RU2206525C2 - Способ резки хрупких неметаллических материалов - Google Patents

Способ резки хрупких неметаллических материалов Download PDF

Info

Publication number
RU2206525C2
RU2206525C2 RU2001120746A RU2001120746A RU2206525C2 RU 2206525 C2 RU2206525 C2 RU 2206525C2 RU 2001120746 A RU2001120746 A RU 2001120746A RU 2001120746 A RU2001120746 A RU 2001120746A RU 2206525 C2 RU2206525 C2 RU 2206525C2
Authority
RU
Russia
Prior art keywords
cutting
notch
zone
cut
laser beam
Prior art date
Application number
RU2001120746A
Other languages
English (en)
Other versions
RU2001120746A (ru
Inventor
В.С. Кондратенко
Original Assignee
Кондратенко Владимир Степанович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кондратенко Владимир Степанович filed Critical Кондратенко Владимир Степанович
Priority to RU2001120746A priority Critical patent/RU2206525C2/ru
Priority to US10/484,987 priority patent/US20040251290A1/en
Priority to PCT/RU2002/000318 priority patent/WO2003010102A1/ru
Priority to CNB028143183A priority patent/CN1223531C/zh
Priority to JP2003515462A priority patent/JP2004536759A/ja
Priority to EP02758989A priority patent/EP1422201A4/de
Priority to KR1020047000952A priority patent/KR100845391B1/ko
Application granted granted Critical
Publication of RU2001120746A publication Critical patent/RU2001120746A/ru
Publication of RU2206525C2 publication Critical patent/RU2206525C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • C03B33/093Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/225Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising for scoring or breaking, e.g. tiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/10Methods
    • Y10T225/12With preliminary weakening
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/30Breaking or tearing apparatus
    • Y10T225/307Combined with preliminary weakener or with nonbreaking cutter
    • Y10T225/321Preliminary weakener

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

Изобретение относится к способам резки хрупких неметаллических материалов, в частности к способам лазерной резки таких материалов, как любой тип стекла, включая кварцевое стекло, различные монокристаллы, например сапфир и кварц, все типы керамики, а также полупроводниковые материалы. Техническая задача изобретения - повышение производительности и качества резки хрупких неметаллических материалов. Способ резки хрупких неметаллических материалов включает нагрев поверхности материала по линии реза с помощью лазерного пучка и дополнительное воздействие на поверхность материала. В зоне нагрева лазерным пучком осуществляют несквозной надрез материала по линии реза. Дополнительное воздействие на поверхность материала осуществляют в зоне нанесения надреза по крайней мере одним источником упругих волн, при этом амплитуду и частоту упругих волн выбирают из условия углубления надреза на заданную глубину или сквозной резки. Для обеспечения максимальной эффективности процесса упругие волны концентрируют в объеме материала в зоне надреза по линии реза. При резке некоторых материалов целесообразно после нагрева поверхности материала по линии реза лазерным пучком дополнительно охлаждать зону нагрева с помощью хладагента, при этом упругие волны концентрируют в зоне воздействия хладагента. В ряде случаев воздействие упругой волны по линии надреза осуществляют после завершения процесса нанесения надреза. Это означает, что углубление надреза или сквозная резка могут осуществляться одновременно с нанесением надреза в одном технологическом цикле, но могут осуществляться и в двух независимых циклах. 8 з.п.ф-лы, 17 ил.

Description

Изобретение относится к способам резки хрупких неметаллических материалов, в частности к способам лазерной резки таких материалов, как любой тип стекла, включая кварцевое стекло, различные монокристаллы, например сапфир и кварц, все типы керамики, а также полупроводниковые материалы.
Настоящее изобретение может быть использовано в различных областях техники для высокоточной и высокопроизводительной резки широкого класса материалов как на всю толщину разрезаемого материала, так и на любую задаваемую глубину. При этом возможно в процессе резки по одной линии реза чередование сквозных резов с несквозными резами на заданную глубину. Представляется высокоэффективным использование данного изобретения для сквозной резки стекла толщиной от 0,1 до 20 мм, в том числе в процессе выработки стекла. Кроме того, обеспечивается резка с пересекающимися линиями реза без ухудшения качества резки в точках пересечения. Также обеспечивается резка как однослойных материалов, так и склеенных пакетов, что чрезвычайно важно при резке таких изделий, как плоские дисплейные экраны (FPD), в том числе жидкокристаллические экраны (LCD). Еще одной особенностью настоящего изобретения является возможность сквозной резки как под прямым углом к поверхности материала, так и с наклоном к поверхности разрезаемого материала. Последний прием очень важен при резке дисков или других изделий с замкнутым контуром.
Известен способ резки стеклянных трубок, включающий нанесение предварительной царапины (дефекта) с помощью алмазного инструмента по линии реза, нагрев линии реза лазерным эллиптическим пучком при относительном перемещении трубок и пучка и локальное охлаждение зоны нагрева с помощью хладагента (А. С. СССР 857025). Этот способ отличается высокой производительностью и высоким качеством резки стеклянных трубок.
Известен также способ резки листовых хрупких неметаллических материалов, основанный на применении перечисленных выше приемов, а именно предварительное нанесение царапины (дефекта) с помощью алмазного инструмента по линии реза, нагрев линии реза лазерным эллиптическим пучком при относительном перемещении материала и пучка и локальное охлаждение зоны нагрева с помощью хладагента (PCT/RU 94/00276, номер международной публикации WO 96/20062). Этот способ можно успешно использовать при резке листовых материалов как по прямолинейному контуру, так и по любому криволинейному контуру. Однако этот способ не позволяет осуществлять высокопроизводительную сквозную резку материалов, а требует для окончательного разделения надрезанных частей материала осуществления дополнительной операции механического или другого метода докалывания материала. Эта операция не позволяет обеспечить стопроцентного высокого качества разрезаемых изделий, а кроме того, требует применения дополнительного оборудования для ломки. Это, в свою очередь, усложняет и удорожает процесс резки.
Известен также способ резки листовых хрупких неметаллических материалов, включающий предварительное нанесение царапины (дефекта) с помощью алмазного инструмента по линии реза, нагрев линии реза лазерным пучком при относительном перемещении материала и пучка и локальное охлаждение зоны нагрева с помощью хладагента (PCT/GB 93/00699). Данный способ позволял осуществлять не только надрез, но и сквозную резку стекла либо других хрупких неметаллических материалов за счет применения повторного нагрева линии реза с помощью лазерного пучка или другого теплового источника. Однако прием повторного термического нагрева с целью докалывания материала относительно линии надреза имеет существенные ограничения в своих возможностях.
Перечислим основные из них:
- необходимость получения глубокого первоначального надреза, что может быть обеспечено низкой скоростью нанесения первоначального надреза;
- дополнительные энергозатраты при докалывании:
а) за счет снижения скорости резки при докалывании;
б) за счет увеличения мощности лазерного излучения и увеличения зоны термического воздействия;
невозможность осуществления пересекающихся резов.
Известен способ резки листового стекла, при котором на одну из поверхностей стекла по линии реза воздействуют направленным тепловым потоком, обеспечивающим образование разделяющей трещины, а к противоположной поверхности листа прикладывают изгибающее усилие, обеспечивающее продвижение трещины вдоль намеченной линии (см. Патент США 4190184, МКИ С 03 В 33/02, приор. 23. 08. 78).
Наиболее близким по технической сущности к предлагаемому изобретению является способ резки хрупких неметаллических материалов, используемый в установке для лазерной обработки хрупких материалов, включающий нагрев одной из поверхностей листа разрезаемого материала лазерным пучком, обеспечивающий образование разделяющей трещины, а также используется дополнительное механическое воздействие на противоположную поверхность листа (см. Патент РФ 2139779, МКИ В 23 К 26/00, публ. 20. 10. 99).
Однако как в случае применения постоянного механического воздействия на противоположную поверхность материала, так и в сочетании с постукиванием подвижным шариком по поверхности противоположной стороны листа по траектории перемещения лазерного пучка эти приемы позволяют лишь сократить запаздывание сквозной трещины относительно положения лазерного пучка на поверхности материала, но не позволяет повысить скорость резки. Дело в том, что скорость сквозного лазерного термораскалывания определяется в основном теплопроводностью материала, которая весьма низка у стекла и других хрупких неметаллических материалов, для которых предназначен описанный способ резки. Поэтому такой способ резки не нашел широкого практического применения из-за чрезвычайно низкой производительности. Кроме того, качество и точность резки в данном способе резки являются очень низкой.
В процессе перемещения листа стекла или другого хрупкого материала помимо постоянного значительного механического воздействия на поверхность материала подвижный шарик или любой другой ударный механизм наносит по противоположной поверхности материала периодические удары значительной интенсивности, зависящей от толщины и свойств разрезаемого материала. Это приводит к образованию обширной зоны деформаций самого материала. Сложение термических напряжений, возникающих в широкой зоне материала, подвергнутой нагреву лазерным пучком, с механическими напряжениями от постоянных нагрузок от механизма воздействия на поверхность и от периодических ударов шарика, деформирующих обширную зону материала, приводит к образованию большой зоны результирующих разрушающих напряжений, управление которыми практически невозможно. Кроме того, в связи с большой зоной деформаций в этом процессе существенную роль на точность и качество резки начинает играть неоднородность материала, наличие остаточных напряженных зон и включений в самом материале, а также влияние граничных условий, то есть влияние краевых условий на термические и механические напряжения. Еще одним недостатком описанного устройства и используемого в нем способа резки является невозможность резки склеенных пластин, например невозможна резка жидкокристаллических экранов (LCD) и плоских дисплейных экранов (FPD), так как осуществляется резка верхнего листа, на который воздействует лазерный пучок, в то время как механическое воздействие распространяется только на нижний лист. Наконец, такой способ резки не позволяет осуществлять пересекающиеся резы.
В основу настоящего изобретения положена задача повышения производительности и качества резки хрупких неметаллических материалов за счет возможности осуществления сквозной и несквозной резки как в одном, так и в разных технологических циклах при равной скорости резки, обеспечения возможности осуществления пересекающихся резов, а также за счет возможности резки двухслойных пакетов материалов.
Поставленная задача решается тем, что в способе резки хрупких неметаллических материалов, включающем нагрев поверхности материала по линии реза с помощью лазерного пучка и дополнительное воздействие на поверхность материала, отличительным является то, что в зоне нагрева лазерным пучком осуществляют несквозной надрез материала по линии реза, а дополнительное воздействие на поверхность материала осуществляют в зоне нанесения надреза по крайней мере одним источником упругих волн, при этом амплитуду и частоту упругих волн выбирают из условия углубления надреза на заданную глубину или сквозной резки.
Для обеспечения максимальной эффективности процесса упругие волны концентрируют в объеме материала в зоне надреза по линии реза.
При резке некоторых материалов целесообразно после нагрева поверхности материала по линии реза лазерным пучком дополнительно охлаждать зону нагрева с помощью хладагента, при этом упругие волны концентрируют в зоне воздействия хладагента.
В ряде случаев воздействие упругой волны по линии надреза осуществляют после завершения процесса нанесения надреза. Это означает, что углубление надреза или сквозная резка могут осуществляться одновременно с нанесением надреза в одном технологическом цикле, но могут осуществляться и в двух независимых циклах.
В ряде случаев целесообразно осуществлять воздействие упругих волн только в заданных зонах материала по линии реза. Это позволяет в процессе резки по одной линии реза осуществлять чередование сквозных резов с несквозными резами на заданную глубину.
В случае необходимости получения наклонного реза следует соблюдать условие, чтобы линия воздействия источника упругих волн и линия воздействия лазерного пучка и/или хладагента были смещены относительно плоскости, перпендикулярной поверхности материала.
В ряде случаев одновременно концентрируют две упругие волны со стороны нанесения надреза вслед за лазерным пучком и/или хладагентом по обе стороны относительно линии надреза. Например, такой прием целесообразно использовать в тех случаях, когда размещение волновода и концентратора упругой волны с противоположной поверхности материала затруднено или не представляется возможным.
Иногда одновременно концентрируют упругую волну в объеме материала в зоне надреза, воздействуя концентратором упругой волны на противоположную поверхность материала в зоне, расположенной между зон воздействия двух других упругих волн, концентрируемых со стороны воздействия лазерного пучка.
В ряде случаев помимо концентрации упругой волны в объеме материала с помощью концентратора охлаждают поверхность материала по линии реза.
Сущность изобретения поясняется чертежами, на которых представлены:
- фиг.1 - схема образования надреза в материале с помощью лазерного пучка;
- фиг. 2 - схема образования надреза с помощью лазерного пучка и хладагента;
- фиг. 3 - схема углубления надреза в материале на заданную глубину с помощью упругой волны;
- фиг.4 - схема сквозного углубления надреза с помощью упругой волны;
- фиг.5 - схема проведения в одном цикле несквозного и сквозного реза и двух сквозных пересекающихся резов;
- фиг.6 - схема осуществления наклонного реза по отношению к поверхности материала;
- фиг.7 - схема сквозной резки одной из двух склеенных пластин;
- фиг. 8 - схема сквозной резки с применением механического волновода и концентратора упругой волны, расположенных с противоположной стороны разрезаемого листа;
- фиг. 9 - схема докалывания надреза за счет концентрации двух упругих волн со стороны надреза, осуществляемого с помощью лазерного пучка и хладагента: а - вид сбоку; б - вид сверху;
- фиг.10 - схема сквозной резки с применением двух концентраторов упругих волн, расположенных со стороны надреза, осуществляемого с помощью лазерного пучка: а - вид сверху; б - вид спереди (сечение);
- фиг.11 - схема сквозной резки с применением трех концентраторов упругих волн: а - вид сбоку; б - вид спереди (сечение);
- фиг. 12 - вариант концентратора упругой волны, воздействующего со стороны надреза;
- фиг. 13 - две фотографии в поляризованном свете момента сквозного углубления надреза под действием упругой волны: а - вид сверху; б - вид под углом 45o.
Способ резки хрупких неметаллических материалов за счет осуществления надреза с помощью лазерного излучения и воздействия в зоне надреза упругих волн заключается в следующем.
Рассмотрим основные физические принципы образования и распространения упругой волны в твердом упругом теле и условия углубления надреза вплоть до сквозного реза за счет воздействия упругой волны в зоне надреза.
При распространении упругой волны в твердом теле возникают механические деформации сжатия (растяжения) и сдвига, которые переносятся волной из одной точки материала в другую. При этом имеет место перенос энергии упругой деформации в объеме твердого тела. В изотропном твердом материале могут распространяться упругие волны двух типов - продольные и сдвиговые. Продольные волны вызывают деформации, представляющие собой комбинацию сжатия (растяжения) и чистого сдвига. В сдвиговых волнах деформация является чистым сдвигом. Упругая волна характеризуется амплитудой и направлением колебаний, переменным механическим напряжением и деформацией, частотой колебаний, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны. Эти параметры следует учитывать для определения оптимальных условий углубления надреза, а именно концентрации упругой волны в объеме материала в зоне надреза.
Для передачи упругой волны от его источника к зоне надреза можно использовать акустические волноводы. Например, в пластине или стержне, представляющими собой твердые акустические волноводы, могут распространяться волны, представляющие собой комбинации продольных и сдвиговых волн, распространяющихся под острыми углами к оси волновода и удовлетворяющих граничным условиям: отсутствию механических напряжений на поверхности волновода. Волновод может заканчиваться концентратором, обеспечивающим концентрацию упругой волны в определенной зоне объема материала.
В любой упругой среде из-за внутреннего трения и теплопроводности распространение упругой волны сопровождается ее поглощением. В результате поглощения волны происходит превращение энергии волны в другие виды энергии. Поглощение волны приводит к ослаблению энергии волны по экспоненциальному закону. Если на пути упругой волны имеется препятствие в виде отражающей поверхности, то происходит дифракция волн на этом препятствии, в частности, отражение и прохождение упругой волны на плоской границе двух полупространств.
При нагреве поверхности пластины хрупкого неметаллического материала 1 с помощью лазерного пучка 2 при определенных условиях, а именно при подборе соответствующего значения плотности мощности лазерного излучения на поверхности материала и скорости v относительного перемещения материала и пучка на поверхности материала образуется надрез 3 глубиной δ (фиг.1). При этом надрез может быть выполнен как за счет лазерного скрайбирования, при котором вдоль линии реза с поверхности удаляется часть материала, так и за счет термических напряжений, образующих несквозной надрез (микротрещину) в материале без удаления материала. В последнее время широкое распространение получил способ нанесения надреза 3 на поверхности хрупкого неметаллического материала 1, включающий нагрев поверхности лазерным пучком 2 и локальное охлаждение зоны нагрева с помощью хладагента 4 (фиг.2).
Однако, как уже указывалось выше, такие способы требуют для окончательного разделения последующее механическое или термическое докалывание материала вдоль линии надреза. Это накладывает очень серьезные ограничения на возможность эффективного применения указанного способа в современной индустрии, о чем уже подчеркивалось при анализе существующих аналогичных способов резки.
Основным отличием предлагаемого изобретения является концентрация упругой волны 5 с помощью волновода 6 и концентратора в объеме материала 1 в зоне образования надреза 3, например в зоне воздействия лазерного пучка 2 (фиг. 3). Следует сразу подчеркнуть, что в этом способе практически отсутствует какое либо заметное механическое воздействие на поверхность материала. При этом в зависимости от условий воздействия упругой волны: амплитуды и частоты колебаний, связанных с основными параметрами нанесения надреза: скоростью и глубиной надреза δ, можно легко осуществить углубленный рез 7 на заданную глубину h. Изменяя параметры процесса легко получить сквозной рез 8 глубиной Н в материале 1 (Фиг.4). Как видно из приведенных выше примеров, проиллюстрированных чертежами, процесс нанесения надреза 3, а также процесс углубления надреза или сквозной резки может происходить с применением хладагента или без него.
Очень серьезным преимуществом предлагаемого изобретения является возможность воздействия упругой волны только в заданных зонах линии надреза, что позволяет в одном цикле резки чередовать несквозной надрез и сквозной рез. Один из примеров такой резки показан на фиг.5, где в одном цикле начало и завершение резки производят с помощью несквозного надреза 3, то есть без углубляющего воздействия упругой волны, а остальную часть резки осуществляют насквозь с образованием сквозной трещины 8. Во-первых, этот прием позволяет осуществлять сквозные пересекающиеся резы без ухудшения качества резки в местах пересечений и без применения дополнительных насечек в местах пересечений. Во-вторых, это позволяет обеспечивать высокую точность и качество резки, так как до полного завершения резки всей пластины на отдельные элементы она сохраняет свои первоначальные габариты и целостность.
Еще одним достоинством предлагаемого способа резки хрупких неметаллических материалов является возможность осуществления сквозного реза под некоторым углом по отношению к плоскости, перпендикулярной поверхности материала. Это может быть обеспечено за счет того, что линия воздействия источника 6 упругих волн и линия воздействия лазерного пучка 2 смещены относительно плоскости, перпендикулярной поверхности материала 1 (фиг.6). В результате такого смещения линия сквозного реза 9 наклонена под углом φ к направлению, перпендикулярному поверхности материала. Такой способ резки дает очень хорошие результаты при резке дисков или других изделий с замкнутым контуром резки, так как позволяет достаточно легко извлекать вырезанную деталь из общей заготовки. При этом этот уклон может быть настолько мал, что практически не влияет на точность резки.
Предлагаемый способ резки хрупких неметаллических материалов может быть использован для резки не только однослойных материалов, но и склеенных пластин. На фиг. 7 показана схема резки пластины 1, склеенной с пластиной 10 посредством клеевого соединения 11. В этом случае упругая волна 5 распространяется со стороны пластины 10 и, достигнув зоны надреза 3, углубляет надрез до сквозного реза 8 пластины 1. Однако можно направить упругую волну в объем материала и со стороны пластины 1. Все зависит от используемого источника упругой волны.
Рассмотрим один из простейших вариантов реализации предлагаемого способа, а именно углубление надреза 3 или осуществления сквозной резки за счет применения механического волновода 6 и концентратора 12 упругой волны, возникающей под действием механического воздействия ударника 13 (фиг.8). Механический волновод 6 может быть выполнен как прямолинейным, так и криволинейным, как показано на фиг.8. Такое исполнение волновода исключает передачу механического удара от ударника 13 непосредственно на поверхность материала 1. В данном случае волновод 6 выполнен в виде изогнутого металлического стержня, заканчивающегося концентратором - конусом с определенным углом у вершины, при этом вершина конуса имеет форму полусферы, что может быть реализовано за счет запрессованного стального шарика. Это обеспечивает точечный контакт концентратора 12 с поверхностью материала 1. Концентратор 12 устанавливается перпендикулярно поверхности материала 1 и расположен строго под линией надреза 3 в зоне его образования. При этом постоянное механическое воздействие концентратора 12 силой P1 на поверхность материала 1 должно быть минимальным и не должно вызывать никаких деформаций материала, а должно обеспечивать лишь контакт концентратора 12 с поверхностью материала 1. Упругая волна в волноводе 6 и концентраторе 12 создается за счет взаимодействия ударника 13 с торцом волновода 6 с силой Р2. При ударе по волноводу 6 в нем образуется упругая волна деформаций, которая распространяется по волноводу 6 и накапливается в концентраторе 12. В точке контакта концентратора 12 с поверхностью материала 1 энергия упругой деформации переносится в объем материала 1 и, достигнув вершины надреза 3, поперечные волны вызывают развитие надреза 3 вглубь материала, вплоть до сквозного реза 8.
В ряде случаев размещение волновода и концентратора упругой волны с противоположной поверхности материала затруднено или не представляется возможным. В таких случаях одновременно концентрируют с помощью концентратора 12 две упругие волны 5 со стороны воздействия лазерного пучка 2 и хладагента 4 вслед за лазерным пучком 2 и хладагентом 4 по обе стороны от линии надреза 3 (фиг. 9 а, б). В этом случае надрез 3 осуществляется за счет напряжений растяжения, которые возникают в результате резкого охлаждения зоны нагрева хладагентом 4. Дополнительное воздействие двух концентраторов упругой волны по обе стороны от линии надреза создают дополнительные растягивающие объемные напряжения, которые приводят к углублению надреза или к сквозному резу 8.
Аналогичный результат может быть получен и без применения хладагента, например, при нагреве поверхности материала 1 вдоль линии реза лазерным пучком 2 (фиг. 10 а, б), обеспечивающим образование надреза 3. Дополнительное воздействие двух концентраторов 12 упругой волны 5 по обе стороны от линии надреза обеспечит углубление надреза и сквозную резку, как и в предыдущем случае.
В ряде случаев эффективной представляется комбинация воздействия концентраторов 12 упругой волны одновременно с двух сторон разрезаемого материала 1 (фиг. 11 а, б). Этот случай наиболее эффективен для сквозной резки толстых листовых материалов.
Диапазон частот упругих волн, которые могут обеспечить углубление надреза, может быть чрезвычайно широким: от нескольких Гц до высокочастотных колебаний. В качестве источников упругой волны могут быть использованы самые различные варианты. При этом источник упругой волны может быть расположен, как со стороны надреза, так и с противоположной поверхности, в зависимости от типа используемого источника упругой волны и конструктивных особенностей используемого оборудования.
Ниже приведены конкретные примеры выполнения предлагаемого способа. В качестве материала для резки использовались пластины из кварцевого стекла толщиной 0,8 мм. Для проведения тестов по резке использовалась установка, содержащая многомодовый СО2-лазер мощностью 85 Вт и двухкоординатный стол с ходом 550•650 мм, обеспечивающий скорость перемещения до 750 мм/с. Излучение лазера фокусировалось на поверхность материала с помощью сферическо-цилиндрической оптики из селенида цинка, обеспечивающей плотность мощности излучения на поверхности кварца около 20 Вт/мм2. На противоположную поверхность кварцевой пластины воздействовали источником упругой волны. Для этого в контакт с поверхностью материала напротив зоны воздействия лазерного пучка устанавливался концентратор механической волны, представляющий собой круглый стержень диаметром 5 мм, заканчивающийся конусом, вершина которого заканчивалась полусферой диаметром 1,5 мм. Усилие прижима концентратора к поверхности кварцевого стекла составляла P1=2...4 Г и предназначалось для обеспечения постоянного контакта концентратора и материала во время резки, то есть для отслеживания концентратором микронеровностей поверхности пластины. На торец волновода воздействовали ударником с силой Р2=40 Г и частотой 300 Гц, который формировал упругую волну деформаций в концентраторе. При перемещении образца кварцевого стекла со скоростью 350 мм/с лазерный пучок осуществлял надрез в виде микротрещины глубиной 0,09 мм, а воздействие упругой волны в зоне образования надреза обеспечивало углубление надреза до сквозного реза. При этом резка и докалывание осуществлялись одновременно со скоростью 350 мм/с.
Поскольку воздействие упругой волны сосредоточено в очень узком ограниченном объеме материала в зоне осуществления лазерного надреза, то это позволяет проводить соседние резы в непосредственной близости друг от друга. Можно осуществлять резку квадратных или прямоугольных заготовок, минимальный размер которых может быть не более толщины исходного материала. Например, удалось вырезать квадратные заготовки из стекла толщиной 1,1 мм размерами 1,1 х 1,1 мм, или заготовки размером 2,5 х 2,5 мм из стекла толщиной 3 мм.
При этом поскольку резка осуществляется насквозь и, следовательно, отпадает необходимость в проведении дополнительного разламывания заготовки на вырезанные элементы, то качество и точность полученных деталей значительно возрастают.

Claims (9)

1. Способ резки хрупких неметаллических материалов, включающий нагрев поверхности материала по линии реза с помощью лазерного пучка и дополнительное воздействие на поверхность материала, отличающийся тем, что в зоне нагрева лазерным пучком осуществляет несквозной надрез материала по линии реза, а дополнительное воздействие на поверхность материала осуществляют в зоне нанесения надреза по крайней мере одним источником упругих волн, при этом амплитуду и частоту упругих волн выбирают из условия углубления надреза на заданную глубину или сквозной резки.
2. Способ по п.1, отличающийся тем, что упругие волны концентрируют в объеме материала в зоне надреза по линии реза.
3. Способ по любому из пп.1 и 2, отличающийся тем, что после нагрева поверхности материала по линии реза лазерным пучком дополнительно охлаждают зону нагрева с помощью хладагента, при этом упругие волны концентрируют в зоне воздействия хладагента.
4. Способ по любому из пп.1-3, отличающийся тем, что воздействие упругой волны по линии надреза осуществляют после завершения процесса нанесения надреза.
5. Способ по любому из пп.1-4, отличающийся тем, что воздействие упругих волн осуществляют только в заданных зонах материала по линии реза.
6. Способ по любому из пп.1-5, отличающийся тем, что линия воздействия источника упругих волн и линия воздействия лазерного пучка и/или хладагента смещены относительно плоскости, перпендикулярной поверхности материала.
7. Способ по любому из пп.1-6, отличающийся тем, что концентрируют одновременно две упругие волны со стороны нанесения надреза вслед за лазерным пучком и/или хладагентом по обе стороны относительно линии надреза.
8. Способ по любому из пп.1-7, отличающийся тем, что одновременно концентрируют упругую волну в объеме материала в зоне надреза, воздействуя концентратором упругой волны на противоположную поверхность материала в зоне, расположенной между зон воздействия двух других упругих волн, концентрируемых со стороны воздействия лазерного пучка.
9. Способ по любому из пп.1-8, отличающийся тем, что помимо концентрации упругой волны в объеме материала с помощью концентратора охлаждают поверхность материала по линии реза.
RU2001120746A 2001-07-25 2001-07-25 Способ резки хрупких неметаллических материалов RU2206525C2 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2001120746A RU2206525C2 (ru) 2001-07-25 2001-07-25 Способ резки хрупких неметаллических материалов
US10/484,987 US20040251290A1 (en) 2001-07-25 2002-07-02 Cutting method for brittle non-metallic materials (two variants)
PCT/RU2002/000318 WO2003010102A1 (en) 2001-07-25 2002-07-02 Cutting method for brittle non-metallic materials (two variants)
CNB028143183A CN1223531C (zh) 2001-07-25 2002-07-02 脆性的非金属材料的切割方法
JP2003515462A JP2004536759A (ja) 2001-07-25 2002-07-02 もろい非金属材料を切る方法
EP02758989A EP1422201A4 (de) 2001-07-25 2002-07-02 Schneidverfahren für spröde nichtmetallmaterialien (zwei varianten)
KR1020047000952A KR100845391B1 (ko) 2001-07-25 2002-07-02 깨어지기 쉬운 비금속 물질의 절단방법(두가지의 변형)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001120746A RU2206525C2 (ru) 2001-07-25 2001-07-25 Способ резки хрупких неметаллических материалов

Publications (2)

Publication Number Publication Date
RU2001120746A RU2001120746A (ru) 2003-06-20
RU2206525C2 true RU2206525C2 (ru) 2003-06-20

Family

ID=29210103

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001120746A RU2206525C2 (ru) 2001-07-25 2001-07-25 Способ резки хрупких неметаллических материалов

Country Status (2)

Country Link
US (1) US20040251290A1 (ru)
RU (1) RU2206525C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471600C1 (ru) * 2011-08-04 2013-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ газолазерной резки крупногабаритных деталей из композиционных материалов и устройство для его осуществления
RU2533786C2 (ru) * 2012-11-29 2014-11-20 Федеральное государственное бюджетное учреждение науки Институт биофизики клетки Российской академии наук (ИБК РАН) Способ приготовления стеклянных ножей для получения стабильной серии ультратонких срезов
RU2617482C1 (ru) * 2015-12-03 2017-04-25 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Способ резки хрупких материалов
RU2634338C1 (ru) * 2016-05-23 2017-10-25 Лев Семенович Гликин Способ и устройство для лазерной резки материалов

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070005604A (ko) * 2004-04-27 2007-01-10 미쓰보시 다이야몬도 고교 가부시키가이샤 취성기판의 수직크랙 형성방법 및 수직크랙 형성장치
DE102005013783B4 (de) * 2005-03-22 2007-08-16 Jenoptik Automatisierungstechnik Gmbh Verfahren zum Trennen von spröden Materialien mittels Laser mit unsymmetrischer Strahlungsdichteverteilung
US20070039990A1 (en) * 2005-05-06 2007-02-22 Kemmerer Marvin W Impact induced crack propagation in a brittle material
US20060249553A1 (en) * 2005-05-06 2006-11-09 Ljerka Ukrainczyk Ultrasonic induced crack propagation in a brittle material
DE102005046479B4 (de) * 2005-09-28 2008-12-18 Infineon Technologies Austria Ag Verfahren zum Spalten von spröden Materialien mittels Trenching Technologie
TWI298280B (en) * 2006-09-06 2008-07-01 Nat Applied Res Laboratories Method for cutting non-metal material
AT504726A1 (de) * 2007-01-05 2008-07-15 Lisec Maschb Gmbh Verfahren und vorrichtung zum herstellen eines trennspalts in einer glasscheibe
PL2131994T3 (pl) * 2007-02-28 2014-03-31 Ceram Gmbh Sposób wytwarzania elementu konstrukcyjnego z zastosowaniem asymetrycznego wprowadzania energii wzdłuż linii podziału lub linii żądanego przerwania
US7982162B2 (en) * 2007-05-15 2011-07-19 Corning Incorporated Method and apparatus for scoring and separating a brittle material with a single beam of radiation
US7971012B2 (en) * 2007-05-15 2011-06-28 Pitney Bowes Inc. Mail processing computer automatic recovery system and method
WO2008148209A1 (en) * 2007-06-08 2008-12-11 Bromer Inc. Method and system for breaking glass panels
CN101468875A (zh) * 2007-12-24 2009-07-01 鸿富锦精密工业(深圳)有限公司 脆性非金属基材及其切割方法
ITTO20080497A1 (it) * 2008-06-25 2009-12-26 Bottero Spa Metodo e macchina per il troncaggio di una lastra di vetro
US7806310B2 (en) * 2008-08-01 2010-10-05 International Business Machines Corporation Method and apparatus for remotely activating destruction of a glass window
US8051679B2 (en) * 2008-09-29 2011-11-08 Corning Incorporated Laser separation of glass sheets
JP5691148B2 (ja) * 2008-10-01 2015-04-01 日本電気硝子株式会社 ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法
DE102009023602B4 (de) * 2009-06-02 2012-08-16 Grenzebach Maschinenbau Gmbh Vorrichtung zum industriellen Herstellen elastisch verformbarer großflächiger Glasplatten in hoher Stückzahl
US8932510B2 (en) * 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
US8946590B2 (en) * 2009-11-30 2015-02-03 Corning Incorporated Methods for laser scribing and separating glass substrates
TWI495623B (zh) * 2009-11-30 2015-08-11 Corning Inc 在強化玻璃基板中形成刻劃孔口的方法
US8720228B2 (en) 2010-08-31 2014-05-13 Corning Incorporated Methods of separating strengthened glass substrates
TWI576320B (zh) 2010-10-29 2017-04-01 康寧公司 用於裁切玻璃帶之方法與設備
WO2012169025A1 (ja) * 2011-06-08 2012-12-13 日本電気硝子株式会社 板状ガラスの切断方法及びその切断装置
US9938180B2 (en) 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
US9610653B2 (en) 2012-09-21 2017-04-04 Electro Scientific Industries, Inc. Method and apparatus for separation of workpieces and articles produced thereby
US9212081B2 (en) * 2012-11-21 2015-12-15 Corning Incorporated Methods of cutting a laminate strengthened glass substrate
CN103341692A (zh) * 2013-06-26 2013-10-09 京东方科技集团股份有限公司 切割不规则图形基板的方法和显示装置
TWI680106B (zh) * 2014-03-31 2019-12-21 日商三星鑽石工業股份有限公司 脆性材料基板之分斷方法
TW201919805A (zh) * 2017-08-25 2019-06-01 美商康寧公司 使用遠焦光束調整組件以雷射處理透明工件的設備與方法
CN107953038B (zh) * 2017-12-27 2023-10-20 常州英诺激光科技有限公司 透明脆性材料加工设备
DE102018131179A1 (de) * 2018-12-06 2020-06-10 Schott Ag Glaselement mit geschnittener Kante und Verfahren zu dessen Herstellung
CN114799495B (zh) * 2021-12-28 2023-06-13 华中科技大学 一种激光切割的控制方法及相关装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1244346B (de) * 1964-10-19 1967-07-13 Menzel Gerhard Glasbearbeitung Verfahren zum Schneiden von Glas
US4190184A (en) * 1978-08-23 1980-02-26 Libbey-Owens-Ford Company Method of and apparatus for thermally cutting glass
DE69013047T2 (de) * 1989-05-08 1995-04-13 Philips Nv Verfahren zum Spalten einer Platte aus sprödem Werkstoff.
RU2024441C1 (ru) * 1992-04-02 1994-12-15 Владимир Степанович Кондратенко Способ резки неметаллических материалов
US5831956A (en) * 1993-08-09 1998-11-03 Funai Electric Co., Ltd. Disc loading device
US5776220A (en) * 1994-09-19 1998-07-07 Corning Incorporated Method and apparatus for breaking brittle materials
JPH0929472A (ja) * 1995-07-14 1997-02-04 Hitachi Ltd 割断方法、割断装置及びチップ材料
KR100447786B1 (ko) * 1995-08-31 2004-11-06 코닝 인코포레이티드 취성물질절단방법및그장치
US6259058B1 (en) * 1998-12-01 2001-07-10 Accudyne Display And Semiconductor Systems, Inc. Apparatus for separating non-metallic substrates
KR100626983B1 (ko) * 1999-06-18 2006-09-22 미쓰보시 다이야몬도 고교 가부시키가이샤 레이저를 이용한 스크라이브 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471600C1 (ru) * 2011-08-04 2013-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ газолазерной резки крупногабаритных деталей из композиционных материалов и устройство для его осуществления
RU2533786C2 (ru) * 2012-11-29 2014-11-20 Федеральное государственное бюджетное учреждение науки Институт биофизики клетки Российской академии наук (ИБК РАН) Способ приготовления стеклянных ножей для получения стабильной серии ультратонких срезов
RU2617482C1 (ru) * 2015-12-03 2017-04-25 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Способ резки хрупких материалов
RU2634338C1 (ru) * 2016-05-23 2017-10-25 Лев Семенович Гликин Способ и устройство для лазерной резки материалов

Also Published As

Publication number Publication date
US20040251290A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
RU2206525C2 (ru) Способ резки хрупких неметаллических материалов
Nisar et al. Laser glass cutting techniques—A review
JP6703482B2 (ja) レーザカット複合ガラス物品及び切断方法
KR101972466B1 (ko) 취성 재료를 묘각하고 화학 식각하는 방법 및 시스템
US4401477A (en) Laser shock processing
CN101193731B (zh) 一种分离玻璃片材的方法
US20180161916A1 (en) Method and apparatus for performing laser curved filamentation within transparent materials
JP6397821B2 (ja) ワークピースの分離のための方法及び装置
KR100701013B1 (ko) 레이저 빔을 이용한 비금속 기판의 절단방법 및 장치
TWI498180B (zh) 被加工物之加工方法及雷射加工裝置
EP3292941A1 (en) Method for non-ablative and/or photo acoustic compression machining a transparent target
US20070039990A1 (en) Impact induced crack propagation in a brittle material
KR100845391B1 (ko) 깨어지기 쉬운 비금속 물질의 절단방법(두가지의 변형)
Deng et al. Study on mechanics and key technologies of laser nondestructive mirror-separation for KDP crystal
CN107787260B (zh) 切割基板的方法及装置
Jia et al. Multi-scan picosecond laser welding of non-optical contact soda lime glass
Zhao et al. Dual laser beam revising the separation path technology of laser induced thermal-crack propagation for asymmetric linear cutting glass
LT6791B (lt) Skaidrių medžiagų apdirbimo būdas ir įrenginys
KR100636852B1 (ko) 모드라킹된 자외선 레이저를 이용한 유리기판의 스크라이빙방법 및 절단 방법
Kuo et al. Laser cleaving on glass sheets with multiple laser beams
RU2206526C2 (ru) Способ резки хрупких неметаллических материалов
RU2206527C2 (ru) Способ резки хрупких неметаллических материалов
RU2206528C2 (ru) Способ резки хрупких неметаллических материалов (варианты)
JP4298072B2 (ja) 硬質脆性板の割断方法
RU2238918C2 (ru) Способ резки хрупких неметаллических материалов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060726