RU2232141C1 - Способ получения легкого заполнителя - Google Patents
Способ получения легкого заполнителя Download PDFInfo
- Publication number
- RU2232141C1 RU2232141C1 RU2003105260A RU2003105260A RU2232141C1 RU 2232141 C1 RU2232141 C1 RU 2232141C1 RU 2003105260 A RU2003105260 A RU 2003105260A RU 2003105260 A RU2003105260 A RU 2003105260A RU 2232141 C1 RU2232141 C1 RU 2232141C1
- Authority
- RU
- Russia
- Prior art keywords
- content
- oxides
- ash
- granules
- waste
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Изобретение относится к производству строительных материалов, а именно к производству легких пористых заполнителей из отходов промышленности. Технический результат: получение заполнителя, обладающего низкой плотностью при высокой прочности. Способ получения легкого заполнителя из углеродсодержащих отходов включает смешение отходов с корректирующими добавками, измельчение смеси, формование сырцовых гранул, сушку и обжиг сформованных гранул и охлаждение прокаленных вспученных гранул. При этом используют золошлаковые отходы тепловых электростанций, а количество корректирующих добавок выбирают из условия обеспечения в пересчете на прокаленное вещество следующего содержания оксидов, по крайней мере, кремния, алюминия, титана, железа, кальция, магния, натрия, калия, серы, в полученной смеси и соотношения между ними, мас.%: суммарное содержание стеклообразующих оксидов кремния, алюминия и титана - не более 80; суммарное содержание оксидов-модификаторов железа, кальция, магния, натрия и калия - не более 33; содержание оксидов железа - не более 10; суммарное содержание оксидов натрия и калия - не более 14; суммарное содержание малорастворимых оксидов хрома, серы, молибдена, вольфрама, меди, мышьяка - не более 3; отношение суммы масс оксидов алюминия и титана к массе оксида кремния - не более 0,4; отношение массы оксидов кальция и магния к массе оксидов натрия и калия - не более 2,5. При использовании золошлаковых отходов с содержанием углерода в золе более 3 мас.% разделяют отходы на органическую и минеральную часть методом флотации с обеспечением содержания в минеральной части несгоревших угольных частиц не более 2 мас.%, а при содержании в золе несгоревших угольных частиц более 6% флотацию осуществляют в две или более стадий. 7 з.п.ф-лы, 4 табл.
Description
Изобретение относится к производству строительных материалов, а именно к производству легких пористых заполнителей из отходов промышленности.
Известен способ получения пористого заполнителя из отходов тепловых электростанций и углеобогащения, согласно которому производят сушку сырьевых компонентов, их измельчение, смешение с корректирующими добавками, грануляцию увлажненной шихты, сушку гранул при температуре 300-350°С до влажности 0-1,5% и обжиг с нагревом гранул до температуры вспучивания со скоростью 350-550 град/мин с последующей изотермической выдержкой при температурах 1050-1150°С в течение 6-10 мин. (SU 1449556 А1 С 04 В 18/04, опубл. 07.01.89, БИ №1 [1]).
Недостатками этого способа является:
1) невозможность получения легкого наполнителя из золошлаковых отходов с содержанием несгоревших угольных частиц выше 2%; многочисленными исследованиями доказано, что вспучивание гранул при обжиге во вращающейся печи не происходит, если содержание углерода в виде кокса в них превышает 2% [2];
2) низкая прочность получаемого пористого заполнителя, которая обусловлена рядом причин:
а) высоким содержанием оксидов железа, которое допускают авторы анализируемого изобретения (см. пример аналога). Специальными исследованиями, выполненными авторами настоящего изобретения, доказано, что при содержании оксидов железа свыше 10% происходит частичная кристаллизация стекловидной составляющей внутренней зоны гранулы шлакозита. Образующиеся кристаллы гематита, магнетита, шпинели имеют размер, превышающий толщину стенки, разделяющей поры. С одной стороны, это величивает толщину стенки и, таким образом, увеличивает плотность гранул, а с другой - ведет к образованию концентрационных напряжений на поверхности раздела кристалл-стекло, что уменьшает прочность гранулы;
б) неточностью формулировок требований к параметрам измельчения шлака и охлаждения вспученных гранул. При помоле составляющих шихты, например, до удельной поверхности 2500-3500 см2/г, что принято на действующих предприятиях, прочность заполнителя с насыпкой плотностью 300 кг/м3 не превышает 0,3-0,4 МПа. При помоле шлака до удельной поверхности свыше 6000 см2/г вспучивание гранул вообще не происходит. Столь же чувствительны показатели прочности гранул к режимам охлаждения. По мере охлаждения пористый алюмосиликатный расплав переходит из размягченного состояния в упруговязкое и затем в упругое. В грануле возникает разность температур между поверхностью гранулы и ее центром, которая тем выше, чем выше скорость охлаждения и больше диаметр гранул. Перепад температур вызывает напряженное состояние, которое сохраняется в грануле после перехода из размягченного и упруговязкого состояния в упругое. Величина остаточных напряжений зависит от размера гранул и скорости охлаждения. Практика показала, что практически 95% остаточных напряжений исчезает в течение короткого времени, если изделия из стекол имеют температуру, при которой вязкость стекла равна 1012-1015 Па·с [3]. Выдержка изделий при этой температуре называется отжигом.
Наиболее близким к предлагаемому изобретению по технической сущности является способ получения легкого заполнителя из углеродсодержащих отходов промышленности, включающий приготовление шихты, ее грануляцию, сушку гранул, предварительную их термообработку в окислительной среде с целью выжигания избытка органики, обжиг во вращающейся печи с одновременным опудриванием гранул огнеупорным порошком. Термообработку в окислительной среде ведут в две стадии: при 450-600°С в течение 5-15 минут и при 800-1000°С в течение 2-4 минут. Для улучшения технологических свойств материала в отход промышленности вводят корректирующие добавки: 3-8 мас.% железосодержащих добавок, 1-9 мас.% известьсодержащих добавок, а также лигносульфонат в количестве до 1,5% (RU 2082688 С1, С 04 В 20/04, опубл. 27.06.97, БИ. №18 [4]).
Недостатками этого способа являются:
1) высокая насыпная плотность получаемого заполнителя, обусловленная не оптимальным химическим составом заполнителя;
2) высокая энергоемкость технологического процесса получения заполнителя, обусловленная необходимостью дополнительной траты топлива на выжигание из золы несгоревших угольных частиц;
3) нестабильность технологического процесса, обусловленная колебаниями содержания несгоревших угольных частиц в золе, поступающей в технологию.
Задача изобретения - получение из золошлаковых отходов ТЭС химически стойкого пористого заполнителя прочностью 0,8-1,2 МПа и насыпной плотностью 200-300 кг/м3, на основе которого возможно изготовление однослойных стеновых панелей.
Технический результат изобретения заключается в снижении насыпной плотности наполнителя при одновременном обеспечении его высокой прочности.
Технический результат достигается тем, что в способе получения легкого заполнителя из углеродсодержащих отходов, включающем смешение отходов с корректирующими добавками, измельчение смеси, формование сырцовых гранул, сушку и обжиг сформованных гранул и охлаждение прокаленных вспученных гранул, используют золошлаковые отходы тепловых электростанций, количество корректирующих добавок выбирают из условия обеспечения в пересчете на прокаленное вещество следующего содержания оксидов в полученной смеси и соотношения между ними, мас.%:
Суммарное содержание
cтеклообразующих оксидов кремния,
алюминия и титана Не более 80
Суммарное содержание
оксидов-модификаторов железа,
кальция, магния, натрия
и калия Не более 33
Содержание оксидов железа Не более 10
Суммарное содержание оксидов
натрия и калия Не более 14
Суммарное содержание
малорастворимых оксидов хрома,
серы, молибдена, вольфрама,
меди, мышьяка Не более 3
Отношение суммы масс оксидов
алюминия и титана к массе
оксида кремния Не более 0,4
Отношение массы оксидов
кальция и магния к массе
оксидов натрия и калия Не более 2,5
Кроме того, при использовании золошлаковых отходов с содержанием углерода в золе более 3 мас.% целесообразно разделять отходы на органическую и минеральную часть методом флотации с обеспечением содержания в минеральной части несгоревших угольных частиц не более 2 мас.%, причем при содержании в золе несгоревших угольных частиц более 6% флотацию целесообразно осуществлять в две или более стадий.
Кроме того, перед флотацией золошлаковые отходы можно делить на две фракции по размеру зерен: крупную с размером зерен более 100 мкм - шлак и мелкую с размером зерен менее 100 мкм - золу, и флотации подвергать только золу.
Кроме того, измельчение указанной смеси предпочтительно вести до удельной поверхности не менее 4000 см2/г.
В качестве корректирующих добавок предпочтительно использовать жидкие, высокодисперсные и пастообразные вещества, обеспечивающие высокий контакт между составляющими шихты.
Под корректирующими добавками в данном случае имеются в виду вещества, придающие необходимые свойства шихте, обеспечивающие ее вспучивание, и необходимые свойства полученному заполнителю.
Целесообразно при содержании в шихте оксидов железа менее 6 мас.% гранулы перед обжигом во вращающейся печи или в процессе обжига опудривать огнеупорным порошком или вести обжиг в твердом теплоносителе, в качестве которого используют кварцевый песок или полевые шпаты.
При температуре обжига 500-700°С охлаждение вспученных гранул размером более 10 мм можно вести в течение 25-35 минут, а гранул размером менее 10 мм - в течение 15-25 минут.
Качество и количество вводимых в шихту корректирующих добавок должны обеспечить получение химически стойкого, не кристаллизующегося алюмосиликатного стекла, что достигается обеспечением заявленных пределов химического состава полученной минеральной шихты.
Предложенный способ обеспечивает решение поставленной задачи - получение легкого заполнителя с насыпной плотностью 200-300 кг/м3, прочностью при сдавливании в цилиндре 0,8-1,2 МПа и с высокой стойкостью к воздействию агрессивных сред.
В отличие от известного способа [4] удаление несгоревших угольных частиц из золошлаковых отходов предлагается осуществлять не выжиганием, а флотационным разделением зол на минеральную и органическую части с последующим использованием минеральной части для получения пористого заполнителя, а органической - в качестве топлива. Такой метод позволяет стабилизировать процесс обжига гранул, поскольку они в этом случае будут поступать в печь с одинаковым постоянным во времени содержанием органических веществ. Для повышения эффективности процесса флотации золошлаковую смесь разделяют предварительно на фракции по размеру. Порогом разделения является сито с ячейками 100 мкм. Содержание несгоревших частиц в шлаках не превышает 1-2 мас.%. Флотацией необходимо обеспечить такое, и не больше, содержание несгоревших частиц в отфлотированной зоне. Если начальное содержание несгоревших частиц в золе превышает 6%, флотацию для достижения данного условия необходимо вести в две и большее число стадий.
Важнейшим условием получения легкого заполнителя с насыпной плотностью менее 300 кг/м3 является максимальный перевод всех составляющих шихты в стеклообразное состояние, при этом алюмосиликатное стекло заполнителя должно обладать высокой химической стойкостью. Данное условие выполняется, если выдерживаются заявленные пределы содержания стеклообразующих и модифицирующих оксидов в пересчете на прокаленное вещество. Химическая стойкость стекла снижается, если суммарное содержание модифицирующих оксидов превышает 33%, а содержание оксидов натрия и калия превышает 14%. Дополнительно достижению указанного результата способствует размол шихты до удельной поверхности не менее 4000 см2/г.
Как уже отмечалось, прочность заполнителя зависит от степени кристаллизации стекла и режима охлаждения. Алюмосиликатный расплав кристаллизуется, если соотношение суммы масс алюминия и титана к массе кремния превышает 0,4, если отношение суммы масс кальция и магния к сумме масс натрия и калия превышает 2,5, если содержание оксидов железа превышает 10%. Для ликвидации остаточных напряжений в процессе охлаждения гранул необходимо предусматривать их отжиг. Специальные исследования показали, что гранулы с химическим составом, укладывающимся в заявленный интервал, следует отжигать в температурном интервале 700-500°С. Гранулы размером более 10 мм следует отжигать в течение 25-35 минут, а гранулы размером менее 10 мм - в течение 15-25 минут.
Для улучшения контакта составляющих шихты друг с другом и повышения однородности смеси в качестве корректирующих добавок целесообразно использовать жидкие, дисперсные и пастообразные материалы, преимущественно отходы промышленности (см. табл.2).
При содержании оксидов железа более 6% на поверхности гранул в процессе обжига образуется “пленка” из кристалликов гематита, которая препятствует слипанию гранул друг с другом. При меньшем содержании оксидов железа защитная “пленка” не образуется, поэтому гранулы, во избежание слипания, следует либо покрывать огнеупорным порошком, либо отжиг их вести в твердом теплоносителе, в качестве которого можно использовать кварцевый песок или полевые шпаты.
Если в золошлаковых отходах содержание несгоревших угольных частиц не превышает 3%, флотацию проводить не следует, поскольку уменьшение углерода можно достичь более простым способом, например добавлением компонентов, не имеющих органические соединения.
Пример. Применительно к производству пористых заполнителей золошлаковые отходы можно разделить на три группы:
1) с высоким содержанием оксидов кремния железа, но не высоким содержанием оксидов алюминия, кальция и магния. Эта группа отличается сравнительно низкой температурой размягчения минеральной составляющей угля и поэтому содержит высокое количество несгоревших угольных частиц в виде кокса и полукокса. Это самая распространенная группа золошлаковых отходов в России;
2) с высоким содержанием оксидов кальция, более 20% по массе. К этой группе относятся золошлаковые отходы от сжигания углей Канско-Ачинского бассейна. Обходы отличаются невысоким содержанием несгоревших угольных частиц;
3) с высоким содержанием оксидов алюминия, более 25%. К этой группе относятся золошлаковые отходы от сжигания углей Подмосковного бассейна. Содержание несгоревших угольных частиц не превышает 3%.
Минеральная составляющая характеризуется высокой температурой размягчения - больше 1400°С.
В соответствии с этой квалификацией для сравнительного анализа использованы золошлаковые отходы Тольяттинской ТЭЦ (первая группа), Красноярской ТЭЦ-1 (вторая группа) и Алексинской ТЭС (третья группа). Химический состав золошлаковых отходов и использованных добавок приведен в табл.1.
Пример 1. При изготовлении пористого заполнителя из золошлаковых отходов Тольяттинской ТЭЦ эксперименты проводили в следующей последовательности. На сите 100 мкм отделяли шлак от золы, которую затем подвергали флотации. Флотацию осуществляли в три стадии. В качестве реагентов использовали керосин-собиратель и метилизобутилкарбинол-вспениватель.
Реагенты вводили на первой и второй стадии флотации. После первой стадии получили два продукта: пенный концентрат с зольностью 55% и осадок с зольностью 83%. Последний вновь подвергали флотации с разделением на осадок с зольностью 98% (содержание несгоревших частиц 2%) и пенный концентрат с зольностью 90%, который вновь подвергали флотации с разделением на пенный концентрат с зольностью 50% и осадок с зольностью 98%. Пенный концентрат с зольностью 50% смешивали с пенным концентратом после первой стадии флотации с зольностью 55% и использовали в качестве твердого топлива для сжигания в котлах ТЭЦ. Осадок с зольностью 98% обезвоживали, смешивали со шлаком и размалывали в мельнице до удельной поверхности 4000 cм2/г. В измельченную смесь шлака и осадка вводили корректирующие добавки и тщательно размешивали в роторной мешалке. Кроме добавок, указанных в табл. 2, во все шихты вводили нитрат натрия в количестве 1% сверх 100%. Из полученной шихты на лабораторном прессе формовали гранулы диаметром 4 или 8 мм, которые сушили при температуре 200°С до нулевой влажности, затем обжигали во вращающейся печи и охлаждали в холодильнике с обжигом при температурах 700-500°С в течение 20 минут (гранулы размером менее 10 мм) или 30 минут (гранулы размером более 10 мм). Составы шихт приведены в табл.2. В табл.3 дан химический состав вспученных гранул шлакозита, а в табл.4 приведены некоторые параметры обжига и свойства шлакозита.
Золошлаковые отходы Красноярской ТЭЦ-1 и Алексинской ТЭС ввиду небольшого содержания несгоревших угольных частиц флотации не подвергали. Приготовление шихты, грануляцию, обжиг и охлаждение проводили как и в предыдущем случае.
В табл.2 в опыте под №17 приведен состав шихты по прототипу. Опыты этой части сравнительных испытаний проводили в следующей последовательности. Золошлаковую смесь ТЭЦ, не подвергавшуюся флотации, высушивали до постоянной массы, размалывали совместно в шаровой мельнице до удельной поверхности 4000 см2/г и смешивали с добавками, количество которых указано в табл.2. Смесь затворяли водой, тщательно перемешивали и формовали гранулы по методике, изложенной выше. Гранулы сушили при температуре 200°С до постоянной массы, а затем подвергали термообработке в две стадии: в начале выдерживали их при температуре 600°С в течение 15 минут, затем - при температуре 1000°С в течение 4 минут. Гранулы не вспучивались. Причина - высокое остаточное содержание углерода в гранулах, которое составляло 7%. Всучивание гранул происходило только после выдержки их на второй стадии термообработки при температуре 1000°С в течение 40 минут. Результаты этих опытов и показаны в табл.3 и 4 под №17.
В табл.4 в опытах под №3а и 3б представлены результаты испытания гранул, охлажденных без обжига. Состав шихты, из которой изготавливались гранулы, в этих опытах соответствовал составу шихты в опыте №3. Гранулы после обжига, который вели при температуре 1100°С, охлаждали до комнатной температуры со скоростью 60 градусов в минуту, что характерно для многих холодильников, используемых на производстве. Через 1 час гранулы погружали в воду на одни сутки. Через сутки гранулы вынимали из емкости с водой, высушивали до постоянной массы и испытывали. Гранулы практически не имели прочности, они разрушались по ровным плоскостям при небольшой нагрузке. Характер разрушения свидетельствовал о том, что главной причиной этого факта являлись остаточные напряжения. У гранул, охлажденных по заявленному режиму с обжигом при температурах 700-500 С, выдержка в воде практически не снижала прочность. В опыте №3 в (табл.4) даны результаты испытания пористого заполнителя, полученного из состава шихты, аналогично составу шихты в опыте №3, но отличающегося тем, что помол отфлотированной золы и шлака вели до удельной поверхности 3500 см2/г.
Качественные показатели шлакозита (насыпную плотность, прочность при сдавливании в цилиндре, содержание стеклофазы) определяли по методикам ГОСТ 9758-86 “Заполнители пористые неорганические для строительных работ. Методы испытаний” [5]. Температуру обжига и их температурный интервал вспучивания определяли по методикам, изложенным в ТУ 21-0294739-12-90 “Сырье глинистое для производства керамзитовых гравия и песка” [6]. Испытания на стойкость шлакозита воздействию кислот, щелочей и воды проводили по методикам, разработанным в НИИКерамзите и опубликованным в статье Б.В.Шаль и др. (Исследование стойкости керамзитового гравия к крепким растворам кислот и щелочей - Сб. трудов “Керамзит и керамзитобетон” №13 - М: ВНИИСтром, 1981 - с.63-70) [7].
Результаты, отвечающие поставленной цели, были достигнуты в опытах №3, 8, 10, 11 и 14.
Из анализа результатов опытов следует:
1) заявленные параметры обеспечивают получение из золошлаковых отходов пористого наполнителя с насыпной плотностью 200-300 кг/м3 и прочностью 0,8-1,2 МПа;
2) повышенное, более 80%, содержание стеклообразующих оксидов увеличивает температуру обжига гранул более 1200°С;
3) повышенное содержание оксидов алюминия и титана, при котором отношение масс этих оксидов к массе оксида кремния превышает величину 0,4, способствует и повышению температуры обжига, и кристаллизации расплава, и снижению прочности заполнителя;
4) кристаллизация расплава увеличивается при содержании оксидов железа более 10%, а также в тех случаях, когда отношение суммы масс оксидов кальция и магния к сумме масс оксидов калия и натрия превышает величину, равную 2,5;
5) кристаллизация расплава уменьшает прочность пористого заполнителя; при содержании в стекле кристаллической фазы более 5% трудно обеспечить требуемые показатели прочности у заполнителей с насыпной плотностью менее 300 кг/м3;
6) повышенное содержание модификаторов, более 33%, существенно уменьшает стойкость заполнителя к агрессивным средам, особенно резко снижается стойкость к кислотам. Каждый процент увеличения содержания модификатора сверх 33 уменьшает кислотостойкость на 3%;
7) повышенное, более 14%, содержание оксидов натрия и калия также уменьшает кислотостойкость заполнителя;
8) стойкость к агрессивным средам пористого заполнителя из золошлаковых отходов оптимальных составов соответствует стойкости керамзита (см. статью Б.В.Шаль и др. [7]);
9) заявленные показатели пористого заполнителя можно обеспечить только при помоле золошлаковых отходов и других твердых составляющих до удельной поверхности более 4000 см2/г;
10) остаточное содержание углерода в гранулах заполнителя свыше 0,4% резко ухудшает его качественные показатели (прочность и плотность).
Прочность снижается, а плотность увеличивается;
11) поскольку во время обжига в коротких вращающихся печах выгорает не более 1,6% углерода в виде кокса [2], в шихте, используемой для получения заполнителя, содержание несгоревших угольных частиц не должно превышать 2%;
12) обжиг гранул из золошлаковых отходов, не прошедших стадию флотации, по режиму прототипа - в две стадии не обеспечил полное удаление углерода из гранул, и поэтому они не вспучились;
13) содержание в алюмосиликатном стекле инертных, малорастворимых составляющих более 3% увеличивает плотность и уменьшает прочность гранул шлакозита.
Источники информации
1. SU 1449556 A1 C 04 В 18/4. Способ получения пористого заполнителя (Чередниченко Т.И., Поладко Г.И., Удачкин И.Б., Бондаренко С.И. и Мишиаевская И.Я., №4134116/29-33, заявл. 11.07.86, опубл. 07.01.89., БИ №1).
2. Основные условия вспучивания углеродосодержащих пород (Петров В.П., Роговой М.И., Шпирт М.Я., Федоров В.А. Сборник трудов, в. 13, ВНИИСтром им. П.П.Будникова, М., 1981, с.9-16).
3. Гомельский М.С. (Тонкий отжиг оптического стекла. М.: Машиностроение, 1969, с.151).
4. RU 2082688 С1 С 04 В 20/00, 18/4. Способ получения легкого заполнителя для бетона (Петров В.П., Каприелов С.С. и др., 94009421/03, заявл. 16.03.94, опубл. 27.06.97, БИ №18).
5. ГОСТ 9758-86. (Заполнители пористые неорганические для строительных работ. Методы испытания).
6. ТУ 21-0284739-12-90 (Сырье глинистое для производства керамзитового гравия, щебня и песка).
7. Исследование стойкости керамзитового гравия к крепким растворам кислот и щелочей. (Шаль Б.В., Павлихина Е.Ф., Вологдин Е.В., Осетрова А.В. Сборник трудов, в. 13, ВНИИСтром им. П.П.Будникова, М., 1981, с.63-70).
Claims (8)
1. Способ получения легкого заполнителя из углеродсодержащих отходов, включающий смешение отходов с корректирующими добавками, измельчение смеси, формование сырцовых гранул, сушку и обжиг сформованных гранул и охлаждение прокаленных вспученных гранул, отличающийся тем, что используют золошлаковые отходы тепловых электростанций, а количество корректирующих добавок выбирают из условия обеспечения в пересчете на прокаленное вещество следующего содержания оксидов, по крайней мере, кремния, алюминия, титана, железа, кальция, магния, натрия, калия, серы, в полученной смеси и соотношение между ними, мас.%:
Суммарное содержание
стеклообразующих оксидов
кремния, алюминия и титана Не более 80
Суммарное содержание
оксидов-модификаторов железа,
кальция, магния, натрия
и калия Не более 33
Содержание оксидов железа Не более 10
Суммарное содержание оксидов
натрия и калия Не более 14
Суммарное содержание
малорастворимых оксидов
хрома, серы, молибдена,
вольфрама, меди, мышьяка Не более 3
Отношение суммы масс
оксидов алюминия и титана
к массе оксида кремния Не более 0,4
Отношение массы оксидов
кальция и магния к массе
оксидов натрия и калия Не более 2,5
2. Способ по п.1, отличающийся тем, что при использовании золошлаковых отходов с содержанием углерода в золе более 3 мас.% разделяют отходы на органическую и минеральную часть методом флотации с обеспечением содержания в минеральной части несгоревших угольных частиц не более 2 мас.%.
3. Способ по п.2, отличающийся тем, что при содержании в золе несгоревших угольных частиц более 6% флотацию осуществляют в две или более стадий.
4. Способ по п.2 или 3, отличающийся тем, что перед флотацией золошлаковые отходы делят на две фракции по размеру зерен: крупную с размером зерен более 100 мкм - шлак и мелкую с размером зерен менее 100 мкм - золу, и флотации подвергают только золу.
5. Способ по любому из пп.1-4, отличающийся тем, что измельчение указанной смеси ведут до удельной поверхности не менее 4000 см2/г.
6. Способ по любому из пп.1-5, отличающийся тем, что в качестве корректирующих добавок используют жидкие, высокодисперсные и пастообразные вещества, обеспечивающие высокий контакт между составляющими шихты.
7. Способ по любому из пп.1-6, отличающийся тем, что при содержании в шихте оксидов железа менее 6 мас.% гранулы перед обжигом во вращающейся печи или в процессе обжига опудривают огнеупорным порошком или ведут обжиг в твердом теплоносителе, в качестве которого используют кварцевый песок или полевые шпаты.
8. Способ по любому из пп.1-7, отличающийся тем, что при температуре обжига 500-700°С охлаждение вспученных гранул размером более 10 мм ведут в течение 25-35 мин, а гранул размером менее 10 мм - в течение 15-25 мин.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003105260A RU2232141C1 (ru) | 2003-02-25 | 2003-02-25 | Способ получения легкого заполнителя |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003105260A RU2232141C1 (ru) | 2003-02-25 | 2003-02-25 | Способ получения легкого заполнителя |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2232141C1 true RU2232141C1 (ru) | 2004-07-10 |
Family
ID=33414017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2003105260A RU2232141C1 (ru) | 2003-02-25 | 2003-02-25 | Способ получения легкого заполнителя |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2232141C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106186771A (zh) * | 2016-07-26 | 2016-12-07 | 南通天蓝环保能源成套设备有限公司 | 一种建筑垃圾再生骨料的强化处理工艺 |
RU2607555C2 (ru) * | 2015-06-02 | 2017-01-10 | федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) | Способ переработки низкокальциевых золошлаковых отходов ТЭЦ с высоким содержанием недогоревших угольных частиц с последующим применением золошлаковых отходов ТЭЦ при производстве строительных материалов и в строительстве |
RU2763695C1 (ru) * | 2021-06-23 | 2021-12-30 | Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" | Пористый железо-калиевооксидный композит с бидисперсной структурой и способ его получения |
-
2003
- 2003-02-25 RU RU2003105260A patent/RU2232141C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
ВОЛЖЕНСКИЙ А.В. и др., Применение зол и топливных шлаков в производстве строительных материалов, Москва, Стройиздат, 1984, с.86-134. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2607555C2 (ru) * | 2015-06-02 | 2017-01-10 | федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) | Способ переработки низкокальциевых золошлаковых отходов ТЭЦ с высоким содержанием недогоревших угольных частиц с последующим применением золошлаковых отходов ТЭЦ при производстве строительных материалов и в строительстве |
CN106186771A (zh) * | 2016-07-26 | 2016-12-07 | 南通天蓝环保能源成套设备有限公司 | 一种建筑垃圾再生骨料的强化处理工艺 |
RU2763695C1 (ru) * | 2021-06-23 | 2021-12-30 | Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" | Пористый железо-калиевооксидный композит с бидисперсной структурой и способ его получения |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10207954B2 (en) | Synthetic aggregate from waste materials | |
KR102418336B1 (ko) | 시멘트 화합물 및 이의 제조 방법 | |
KR101941328B1 (ko) | 시멘트 조성물의 제조 방법 | |
US4772330A (en) | Process for producing low water-absorption artificial lightweight aggregate | |
NO20074171L (no) | Syntetiske aggregater omfattende kloakkslam og andre avfallsmaterialer, samt fremgangsmater for a produsere samme | |
CN1883746A (zh) | 红泥岩多孔陶粒滤料及其制备方法 | |
Koutnik et al. | Comparison of kaolin and kaolinitic claystones as raw materials for preparing meta-kaolinite-based geopolymers | |
JP2001163647A (ja) | ごみ焼却灰を用いた人工骨材の製造方法およびこの方法によって得られた人工骨材 | |
RU2232141C1 (ru) | Способ получения легкого заполнителя | |
JP2014189439A (ja) | セメントクリンカーの製造方法 | |
EP0031208B1 (en) | Process for the manufacture of a porous sintered aggregate | |
JP2004323288A (ja) | 水硬性改質石炭灰及びその製造方法 | |
JP2001253740A (ja) | 人工骨材およびその製造方法 | |
JP2006298730A (ja) | 焼却灰の焼成方法と該方法で得られる焼結物 | |
KR100392933B1 (ko) | 경량 골재용 조성물 | |
JP3701798B2 (ja) | 軽量成形体の製造方法 | |
JP3624033B2 (ja) | 人工軽量骨材 | |
KR100523827B1 (ko) | 플라이애쉬 정제방법 | |
RU2655868C2 (ru) | Шихта для изготовления керамических изделий | |
JP7218211B2 (ja) | セメント製造方法 | |
JP4159658B2 (ja) | 人工軽量骨材の製造方法 | |
TWI754236B (zh) | 淨水污泥資源化處理方法 | |
Xu et al. | Study on Preparation of Ceramsite from Shale Slag and Its Application | |
RU2479518C1 (ru) | Сырьевая смесь для производства легкого заполнителя бетонов (пенозола) | |
JP2001163648A (ja) | ごみ焼却灰を用いた人工骨材の製造方法および人工骨材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20050226 |