Ж. общей биологии, T.XL VII, № 6, 780 (1986).
4. M.Ichimasa, Y.Ichimasa, Y.Azuma, M.Komuro, K.Fujita and Y.Akita, "Oxidation of Molecular Tritium by Surface Soil", J.Radiat. Res, 29, 144 (1988).
Claims (1)
- Способ уменьшения концентрации изотопов водорода в газовой среде, содержащей кислород, заключающийся в окислении изотопов водорода на катализаторе с последующим поглощением образующейся воды, отличающийся тем, что в качестве катализатора используют биологически активную почву.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003108183/15A RU2243148C1 (ru) | 2003-03-24 | 2003-03-24 | Способ уменьшения концентрации изотопов водорода в газовой среде |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003108183/15A RU2243148C1 (ru) | 2003-03-24 | 2003-03-24 | Способ уменьшения концентрации изотопов водорода в газовой среде |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2003108183A RU2003108183A (ru) | 2004-11-10 |
RU2243148C1 true RU2243148C1 (ru) | 2004-12-27 |
Family
ID=34387776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2003108183/15A RU2243148C1 (ru) | 2003-03-24 | 2003-03-24 | Способ уменьшения концентрации изотопов водорода в газовой среде |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2243148C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2635809C2 (ru) * | 2013-01-30 | 2017-11-16 | КАСАБОВ Евгений Борисов | Способ и устройство для очистки воздуха от газообразного трития и его концентрации в постоянном объеме воды |
RU2758464C1 (ru) * | 2021-03-09 | 2021-10-28 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ очистки газовой смеси от трития |
-
2003
- 2003-03-24 RU RU2003108183/15A patent/RU2243148C1/ru active
Non-Patent Citations (1)
Title |
---|
БОНДАР И.В. и др. Удаление Н 2 при фоновых концентрациях аэробными водородными бактериями. Журнал общей биологии. 1986, т.XLVII, №6, с.780. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2635809C2 (ru) * | 2013-01-30 | 2017-11-16 | КАСАБОВ Евгений Борисов | Способ и устройство для очистки воздуха от газообразного трития и его концентрации в постоянном объеме воды |
RU2758464C1 (ru) * | 2021-03-09 | 2021-10-28 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ очистки газовой смеси от трития |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Barnes et al. | Removal of nitrogen oxides from gas streams using biofiltration | |
Adib et al. | Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons | |
US20180021613A1 (en) | Catalyst for disinfection, sterilization and purification of air, and preparation method thereof | |
CN107362788A (zh) | 一种氧化石墨烯/二氧化钛‑活性炭三维复合材料及其制备方法 | |
JPH02118121A (ja) | ピッチ系活性炭素繊維およびその製造方法 | |
KR101331391B1 (ko) | 상온에서 공기 중에 포함된 포름알데히드, 일산화탄소 및 수소 제거능을 갖는 팔라듐/티타니아 촉매 및 그 제조 방법 | |
CN105289593A (zh) | 一种室温条件下长效消除甲醛的载微纳米银活性炭的制备方法 | |
EP1166858A3 (en) | Exhaust gas purification catalyst and exhaust gas purification system | |
CN110270379A (zh) | 一种MnOx-MOF-Gr复合材料及其制备方法和应用 | |
US6051198A (en) | Catalyst for purifying fumigation exhaust gases and a method of purifying fumigation exhaust gases | |
RU2243148C1 (ru) | Способ уменьшения концентрации изотопов водорода в газовой среде | |
CN108786896B (zh) | 一种贵金属催化剂的制备方法 | |
CN1772349A (zh) | 一种消除建筑物内有机污染气体的方法及装置 | |
US6632659B1 (en) | Apparatus and method for UV oxidation and microbiological decomposition of organic waste air | |
CN108654699A (zh) | 物理活化制备室温消除甲醛的铂修饰多孔碳基二氧化钛催化剂的方法 | |
JP2010162477A (ja) | 低級アルデヒド類の吸着剤およびその製造法 | |
CN213253828U (zh) | 一种低温蓄热式催化氧化处理装置 | |
US8758713B2 (en) | Method for photooxidation of carbon monoxide in gas phase to carbon dioxide | |
CN1658950A (zh) | 废气的净化方法 | |
CN110170307B (zh) | 经臭氧表面处理和对氨基苯甲酸改性处理椰壳活性炭的制备及产品和应用 | |
CN1242133C (zh) | 厕所臭气的净化方法及其净化装置 | |
CN100455340C (zh) | 一种气体污染物生物净化工艺 | |
RU2140811C1 (ru) | Способ очистки промышленных газовых выбросов от органических кислородосодержащих соединений | |
US5164168A (en) | Method and apparatus for purifying air | |
RU2311957C1 (ru) | Катализатор окислительной очистки газов и способ его приготовления |