RU2212133C2 - Способ обработки спонгиозного костного ксенотрансплантата для костной хирургии - Google Patents

Способ обработки спонгиозного костного ксенотрансплантата для костной хирургии Download PDF

Info

Publication number
RU2212133C2
RU2212133C2 RU2001101667A RU2001101667A RU2212133C2 RU 2212133 C2 RU2212133 C2 RU 2212133C2 RU 2001101667 A RU2001101667 A RU 2001101667A RU 2001101667 A RU2001101667 A RU 2001101667A RU 2212133 C2 RU2212133 C2 RU 2212133C2
Authority
RU
Russia
Prior art keywords
bone
xenotransplant
solution
spongious
washing
Prior art date
Application number
RU2001101667A
Other languages
English (en)
Other versions
RU2001101667A (ru
Inventor
Э.Н. Беллендир
И.Б. Долгова
Original Assignee
Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии filed Critical Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии
Priority to RU2001101667A priority Critical patent/RU2212133C2/ru
Publication of RU2001101667A publication Critical patent/RU2001101667A/ru
Application granted granted Critical
Publication of RU2212133C2 publication Critical patent/RU2212133C2/ru

Links

Abstract

Изобретение относится к медицине, а именно к восстановительной костной хирургии. Способ обработки спонгиозного костного ксенотрансплантата для костной хирургии заключается в том, что спонгиозный костный ксенотрансплантат (СКК) помещают в раствор террилитина в концентрации 60 ПЭ на 1 мл в течение 24 ч при температуре 37oС, промывают ксенотрансплантат сильными струями подогретого до той же температуры 0,9%-ного физиологического раствора в течение 10 мин, после чего СКК выдерживают в течение четырех суток в 0,1 М фосфатном буфере при рН 7,4 и температуре 37oС, а затем обрабатывают СКК 0,1%-ным раствором тритона Х-100 в течение 24 ч при комнатной температуре с последующим промыванием 0,9%-ным физиологическим раствором. Технический результат - способ обеспечивает снижение антигенности спонгиозных костных ксенотрансплантатов при максимальном сохранении нативных пластических свойств костной ткани.

Description

Изобретение относится к медицине, а именно к восстановительной костной хирургии, и может быть использовано для обработки спонгиозного костного ксенотрансплантата.
Известно, что лучшим способом костной пластики является замещение кости костью. Другие же пластические материалы оцениваются с точки зрения того, насколько они близки к природной костной ткани. В медицине издавна применяются костные ауто-, алло- и ксенотрансплантаты, причем первые из них по своим биологическим свойствам являются, естественно, лучшими. Алло- и ксенотрансплантаты уступают им благодаря наличию факторов тканевой несовместимости, требующих преодоления, что особенно важно при использовании ксенотрансплантатов и резко ограничивает их применение.
Костные ксенотрансплантаты благодаря их высокой антигенности, связанной с видовыми различиями донора и реципиента, требуют наиболее сильных воздействий при обработке с целью предупреждения явлений тканевой несовместимости, могущих развиться после ксенотрансплантации.
Основными методами снижения антигенности костных ксенотрансплантатов до последнего времени были различные способы денатурации и коагуляции входящих в их состав белков путем воздействия сильными химическими реактивами или высокой температурой с целью так называемой "депротеинизации".
Известен получивший наибольшее распространение за рубежом способ получения так называемой "Кильской кости" (Kiel Bone), разработанный в ФРГ [1], заключающийся в последовательной обработке губчатых бычьих ксенотрансплантатов раствором перекиси водорода в высокой концентрации и парами эфира по способу R.Maatz и A. Banermeister (патент 9616154 ФРГ, НКИ 30 Н 2/36, 1957). Однако специальными экспериментальными исследованиями многих зарубежных авторов было установлено, что этот материал часто рассасывается [2], а по клиническим наблюдениям результаты костнопластических операций с использованием "Кильской кости" оказались в целом неудовлетворительными [3], что авторы публикаций связывают с отрицательным воздействием применяемых химических реактивов на костное вещество трансплантатов и их пластические свойства.
В течение последнего десятилетия предложен и рекомендуется для практического применения наиболее близкий по технической сущности к заявляемому способ получения нового пластического материала Pyrost® (ФРГ, 1998), испытанный при костной пластике в эксперименте и в клинике (более чем у 1000 больных), представляющий собой бычий костный спонгиозный ксенотрансплантат, подвергнутый воздействию высокой (1250oС) температуры [4]. Авторы называют его "керамизированной костью". Однако применение этого материала, по рекомендациям авторов, ограничено замещением небольших костных дефектов при использовании в качестве дополнения к аутогенным костным трансплантатам, причем, к тому же, противопоказанием является наличие инфицированного костного ложа.
Общим недостатком указанных ксенотрансплантатов, включая и Pyrost®, является глубокая денатурация основного вещества кости и коагуляция белка при их получении, лишающие их биологических преимуществ естественной костной ткани и уравнивающие предлагаемые материалы с многочисленными неорганическими заменителями кости, не способными к истинной ассимиляции их тканями костного ложа (металл, полимеры, керамика и др.).
Задача изобретения заключается в создании способа обработки спонгиозных костных ксенотрансплантатов, снижающего их антигенность до уровня, приемлемого для клинического применения, при максимальном сохранении нативных пластических свойств костной ткани.
Задача изобретения решается тем, что производят обработку губчатой кости, полученной от крупного рогатого скота или других животных-доноров, которая предполагает:
- энзиматическую обработку в растворе протеолитического фермента террилитина в концентрации 60 ПЕ на 1 мл в течение 24 ч при температуре 37oС;
- тщательное промывание подогретым до температуры 37oС 0,9% раствором хлористого натрия до полного удаления костного мозга из межбалочных пространств;
- выдерживание в фосфатном буфере при рН 7,4 в течение 4 суток при температуре 37oС;
- обработку тритоном Х-100, растворенным в физрастворе, в концентрации 0,1% в течение 24 ч при комнатной температуре с последующим промыванием 0,9% физраствором.
Предпосылки для решения задачи, определяющего преимущества предлагаемого способа получения пластического материала, созданы благодаря научным достижениям в области трансплантологии и трансплантационного иммунитета, базирующихся на клинических экспериментальных исследованиях основоположника учения о трансплантационном иммунитете, лауреата Нобелевской премии Питера Медавара, его современников и соотечественников, в особенности тех работах, которые относятся непосредственно к костной трансплантации в эксперименте [5, 6, 7], открывших пути снижения антигенности костных ксенотрансплантатов и их использования в клинической медицине без подбора доноров по антигенной совместимости и применения иммуносупрессивных воздействий. Учитывая уникальные биологические особенности костной ткани, преимущественно состоящей из неорганических веществ (70%), и сравнительно низкую антигенную активность ее органического компонента - опорного коллагена, значимость индивидуальной и видовой принадлежности трансплантируемой кости не является решающей.
Из специальной литературы по трансплантационному иммунитету к настоящему времени известно:
1) трансплантационные антигены кости сосредоточены, главным образом, в немногочисленных собственных костных клетках (остеоцитах), преимущественно в их оболочках; 2) по своей химической природе трансплантационные антигены, содержащиеся в кости, это, главным образом, водорастворимые гаптеновые гликопротеиды, или гидрофобные гликопептиды; 3) межклеточное вещество, опорный коллаген, обладает намного более низкой видовой специфичностью в сравнении с другими белками организма; 4) минеральные вещества (гидроксиапатит - основной компонент кости) не имеет антигенных свойств; 5) Т-антигены, определяющие трансплантационный иммунитет, имеющий клеточную природу, в отличие от Н-антигенов, ответственных за продукцию гуморальных антител, сравнительно нестойкие и разрушаются рядом щадящих, мягких, физических и химических воздействий.
Способ осуществляется следующим образом.
Полученный от животного-донора блок спонгиозной кости после удаления кортикальных пластинок помещают в раствор протеолитического фермента - террилитина, концентрацией 60 ПЕ в 1 мл с таким расчетом, чтобы объем раствора в 10 раз превышал объем обрабатываемых фрагментов спонгиозы. Емкость помещают в термостат при температуре 37oС на 24 ч, после чего трансплантаты промывают сильными струями 0,9% физраствора, подогретого до температуры 37oС в течение 10 мин. Полноту удаления костного мозга контролируют визуально. При необходимости всю процедуру можно повторить до 2-3 раз.
Для экстракции свободных водорастворимых антигенов (гидрофобных гликопептидов) спонгиозный ксенотрансплантат, освобожденный от костного мозга, помещают в 0,1 М фосфатный буфер с рН 7,4 того же объема и при температуре 37oС на 4 суток, меняя раствор ежесуточно.
Для удаления связанных антигенов в качестве мягкого детергента применяют 0,1% раствор тритона Х-100, которым в объеме, в 5 раз превышающем объем трансплантата, заливают последний на 24 ч при комнатной температуре, периодически встряхивая.
По окончании указанных этапов обработки полученный спонгиозный ксенотрансплантат промывают физраствором в течение 10 мин, стерилизуют общепринятым способом (окисью этилена, растворами антисептиков и антибиотиков и др. ) и консервируют глубоким замораживанием. Применение трансплантата возможно в сроки от 2 до 6 месяцев после окончания обработки.
С целью оценки полученного пластического материала были поставлены эксперименты на 77 кроликах, которым произведено 80 ортотопических и 36 гетеротопических трансплантаций губчатой костной ткани, полученной от животных разных видов, различными способами обработанной. Для оценки результатов экспериментов использованы оригинальная методика остеоспонгиозных тестов, микрорентгенография, гистологические исследования. Количественные данные обрабатывались статистически.
В процессе исследований трансплантировались как нативные кости, так и прошедшие обработку различной интенсивности. Установлена прямая связь полученных результатов с глубиной обработки, что потребовало обязательного применения всех перечисленных в описании способа этапов.
Использование оптимального варианта способа обработки ксенотрансплантата позволило у 28 животных получить положительный эффект - полную ассимиляцию пересаженной ксеногенной кости без выраженных явлений тканевой несовместимости. Впервые наблюдались не описанные ранее в мировой литературе истинное сращение костных ксенотрансплантатов с костной тканью ложа, лакунарная резорбция и крадущееся замещение ксеногенной кости собственной костной тканью реципиента, явление транзиторного "тканевого химеризма" со слиянием костной ткани животных двух различных видов, с остеопластической оппозицией новообразованной кости на балочках ксенотрансплантата. Полное замещение пересаженной кости новообразованной происходит, в основном, так же, как это наблюдается при ауто- и аллопластике, но в более длительные сроки с участием процессов аутолиза в толще костных балочек ксенотрансплантата. Все это обеспечивало благоприятные результаты применения обработанных по заявленному способу спонгиозных ксенотрансплантатов. Отрицательные результаты пластики отмечались только в случаях нарушения технологии получения пластического материала.
В качестве теста на антигенность ксенотрансплантатов использована классическая методика, примененная названными ранее [5, 6, 7] основоположниками учения о трансплантационном иммунитете - изучение реакции регионарных лимфатических узлов на гетеротопическую пересадку различных ксенотрансплантатов. Изучались: объем и масса регионарных лимфатических узлов и морфометрическая характеристика их клеточного состава. Особое внимание обращалось на соотношение малых, средних и больших лимфоцитов в кортикальных и паракортикальных зонах лимфатических узлов. Получены статистически достоверные данные о резком уменьшении антигенности спонгиозных костных ксенотрансплантатов, обработанных по заявляемому способу, причем остаточная антигенность была тем меньшей, чем более полно произведена обработка. При сравнении клеточных реакций лимфатических узлов на обработанные по нашему способу бычьи ксенотрансплантаты и на кроличьи аллотрансплантаты они оказались весьма близкими. Так, число малых лимфоцитов в кортикальной зоне в случаях аллотрансплантации составляло 51,67±1,26-58,01±0,42%, в то же время в аналогичной зоне после пересадки обработанных по предлагаемому способу ксенотрансплантатов с редуцированной антигенностью эти показатели составили 55,67-59,33±0,42%. Близкие показатели получены и по количеству средних лимфоцитов.
В целом, исследования показали, что в эксперименте предлагаемым способом получен новый пластический материал на базе ксеногенной спонгиозной костной ткани путем максимального снижения антигенности трансплантата при сохранении его биологических и пластических свойств.
Источники информации
1. Maatz R. , Bauermeister A. Verfahrung zur Präparierung von zur Verpflanzung geeigneten Knochen // Deutsches Patentamt. Patentschrift 961654.
2. Uehlinger E. Die allogeneinen Grundlagen der Transplantation //Beitr. Orttop. Traumat. - 1967. - B.M. 11. - S.610-623.
3. Chakour К. Klinische Untersuchungen über die Zeitungsfähigkeit der Kieler Knachen Spanes // Ztschr. Orthop. - 1974. - B.112 1. - S.207-217.
4. Mittelmeier H, Mittelmeier W, Gleitz M. Mineralisches, spongiöses Knochenersatzmaterial Pyrost. Experimentelle Grundlagen und 13 Jahre klinische Erfahrung bei
Figure 00000001
1000 Fällen//Orthopäde. - B.27 2. - S.121-136.
5. Medawar P. The future of transplantation biology and medicine // Transplant. Proc. - 1969. - V.1. 3. - P.666-669.
6. Burwell R G., Gowland G. Studies in transplantation of bone III. The immune responses of lymph nodes draining components of fresh homologous cancellous bone and homologous bone treated by different methods // J. Bone Joint Surg. - 1962. - V.44. -В. 1. - Р.131-138.
7. Burwell R. G. et al. Studies in the transplantation of bone V. The capacity of fresh and treated homografts of bone to evoke transplantation immunity // J. Bone Joint Surg. - 1963. - V.45. - В. 2. - Р.386-401.

Claims (1)

  1. Способ обработки спонгиозного костного ксенотрансплантата для костной хирургии, включающий применение физических воздействий и химических реактивов, отличающийся тем, что спонгиозный костный ксенотрансплантат (СКК) помещают в раствор террилитина в концентрации 60 ПЭ на 1 мл в течение 24 ч при температуре 37oC с последующим промыванием ксенотрансплантата сильными струями подогретого до той же температуры 0,9%-ного физиологического раствора в течение 10 мин, после чего СКК выдерживают в течение четырех суток в 0,1 М фосфатном буфере при рН 7,4 и температуре 37oC, а затем обрабатывают СКК 0,1%-ным раствором тритона Х-100 в течение 24 ч при комнатной температуре с последующим промыванием 0,9%-ным физиологическим раствором.
RU2001101667A 2001-01-17 2001-01-17 Способ обработки спонгиозного костного ксенотрансплантата для костной хирургии RU2212133C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001101667A RU2212133C2 (ru) 2001-01-17 2001-01-17 Способ обработки спонгиозного костного ксенотрансплантата для костной хирургии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001101667A RU2212133C2 (ru) 2001-01-17 2001-01-17 Способ обработки спонгиозного костного ксенотрансплантата для костной хирургии

Publications (2)

Publication Number Publication Date
RU2001101667A RU2001101667A (ru) 2002-12-20
RU2212133C2 true RU2212133C2 (ru) 2003-09-20

Family

ID=29776576

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001101667A RU2212133C2 (ru) 2001-01-17 2001-01-17 Способ обработки спонгиозного костного ксенотрансплантата для костной хирургии

Country Status (1)

Country Link
RU (1) RU2212133C2 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITTELMEIER H. et al. Pyrost, a. spongious, mineral bone substitute. Experimental bases and 13-year clinical experience in over 1000 cases. Orthopade. 1998, 27(2), p.126-135. *

Similar Documents

Publication Publication Date Title
US10765703B2 (en) Xenograft soft tissue implants and methods of making
CA2832731C (en) Method for enzymatic treatment of tissue products
US20220160937A1 (en) Rapid allograft treatment systems and methods
US20100112543A1 (en) Processing soft tissue, methods and compositions related thereto
RU2665962C1 (ru) Биорезорбируемый биологический матрикс для замещения дефектов костной ткани и способ его получения
AU755316B2 (en) Bone xenografts
JP2016522000A (ja) 組織移植片の脱細胞化方法
CN110975010A (zh) 一种胎盘组织基质材料及其制备方法
US9968707B2 (en) Process for bone tissue decellularization
CN1456363A (zh) 异种骨胶原基质制备的新方法
US20120022233A1 (en) Collagen implant
RU2212133C2 (ru) Способ обработки спонгиозного костного ксенотрансплантата для костной хирургии
CA2509519A1 (en) Method of treating biological tissue by microwave-irradiation
JP5610268B2 (ja) 高張電解質溶液による生体組織の脱細胞化処理方法
JPH0550295B2 (ru)
RU2686309C1 (ru) Способ изготовления остеопластического материала из костной ткани
RU2499611C1 (ru) Способ повышения биосовместимости трансплантатов клапанов сердца и сосудов
RU2094033C1 (ru) Способ подготовки трансплантатов
RU2291675C2 (ru) Способ обработки трансплантатов для сердечно-сосудистой хирургии
RU2120212C1 (ru) Способ предимплантационной обработки биологических протезов сосудов и клапанов сердца
RU2033795C1 (ru) Способ удаления костного мозга из аллотрансплантатов
Smolentsev et al. Production of Xenogenic Bone Powder for Implants Using Supercritical Fluid Extraction
WO2023141208A1 (en) Tissue graft and processing methods
RU2231997C2 (ru) Способ обработки тканей трансплантатов для сердечно-сосудистой хирургии
JP2011041716A (ja) 生体組織の処理方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070118