RU2211253C2 - Способ извлечения урана, молибдена и ванадия - Google Patents

Способ извлечения урана, молибдена и ванадия Download PDF

Info

Publication number
RU2211253C2
RU2211253C2 RU2001127502A RU2001127502A RU2211253C2 RU 2211253 C2 RU2211253 C2 RU 2211253C2 RU 2001127502 A RU2001127502 A RU 2001127502A RU 2001127502 A RU2001127502 A RU 2001127502A RU 2211253 C2 RU2211253 C2 RU 2211253C2
Authority
RU
Russia
Prior art keywords
leaching
pulp
uranium
molybdenum
vanadium
Prior art date
Application number
RU2001127502A
Other languages
English (en)
Other versions
RU2001127502A (ru
Inventor
Л.И. Водолазов
В.В. Шаталов
Т.В. Молчанова
М.А. Баринова
Е.Г. Федонова
С.А. Молчанов
В.Г. Литвиненко
В.А. Горбунов
Original Assignee
Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" filed Critical Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии"
Priority to RU2001127502A priority Critical patent/RU2211253C2/ru
Publication of RU2001127502A publication Critical patent/RU2001127502A/ru
Application granted granted Critical
Publication of RU2211253C2 publication Critical patent/RU2211253C2/ru

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к гидрометаллургии. Способ включает дробление руды, измельчение и выщелачивание ценных компонентов минеральной кислотой и последующее сорбционное извлечение растворенных урана, молибдена и ванадия из пульп. Перед выщелачиванием измельченную руду в виде водной пульпы окисляют путем обработки анионитом в ОН-форме при рН 8,5-11,6, окислительно-восстановительном потенциале от -50 до +150 мВ и температуре 30-80oС, а выщелачивание и сорбционное извлечение ведут путем добавления в окисленную пульпу серной кислоты до рН 1,5-3,5 и анионита в сульфатной форме или анионита, насыщенного на стадии окисления. Способ позволяет уменьшить расход серной кислоты, улучшить экологическую обстановку. 4 табл.

Description

Изобретение относится к отраслям промышленности, извлекающим ценные компоненты гидрометаллургическим путем из первичных и смешанных руд.
Известны способы извлечения ценных компонентов из руд без измельчения способами кучного и скважинного подземного выщелачивания серной кислотой с последующим сорбционным извлечением растворенных компонентов из продуктивных растворов ионитами и минеральными сорбентами. Переработку руд с тонким вкраплением ценных минералов проводят путем дробления и измельчения руды для вскрытия минералов из пустой рудовмещающей породы, растворения ценного компонента из измельченной руды, например урана на португальском гидрометаллургическом заводе в Уржейрике, серной кислотой в присутствии диоксида марганца - пиролюзита [Гидрометаллургическая переработка уранорудного сырья. Сб. под ред. Д.И. Скороварова, М., Атомиздат, 1979 г., с. 60, 61; Громов Б. В. Введение в химическую технологию урана, М., Атомиздат, 1978 г., с.81-84].
При наличии сульфидного молибдена (молибденита) в руде его растворение проводят серной кислотой с добавлением азотной кислоты для повышения окислительно-восстановительного потенциала (ОВП) пульпы до 600-700 мВ при нагревании до температуры выше 60oС, затем ценный компонент сорбируют ионитами или активированным углем, десорбируют аммиачными растворами минеральных солей. В случае необходимости дополнительно проводят сорбционное концентрирование, очистку и выделение в виде чистых солей парамолибдата аммония для последующей реализации.
Использование добавок азотной кислоты на стадии серно-кислотной обработки минерального сырья для повышения извлечения молибдена и урана имеет свои недостатки - это выделение оксидов азота в воздушные выбросы и накапливание нитрат-ионов в оборачиваемых водных растворах, что не только ухудшает экологию региона, но и приводит к депрессии сорбции сопутствующего молибдену урана на анионитах. На американском заводе фирмы "Кер-Мак-Ги" вместо азотной кислоты в качестве окислителя добавляют хлорат натрия, и ценные компоненты извлекают из руды с содержанием 0,2% урана, 0,01-0,03% молибдена и 0,05-0,2% оксида ванадия (Гидрометаллургическая переработка уранорудного сырья. Сб. под ред. Д.И. Скороварова, М., Атомиздат, 1979 г., с.45, 47).
На большинстве заводов, перерабатывающих трудно сгущаемые и плохо фильтруемые алюмосиликатные глинистые руды, уран сорбируют непосредственно из пульпы в нескольких последовательно соединенных аппаратах, десорбируют и выделяют в целевые продукты для реализации. Часто на заводах процессы выщелачивания и сорбции ценных компонентов совмещают в одну операцию, называемую процессом "сорбционного выщелачивания", который проводят при добавлении серной кислоты в пульпу до рН 1-1,5 [Громов Б.В. Введение в химическую технологию урана, М., Атомиздат, 1978 г., с.141] (прототип).
Недостатками прототипа являются:
- большой расход серной кислоты;
- использование минеральных веществ в качестве окислителей, ухудшающих экологию региона и приводящих к выплате штрафов;
- накопление вредных для сорбции примесей в пульпах, подвергаемых сорбционной обработке (выщелачиванию).
Техническим результатом является устранение указанных недостатков, а именно уменьшение расхода серной кислоты, снижение накопления вредных примесей, а также улучшение экологической обстановки.
Этот технический результат достигается тем, что в способе извлечения урана, молибдена и ванадия из руд, включающем дробление, измельчение и выщелачивание ценных компонентов минеральной кислотой и последующее сорбционное извлечение растворенных урана, молибдена и ванадия из пульп, перед выщелачиванием измельченную руду в виде водной пульпы окисляют путем обработки анионитом в ОН-форме при рН 8,5-11,6, окислительно-восстановительном потенциале от -50 до +150 мВ и температуре 30-80oС, а выщелачивание и сорбционное извлечение ведут путем добавления в окисленную пульпу серной кислоты до рН 1,5-3,5 и аниионита в сульфатной форме или анионита, насыщенного на стадии окисления.
Пример 1 (уран). Окисление урановых минералов с помощью стиролдивинилбензольного пористого анионита марки АМ-п в ОН-форме проводили при крупности измельчения руды 0,12 мм, Т:Ж=1:1,5, при тех стадиях обработки в цикле сорбции с перемешиванием пульпы и анионита на каждой стадии 30 мин. Содержание анионита в пульпе 10 об.%. Пульпу и анионит разделяли на сетчатых дренажах и перемещали противотоком. Изменяя выход обработанной анионитом пульпы, повышали ее рН от 6-7 до 8,5-11,6, а окислительно-восстановительный потенциал (ОВП) устанавливали в пределах от -50 до +150 мВ (табл.1). После обработка анионитом в OH-форме пульпу подвергали серно-кислотному сорбционному выщелачиванию при рН 1,5-3,0. В цикле сорбции было 6 стадий обработки при перемешивании пульпы и анионита АМ-п в сульфатной форме воздухом в течение 30 мин на каждой стадии (табл.1). По способу прототипа проводили опыты по серно-кислотному выщелачиванию урана серной кислотой при pH 1,5 с добавлением диоксида марганца в качестве окислителя четырехвалентного урана в количестве 10 кг/т руды (табл. 1). Из приведенных в табл.1 данных видна возможность извлечения из руды урана на стадии серно-кислотного сорбционного выщелачивания при рН 1,5-3,5 после ее обработки анионитом в OH-форме без добавления пиролюзита в количестве, примерно равном прототипу. Процесс одинаково успешно идет при использовании разных марок сильноосновных анионитов стиролдивинилбензольного (AM, АМ-п, АВ-17, АВ-17п, АМП) и винилпиридинового (ВП-1п, ВП-1Ап) типов (табл. 2). Опыты проводили на образцах с содержанием урана в руде 0,305%, при крупности помола руды 0,15 мм; Т:Ж=1:1,5; окисление урана анионитом в OH-форме проводили при 3 стадиях перемешивания пульпы с анионитом по 30 мин при pН 11 и ОВП=45 мВ и с последующим добавлением серной кислоты на стадии сорбционного выщелачивания при 6 стадиях обработки пульпы по 30 мин каждая до рН 1,5.
Пример 2 (молибден). В техногенных тонкоизмельченных отходах флотационных обогатительных фабрик содержание молибдена находится в пределах от 0,015 до 0,051%. По минеральному составу это молибденит в смеси с окисленными молибденовыми минералами. При таких же содержаниях молибден сопутствует урану в различных алюмосиликатных рудах. Разработанный способ контактного окисления рудной пульпы анионитом ВП-1Aп в ОН-форме с последующим добавлением серной кислоты при сорбционном выщелачивании до рН 1,5 позволяет извлечь из такого сырья от 60 до 80% молибдена. Крупность помола руды в опытах была 100% по классу 0,15 мм; Т:Ж=1:1,5; на окислении 3 стадии по 30 мин. При сорбционном выщелачивании пульпу с анионитом перемешивали при 6 стадиях по 30 мин и рН 1,5. Емкость насыщенного анионита по молибдену получена в пределах 15-30 мг/мл, что вполне достаточно для получения в обычных условиях товарных аммиачно-солевых элюатов с содержанием молибдена 1-5 г/л и выделения из них чистых солей парамолибдата аммония (табл. 3). В случае переработки урановых руд становится экономически рентабельным выделение после совместной сорбции путем раздельной десорбции сопутствующего молибдена в попутную продукцию.
Пример 3 (ванадий). Содержание ванадия составляет 0,03-0,1% в эвгиринах хибинских апатитов, сфенах щелочных пород Кольского полуострова, в перовските ультраосновных пород Кольского полуострова, в пиролюзите, в мусковитах из английских адамелиттов и биотитах из английских диоритов. Несколько выше содержание ванадия в пределах 0,1-0,5% отмечено для титаномагнетитов Хибин, основных пород и диопсидов из пироксенитов Урала, магнетитов из габбро в канадском Онтарио, в пляжевых россыпях Индии, Новой Зеландии и Франции и в урансодержащих карнотитах США.
Опыты проводили при крупности помола руды 100% по классу 0,15 мм; Т:Ж=1: 1,5; на окислении с одновременной сорбцией ванадия было 6 стадий по 30 мин; на сорбционном выщелачивании пульпу перемешивали с анионитом на 6 стадиях по 30 мин при pH 1,5 (табл.4). На стадии обработки анионитом в ОН-форме руды при ОВП в пределах +15 + +150 мВ ванадий переводят в анионную форму, а железо в двухвалентное состояние. После этого ванадий сорбируют на пористых анионитах уже на стадии обработки анионитом в ОН-форме. При этом емкость винилпиридиновых анионитов ВП-1Ап и ВП-1п примерно в 2 раза выше емкости стирольных пористых анионитов типа АМ-п, АВ-17п, Дауэкс-1п и Россион (табл. 4). При необходимости соблюдения ПДК по ванадию сорбцию урана во втором цикле осуществляют при величинах ОВП, гарантирующих появления малых количеств ионов трехвалентного железа (ниже 400 мВ). Поглощенный ванадий в первом цикле обработки анионитом в ОН-форме десорбируют с анионита аммиачными растворами минеральных солей, выделяют из полученных элюатов в виде чистых солей и переводят анионит в ОН-форму для повторного/многократного использования в процессе. Предложенный способ обеспечивает:
- отказ от применения в процессах выщелачивания в качестве окислителей экологически вредных минеральных соединений типа диоксида марганца, азотной кислоты, хлората натрия, за выбросы которых в биосферу налагают немалые штрафы;
- уменьшение расхода серной кислоты на осуществление процесса растворения ценных компонентов после ее окисления в цикле обработки анионитом в ОН-форме на 20-30 % в случае проведения сорбционного выщелачивания при рН 1,5-2,0 и до 40 % при рН 2,5-3,5;.
- снижение в 2 раза растворения из рудовмещающей породы кремния на стадии выщелачивания и уменьшение отравления анионитов ортокремниевой кислотой при сорбции ценных компонентов из пульпы;
- осуществление накопления молибдена и ванадия в отработанном в сорбенте на стадии обработки анионитом для последующего их выделения в побочную продукцию.

Claims (1)

  1. Способ извлечения урана, молибдена и ванадия из руд, включающий дробление, измельчение и выщелачивание ценных компонентов минеральной кислотой и последующее сорбционное извлечение растворенных урана, молибдена и ванадия из пульп, отличающийся тем, что перед выщелачиванием измельченную руду в виде водной пульпы окисляют путем обработки анионитом в ОН-форме при рН 8,5-11,6, окислительно-восстановительном потенциале от -50 до +150 мВ и температуре 30-80oС, а выщелачивание и сорбционное извлечение ведут путем добавления в окисленную пульпу серной кислоты до рН 1,5-3,5 и анионита в сульфатной форме или анионита, насыщенного на стадии окисления.
RU2001127502A 2001-10-11 2001-10-11 Способ извлечения урана, молибдена и ванадия RU2211253C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001127502A RU2211253C2 (ru) 2001-10-11 2001-10-11 Способ извлечения урана, молибдена и ванадия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001127502A RU2211253C2 (ru) 2001-10-11 2001-10-11 Способ извлечения урана, молибдена и ванадия

Publications (2)

Publication Number Publication Date
RU2001127502A RU2001127502A (ru) 2003-08-10
RU2211253C2 true RU2211253C2 (ru) 2003-08-27

Family

ID=29245890

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001127502A RU2211253C2 (ru) 2001-10-11 2001-10-11 Способ извлечения урана, молибдена и ванадия

Country Status (1)

Country Link
RU (1) RU2211253C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2456244C2 (ru) * 2010-08-30 2012-07-20 Федеральное государственное унитарное предприятие "Производственное объединение "Маяк" Способ переработки отработанных стекловолокнистых аэрозольных фильтров
CN105483400A (zh) * 2015-12-29 2016-04-13 核工业北京化工冶金研究院 一种同步萃取分离铀钼的方法
CN105567958A (zh) * 2016-01-12 2016-05-11 东华理工大学 高铀钼矿溶液浸出液中铀钼萃取分离方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Гидрометаллургическая переработка уранорудного сырья./ Под ред. Д.И. Скороварова. - М.: Атомиздат, 1979, с.98-101. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2456244C2 (ru) * 2010-08-30 2012-07-20 Федеральное государственное унитарное предприятие "Производственное объединение "Маяк" Способ переработки отработанных стекловолокнистых аэрозольных фильтров
CN105483400A (zh) * 2015-12-29 2016-04-13 核工业北京化工冶金研究院 一种同步萃取分离铀钼的方法
CN105567958A (zh) * 2016-01-12 2016-05-11 东华理工大学 高铀钼矿溶液浸出液中铀钼萃取分离方法
CN105567958B (zh) * 2016-01-12 2018-03-16 东华理工大学 高铀钼矿溶液浸出液中铀钼萃取分离方法

Similar Documents

Publication Publication Date Title
Costis et al. Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies
Onghena et al. Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis (trifluoromethylsulfonyl) imide
Su et al. Reductive leaching of manganese from low-grade manganese ore in H2SO4 using cane molasses as reductant
EP2661513B1 (en) Dissolution and recovery of at least one element nb or ta and of at least one other element u or rare earth elements from ores and concentrates
CN103866122B (zh) 一种铀钼矿微生物溶浸及铀钼富集分离方法
US10000825B2 (en) Process, method and plant for recovering scandium
RU2477327C1 (ru) Способ комплексной переработки углерод-кремнеземистых черносланцевых руд
Lan et al. Recovery of rhenium from molybdenite calcine by a resin-in-pulp process
CN102660676A (zh) 分离钼铼精矿中铼和钼的方法
RU2385959C1 (ru) Способ получения золота из сульфидных золотосодержащих руд
CN102925686A (zh) 一种从含钒、铬的溶液中选择性分离和提取钒与铬的方法
KR101163557B1 (ko) 고속 침출을 통한 고효율 우라늄 회수 방법
CN105986131A (zh) 从含钒物料制备偏钒酸铵的方法
Kholmogorov et al. Processing mineral raw materials in Siberia: ores of molybdenum, tungsten, lead and gold
CN102296180B (zh) 一种分离硫化铋精矿中钼的方法
RU2547369C2 (ru) Способ комплексной переработки остатков доманиковых образований
US9896744B2 (en) Process for metals leaching and recovery from radioactive wastes
RU2211253C2 (ru) Способ извлечения урана, молибдена и ванадия
WO2016201456A1 (ru) Способ комплексной переработки черносланцевых руд
CN105907992B (zh) 一种加压氧化分离低品位钼精矿中钼、铜和铼的方法
RU2493279C2 (ru) Способ извлечения ценных компонентов из продуктивных растворов переработки черносланцевых руд
CN116143174A (zh) 一种白钨矿短流程制备仲钨酸铵的方法
US20050211631A1 (en) Method for the separation of zinc and a second metal which does not form an anionic complex in the presence of chloride ions
RU2749310C2 (ru) Способ переработки сульфидного золотомедного флотоконцентрата
CA1236308A (en) Process for hydrometallurgical extraction of precious metals

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081012