RU2191625C1 - Хромсодержащий катализатор и способ его получения (варианты) - Google Patents

Хромсодержащий катализатор и способ его получения (варианты) Download PDF

Info

Publication number
RU2191625C1
RU2191625C1 RU2001113649A RU2001113649A RU2191625C1 RU 2191625 C1 RU2191625 C1 RU 2191625C1 RU 2001113649 A RU2001113649 A RU 2001113649A RU 2001113649 A RU2001113649 A RU 2001113649A RU 2191625 C1 RU2191625 C1 RU 2191625C1
Authority
RU
Russia
Prior art keywords
catalyst
chromium
iron
compounds
group
Prior art date
Application number
RU2001113649A
Other languages
English (en)
Inventor
Т.В. Мулина
В.А. Любушкин
В.А. Чумаченко
М.Г. Макаренко
Original Assignee
Открытое акционерное общество "Катализатор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Катализатор" filed Critical Открытое акционерное общество "Катализатор"
Priority to RU2001113649A priority Critical patent/RU2191625C1/ru
Application granted granted Critical
Publication of RU2191625C1 publication Critical patent/RU2191625C1/ru

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к хромсодержащим катализаторам и способам их получения, применяемым для окисления органических соединений, водорода и оксида углерода в газовых выбросах промышленных производств. Задачей, решаемой изобретением, является разработка высокоактивного хромсодержащего катализатора, способного сохранять высокую активность в присутствии серосодержащих соединений, обладающего достаточно высокой термостабильностью и содержащего минимальное количество Сr+6, и разработка способа его получения (варианты). Поставленная задача решается с помощью хромсодержащего катализатора для окисления содержащихся в газовых выбросах органических соединений, водорода и оксида углерода, включающего соединения хрома, промотор, оксид алюминия. Катализатор содержит дополнительно по крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан, в качестве промотора катализатор содержит по крайней мере одно соединение металла, выбранного из группы: кобальт, никель, железо, марганец, медь, ванадий, хром в катализаторе находится в степени окисления Сr3+, Сr6+ и катализатор имеет следующий состав (в пересчете на оксиды) мас.%: оксид хрома - 5-20, в том числе Cr6+ - не более 1, промотор - по крайней мере одно соединение металла из группы: кобальт, никель, железо, марганец, медь, ванадий 5-20. По крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан 0,01-45, оксид алюминия - остальное. Поставленная задача решается также за счет способов получения хромсодержащего катализатора для окисления органических соединений, водорода и оксида углерода в газовых выбросах. Первый способ заключается в смешении компонентов, содержащих соединения хрома, промотора с гидроксидом алюминия с последующим формованием, сушкой, прокаливанием. Второй способ получения катализатора заключается в пропитке оксида алюминия раствором соединений хрома, промотора, сушке и прокаливании. Отличием предлагаемого катализатора от известных является малое содержание Сг6+, которое не увеличивается при хранении на воздухе и в период его работы. Предлагаемый катализатор обладает повышенной устойчивостью к каталитическим ядам, а введение в его состав промоторов из группы: кобальт, никель, железо, марганец, медь, ванадий приводит к повышению его каталитической активности. 3 с. и 9 з.п.ф-лы, 3 табл., 1 ил.

Description

Изобретение относится к хромсодержащим катализаторам и способам их получения, применяемым для широкого круга каталитических процессов, таких как, конверсия оксида углерода с водяным паром, конверсия углеводородов, гидрирование спиртов, кетонов, эфиров, нитросоединении, сжигание топлив, дегидрирование и полимеризация углеводородов, окисление органических соединений, водорода и оксида углерода в газовых выбросах промышленных производств, и может быть использовано в химической, нефтехимической и других отраслях промышленности.
В готовых хромсодержащих катализаторах в зависимости от состава и условий приготовления наряду с доминирующим содержанием хрома в степени окисления (+3) присутствуют значительные количества канцерогенных высокотоксичных соединений Сr6+.
В последнее время предъявляются все более жесткие требования к хромсодержащим катализаторам. Во многих странах законодательно запрещается использование и утилизация катализаторов, содержащих соединения Сr+6.
Поэтому актуальным является разработка хромсодержащих катализаторов и способов их получения, обладающих высокой активностью и в то же время содержащих минимальные количества высокотоксичных компонентов.
Известны способы приготовления катализаторов, в которых используется стадия восстановления ионов Сr6+ в катализаторах, содержащих медно-хромовую композицию.
В зависимости от состава катализатора, способа его приготовления, условий его эксплуатации в определенное процессе проведение стадии восстановления может быть самым различным.
В патенте 2098180 (МПК6 B 01 J 37/04, 1997) предлагается способ получения катализатора, не содержащего Сr6+ и обладающего высокой активностью в окислении органических соединений и оксида углерода в газовых выбросах. Катализатор получают смешением между собой соединений меди и хрома в требуемых соотношениях до образования однородного порошка. Предпочтительно в качестве соединений меди используют малахит - основную углекислую соль меди (II), а в качестве соединений хрома - хромовый ангидрид СrО3. Медно-хромовый порошок смешивают с гидроксидом алюминия, затем полученную смесь формуют, сушат, прокаливают при температуре 470-750oС, охлаждают в токе инертного газа до температуры восстановления и подвергают обработке восстановительной газовой смесью при температуре 150-300oС.
Катализатор обладает высокой активностью, однако в присутствии сернистых соединений катализатор быстро теряет активность.
В настоящее время ведется активный поиск и разработка новых катализаторов на основе хрома, при этом варьируются составы катализаторов и используются носители с заданными свойствами.
В известном способе (Патент US 5665322, МКП В 01 D 53/50, 1997) для очистки выхлопных газов, содержащих О2, твердые частицы, SO2, несгоревшие углеводороды и СО, используют реактор, в котором по ходу газа размещают два различных катализатора.
Первая часть состоит из катализатора с малой плотностью толщиной 5-2000 мкм и представляет катализатор, состоящий по крайней мере из одного щелочного металла и одного или нескольких элементов из числа Sn, Fe, Co, Ni, V, Nb, Та, Cr, Mo, W, Mn и Re. Вторая по ходу газа часть с большей плотностью представляет катализатор из числа Ru, Rh, Pd, Os, Ir и Pt, способствующий конверсии твердых частиц, несгоревших углеводородов и СО. В то же время подавляется образование SO3.
В данном способе очистки отходящих газов проблема очистки от СО особенно в присутствии соединений серы решается за счет использования двух катализаторов, что приводит к удорожанию процесса очистки отходящих газов.
Кроме такого подхода к улучшению очистки газовых смесей от СО, есть тенденция к усложнению состава катализатора.
Так в патенте (US 5502019, МПК B 01 J 23/72, 1996) предлагается катализатор, который включает смесь оксидов: Со, Mn, Al, Bi, Cr, Си, Fe, Ti, Zn, Zr и др., где атомное отношение Со к другим металлам от 50:1 до 2:1, и катализатор получают при отжиге исходной смеси в О2-содержащей атмосфере при температуре 150-290oС.
Катализатор обладает высокой активностью в процессе окисления, но в нем имеются соединения Сr+6, и кроме того катализатор обладает недостаточно высокой активностью.
Известен катализатор для глубокого окисления углеводородов (А.с. СССР 760993, МПК B 01 J 23/86, 1980), содержащий оксиды хрома и кобальта на кремнеземном носителе, который дополнительно содержит оксид железа.
Катализатор обладает высокой стабильностью, но содержит Сr6+ в большом количестве.
Известен катализатор для глубокого окисления углеводородов (Патент РФ 2010597, МПК B 01 J 23/89, 1994), содержащий оксиды хрома и кобальта на волокнистом, например, кремнеземном носителе, который дополнительно содержит оксид меди и платину.
Недостатком данного катализатора является то, что он содержит элемент платиновой группы, неустойчив к каталитическим ядам.
Наиболее близким решением к заявляемому является катализатор для очистки отходящих газов промышленных производств от органических и хлорорганических соединений (Патент РФ 2050976, МПК B 01 J 32/86, 1995), который содержит оксиды хрома, кобальта и циркония и оксидно-алюминиевый носитель, а также дополнительно содержит оксид бария или оксид марганца при следующем соотношении компонентов, маc.%:
Оксид хрома - 14-19
Оксид кобальта - 0,5-1,0
Оксид циркония - 0,05-0,1
Оксид бария или оксид марганца - 0,1-1,8
Оксид алюминия - Остальное
Недостатком данного катализатора является низкая активность и высокое содержание Сr6+.
Задачей, решаемой настоящим изобретением, является разработка высокоактивного хромсодержащего катализатора, способного сохранять высокую активность в присутствии серосодержащих соединений, обладающего достаточно высокой термостабильностью и содержащего минимальное количество Сr+6, и разработка способа его получения (варианты).
Поставленная задача решается с помощью хромсодержащего катализатора для окисления содержащихся в газовых выбросах органических соединений, водорода и оксида углерода, включающего соединения хрома, промотор, оксид алюминия. Катализатор содержит дополнительно по крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан в количестве 0,01-45 маc.%, в качестве промотора катализатор содержит по крайней мере одно соединение металла, выбранного из группы: кобальт, никель, железо, марганец, медь, ванадий в количестве 5-20 маc.%, хром в катализаторе находится в степени окисления Сr3+ Сr6+, причем содержание Сr6+ составляет не более 1 маc.%, и катализатор имеет следующий состав (в пересчете на оксиды), маc.%:
Оксид хрома - 5-20,
в том числе Cr6+ - Не более 1
Промотор - по крайней мере одно соединение металла из группы: кобальт, никель, железо, марганец, медь, ванадий - 5-20
По крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан - 0,01-45.
Оксид алюминия - Остальное
Катализатор имеет предпочтительно следующий состав (в пересчете на оксиды), маc.%:
Оксид хрома - 6-10
В том числе Cr6+ - Не более 5•10-3
Оксид кобальта - 9-13
Оксид кремния - 20-45
Оксид алюминия - Остальное
Предшественником оксида алюминия является предпочтительно продукт, полученный быстрой дегидратацией тригидроксида алюминия и имеющий состав Аl2O3•n Н2О, где n=0,03-2,0, и содержащий по крайней мере одно соединение элемента из группы: натрий, калий, железо, кремний в количестве 0,01-2,0 маc.%.
Поставленная задача решается также за счет способов получения хромсодержащего катализатора для окисления органических соединений, водорода и оксида углерода в газовых выбросах.
Первый способ заключается в смешении компонентов, содержащих соединения хрома, промотора с гидроксидом алюминия с последующим формованием, сушкой, прокаливанием.
Гидроксид алюминия смешивают по крайней мере с одним соединением элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан в количестве 0,01-45 маc.%, добавляют соединения-восстановители, кислородсодержащие соединения хрома, промотор - по крайней мере одно соединение металла из группы: кобальт, никель, железо, марганец, медь, ванадий в количестве 5-20 маc.%, прокаливают при температуре 380-500oС и получают катализатор следующего состава (в пересчете на оксиды), маc.%:
Оксид хрома - 5-20,
в том числе Сr6+ - Не более 1
Промотор - по крайней мере одно соединение металла из группы: кобальт, никель, железо, марганец, медь, ванадий - 5-20
По крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан - 0,01-45
Оксид алюминия - Остальное
В качестве соединений-восстановителей используют предпочтительно соединения органического или неорганического происхождения в количестве 2-40 маc. %.
В качестве предшественника гидроксида алюминия предпочтительно используют продукт быстрой дегидратации тригидроксида алюминия, имеющий состав А12O3•n Н2О, где n=0,03-2,0, и содержащий по крайней мере одно соединение элемента из группы: натрий, калий, железо, кремний в количестве 0,01-2,0 маc.%.
В качестве пластификатора используют органические или неорганические кислоты, способные образовывать водорастворимые соединения алюминия.
Катализатор прокаливают в токе инертного газа (азот, аргон, гелий) или в токе воздуха с инертным газом, или в вакууме, или без доступа воздуха.
Второй способ получения катализатора заключается в пропитке оксида алюминия раствором соединений хрома, промотора, сушке и прокаливании.
Оксид алюминия по крайней мере с одним соединением элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан в количестве 0,01-45 маc.% пропитывают раствором, содержащим соединения хрома, промотор - по крайней мере одно соединение металла, выбранного из группы: кобальт, никель, железо, марганец, медь, ванадий в количестве 5-20 маc. %, соединения-восстановители в количестве 2-40 маc.%, затем катализатор прокаливают при температуре до 500oС и получают катализатор следующего состава (в пересчете на оксиды), маc.%:
Оксид хрома - 5-20
в том числе Cr6+ - Не более 1
Промотор - по крайней мере одно соединение металла из группы: кобальт, никель, железо, марганец, медь, ванадий - 5-20
По крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан - 0,01-45
Оксид алюминия - Остальное
В качестве соединений-восстановителей используют предпочтительно соединения органического или неорганического происхождения в количестве 2-40 маc. %.
Катализатор прокаливают в токе инертного газа (азот, аргон, гелий) или в токе воздуха с инертным газом, или в вакууме, или без доступа воздуха.
В качестве предшественника оксида алюминия предпочтительно используют продукт быстрой дегидратации тригидроксида алюминия, имеющий состав А12O3•n H2O, где n=0,03-2,0, и содержащий по крайней мере одно соединение элемента из группы: натрий, калий, железо, кремний в количестве 0,01-2,0 маc.%.
Для приготовления катализатора используют оксид или гидроксид алюминия по крайней мере с одним соединением элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан в количестве 0,01-45 маc. %. В качестве промотора используют по крайней мере одно соединение металла, выбранного из группы: кобальт, никель, железо, марганец, медь, ванадий в количестве 5-20 маc.%. Предпочтительно в качестве промотора используют кобальт.
Отличием предлагаемого катализатора от известных является малое содержание Сr6+, которое не увеличивается при хранении на воздухе и в период его работы.
Полученный катализатор обладает повышенной устойчивостью к каталитическим ядам.
В предлагаемом решении предшественником оксида или гидроксида алюминия предпочтительным является использование гидратированного соединения алюминия, которое может быть получено любыми известными способами, в том числе и быстрой дегидратацией тригидроксида алюминия и др. При этом исходный продукт может частично содержать модифицирующие соединения из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан, либо их вводят при получении катализатора любыми известными способами.
Введение в состав катализатора промоторов из группы: кобальт, никель, железо, марганец, медь, ванадий приводит к повышению каталитической активности предлагаемого катализатора.
Активные компоненты и промоторы вводят в катализатор любыми известными способами.
Предлагаемые способы позволяют получать катализатор различного состава, который можно выбирать в зависимости от условий эксплуатации, влажности газа, наличия вредных примесей и др. При реализации обоих способов получения катализатора отсутствуют токсичные газовые выбросы и сточные воды.
Введение в состав предлагаемого катализатора соединений элемента из группы: кремний, магний, барий, натрий, калий, кальций, железо, церий, цирконий, титан, в качестве промотора - соединений металла из группы: кобальт, никель, железо, марганец, медь, ванадий и соединений-восстановителей приводит к повышенной активности и стабильности катализатора, устойчивости к каталитическим ядам, повышенной термостабильности, увеличению срока службы катализатора и при этом катализатор содержит незначительные количества Сr6+.
Так, дополнительная термообработка предлагаемого катализатора при высоких температурах (см. табл. 3) приводит к некоторому уменьшению его активности, но и после термообработки катализатора при 900oС она сопоставима с активностью исходного прототипа.
Предлагаемый катализатор сохраняет высокую каталитическую активность и стабильность в реакции окисления модельной смеси, содержащей 0,5 об.% пропана и смеси, содержащей 0,5 об.% пропана и 0,1 об.% SO2 по сравнению с прототипом (см. чертеж).
Активность катализатора определяли на истинном зерне, на проточно-циркуляционной установке в процессе глубокого окисления в избытке кислорода модельных смесей, содержащих н-бутан или водород, или оксид углерода.
За меру каталитической активности катализатора в реакции окисления н-бутана принята скорость реакции (см3 C4H10/Гкат•С) окисления н-бутана при 400oС. Более высокая величина скорости реакции полного окисления н-бутана соответствует более активному катализатору.
За меру каталитической активности катализатора в реакции окисления водорода или оксида углерода принята температура, при которой достигается 85%-ная степень окисления водорода или оксида углерода. Чем ниже температура достижения 85%-ной степени окисления, тем выше активность катализатора.
Активность и стабильность катализатора по отношению к каталитическим ядам определяли в реакции окисления модельной смеси, содержащей 0,5 об.% пропана, и смеси, содержащей 0,5 об. % пропана + 0,1 об.% S02 в избытке кислорода, при температуре 500oС и оценивали по степени окисления пропана при указанной температуре.
Термостабильность катализатора оценивали по изменению скорости реакции окисления н-бутана и удельной поверхности после дополнительного прокаливания катализатора при температурах: 500; 600; 700; 800; 900oС.
Нижеследующие примеры иллюстрируют предлагаемое изобретение.
Пример 1
Для приготовления катализатора к 132 г гидратированного соединения алюминия формулы Аl2О3•n Н2О, где n=2,0, содержащего оксид натрия, добавляют 96 г оксида кремния, предварительно измельченного, 60 г щавелевой кислоты и компоненты перемешивают. Затем в смесь вводят 16,8 г оксида хрома, 31,2 г оксида кобальта, 4,8 г древесной муки и продолжают смешение. Пластификацию катализаторной шихты проводят 96,2 мл водного раствора азотной кислоты из расчета 4-6 мл кислоты на 100 г готового катализатора. Затем катализаторную массу формуют путем экструзии в виде колец (внешним диаметром 10-15 мм). Проводят стадию проваливания на воздухе в течение 10-12 ч, сушат катализатор при 120oС 6 ч и прокаливают при 400oС 2 ч. Прокаливание катализатора проводят без доступа воздуха (в муфельных печах).
Предлагаемый катализатор имеет следующий состав (в пересчете на оксиды), мас.%:
Оксид хрома - 7, в т.ч. Сr6+ = 5•10-4
Оксид кобальта - 13
Оксид кремния - 40
Оксид алюминия - 40, в т.ч. оксид натрия - 0,01
Пример 2
Катализатор готовят аналогично примеру 1, но катализаторная шихта содержит: 835,6 г гидроксида алюминия (n = 1,5), 200 г оксида кремния, 400 г щавелевой кислоты, 100 г оксида хрома, 90 г оксида кобальта, 20 г древесной муки. Катализатор прокаливают при 380oС в токе инертного газа (аргона, азота, гелия).
Предлагаемый катализатор имеет следующий состав (в пересчете на оксиды), маc.%:
Оксид хрома - 10,0, в т.ч. Сr6+=3•10-3
Оксид кобальта - 9,0
Оксид кремния - 20,0
Оксид алюминия - 61
Пример 3
Катализатор готовят аналогично примеру 1, но катализаторная шихта содержит: 493,2 г гидратированного оксида алюминия, 450 г измельченного оксида кремния, 20 г мочевины, 60 г оксида хрома, 130 г оксида кобальта. Пластификацию катализаторной шихты проводят 330 мл водного раствора смеси азотной и ледяной уксусной кислот. Прокаливают катализатор при 500oС в вакууме (Р = 0,2 атм).
Предлагаемый катализатор имеет следующий состав (в пересчете на оксиды), маc.%:
Оксид хрома - 6,0, в т.ч. Cr6+=2,5•10-4
Оксид кобальта - 13,0
Оксид кремния - 45,0
Оксид алюминия - 36
Пример 4
Катализатор готовят аналогично примеру 1, но катализаторная шихта содержит: 1027,3 г гидроксида алюминия, 0,1 г оксида церия, 50 г древесной муки, 100 г мочевины, 50 г оксида хрома, 70 г оксида меди, 50 г оксида железа, 50 г оксида марганца, 30 г оксида никеля. Катализатор прокаливают при температуре 420oС в токе воздуха с инертным газом (аргон, азот, гелий).
Предлагаемый катализатор имеет следующий состав (в пересчете на оксиды), маc.%:
Оксид хрома - 5,0, т.ч.Сr 6+<3•10-4
Оксид меи - 7,0
Оксид железа - 5,0
Оксид марганца - 5,0
Оксид никеля - 3,0
Оксид церия - 0,01
Оксид алюминия - 75, в т.ч. оксид церия - 0,01
Примеры 5-6
Катализаторы готовят аналогично примеру 1, но отличаются они составом, содержанием дополнительных элементов и промотора.
Пример 7
Используя гидратированное соединение алюминия (n=0,03) и оксиды: кальция, бария, циркония, готовят 850 г огнеупорного пористого носителя (удельная поверхность = 150 м2/г, влагоемкость = 1,0 мл/г), который затем пропитывают по влагоемкости водно-спиртовым раствором с концентрацией элементов, мг/мл: хрома - 81,65, кобальта - 46,5. В качестве соединений хрома и кобальта используют уксуснокислые соли. При этом доля этилового спирта составляет 40% от общего объема пропиточного раствора. Пропитку носителя пропиточным раствором проводят при комнатной температуре при постоянном перемешивании. Термообработку катализатора проводят ступенчато при температуре от 100 до 400oС.
Предлагаемый катализатор имеет следующий состав (в пересчете на оксиды), маc.%:
Оксид хрома - 10 в т.ч. Сr6+-1•10-4
Оксид кобальта - 5,0
Оксид кальция - 5,0
Оксид бария - 5,0
Оксид циркония - 3,0
Оксид алюминия - 72
Пример 8
Катализатор готовят аналогично примеру 7, но сначала готовят 840 г огнеупорного пористого носителя с удельной поверхностью 200 м2/г, влагоемкостью 1,0 мг/мл, используя гидратированное соединение алюминия и оксиды кремния, магния и кальция, который затем пропитывают по влагоемкости пропиточным раствором с концентрацией элементов, мг/мл: хрома -80,22, меди - 48,98 и железа (II) - 8,33. Для приготовления пропиточного раствора используют уксуснокислые соли хрома, меди и железа (II). При этом доля этилового спирта составляет 25% от общего объема пропиточного раствора. Прокаливают катализатор ступенчато при температуре от 150 до 500oС.
Предлагаемый катализатор имеет следующий состав (в пересчете на оксиды), %мас.:
Оксид хрома - 9,85, в т.ч. Сr6+=7•10-4
Оксид меди - 5,15
Оксид железа - 1,0
Оксид кремния - 20,0
Оксид магния - 9,0
Оксид кальция - 4,0
Оксид алюминия - 51
Пример 9
Катализатор готовят аналогично примеру 7, но отличается он составом, содержанием дополнительного элемента и промотора.
Пример 10 (по прототипу)
Катализатор готовят следующим образом: носитель (78,27 г глинозема и 58,49 г гидроксида алюминия) в ступке тщательно растирают и перемешивают в течение 8-10 мин. Сюда же засыпают и вновь перемешивают 2,13 г углекислого кобальта, 0,15 г диоксида циркония и 0,29 г бария углекислого. Затем готовят раствор хромовой кислоты, растворяя 37,5 г хромового ангидрида в 100 мл дистиллированной воды. Приливают этот раствор к смеси порошков глинозема, гидроксида алюминия, углекислого кобальта, диоксида циркония и углекислого бария. Образовавшуюся пасту растирают до эластичного состояния и формуют в "червячок" диаметром 4,0 мм. Сформованный катализатор сушат в сушильном шкафу при температуре 110-120oС в течение 6 ч, затем активируют при 550oС в течение 6 ч. "Червяк" дробят на гранулы 3х4 мм.
Получают катализатор следующего состава (в пересчете на оксиды), маc.%: оксид хрома 19; оксид кобальта 1,0; оксид циркония - 0.1; оксид бария 0,15, оксид алюминия 79,75.
Данные по составам катализаторов согласно приведенным примерам представлены в табл. 1.
В табл. 2 представлены данные испытаний заявляемого катализатора в реакциях окисления н-бутана, водорода и оксида углерода. Как видно из табл.2, заявляемый катализатор обладает более высокой каталитической активностью в вышеуказанных реакциях окисления и содержит значительно меньшее количество Сr6+ по сравнению с прототипом.
В табл. 3 приведены результаты по исследованию термостабильности катализатора, а именно изменение каталитической активности в реакции окисления н-бутана и удельной поверхности.
На чертеже представлены результаты испытаний предлагаемого катализатора и прототипа в реакции окисления пропана и смеси пропана с 0,1 об.% SO2.

Claims (8)

1. Хромсодержащий катализатор для окисления органических соединений, водорода и оксида углерода в газовых выбросах, включающий соединения хрома, промотор, оксид алюминия, отличающийся тем, что катализатор содержит дополнительно по крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан в количестве 0,01-45 мас.%, в качестве промотора катализатор содержит по крайней мере одно соединение металла, выбранного из группы: кобальт, никель, железо, марганец, медь, ванадий в количестве 5-20 маc.%, хром в катализаторе находится в степени окисления Сr3+, Сr6+, причем содержание Сr6+ составляет не более 1 маc.% и катализатор имеет следующий состав (в пересчете на оксиды), маc.%:
Оксид хрома - 5-20
В том числе Сr6+ - Не более 1
Промотор - по крайней мере одно соединение металла из группы: кобальт, никель, железо, марганец, медь, ванадий - 5-20
По крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан - 0,01-45
Оксид алюминия - Остальное
2. Катализатор по п.1, отличающийся тем, что имеет следующий состав (в пересчете на оксиды), маc.%:
Оксид хрома - 6-10
В том числе Сr6+ - Не более 5•10-3
Оксид кобальта - 9-13
Оксид кремния - 20-45
Оксид алюминия - Остальное
3. Катализатор по п.1 или 2, отличающийся тем, что предшественником оксида алюминия является продукт, полученный быстрой дегидратацией тригидроксида алюминия и имеющий состав Аl2О3•n Н2О, где n=0,03-2,0, и содержащий от 0,01 до 2,0 маc.% по крайней мере одно соединение элемента из группы: натрий, калий, железо, кремний.
4. Способ получения хромсодержащего катализатора для окисления органических соединений, водорода и оксида углерода в газовых выбросах путем смешения компонентов, содержащих соединения хрома, промотора с гидроксидом алюминия с последующим формованием, сушкой, прокаливанием, отличающийся тем, что гидроксид алюминия смешивают по крайней мере с одним соединением элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан в количестве 0,01-45 маc.%, добавляют соединения-восстановители, кислородсодержащие соединения хрома, промотор - по крайней мере одно соединение металла из группы: кобальт, никель, железо, марганец, медь, ванадий в количестве 5-20 маc.%, прокаливают при температуре 380-500oС и получают катализатор следующего состава (в пересчете на оксиды), мас.%:
Оксид хрома - 5-20
В том числе Сr6+ - Не более 1
Промотор - по крайней мере одно соединение металла из группы: кобальт, никель, железо, марганец, медь, ванадий - 5-20
По крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан - 0,01-45
Оксид алюминия - Остальное
5. Способ по п.4, отличающийся тем, что в качестве соединений-восстановителей используют соединения органического или неорганического происхождения в количестве 2-40 маc.%.
6. Способ по п. 4, отличающийся тем, что в качестве предшественника гидроксида алюминия используют продукт быстрой дегидратации тригидроксида, имеющий состав Аl2O3• n Н2О, где n=0,03-2,0 и содержащий по крайней мере одно соединение элемента из группы: натрий, калий, железо, кремний в количестве 0,01-2,0 маc.%.
7. Способ по п.4, отличающийся тем, что в качестве пластификатора используют органические или неорганические кислоты, способные образовывать водорастворимые соединения алюминия.
8. Способ по п.4, отличающийся тем, что катализатор прокаливают в токе инертного газа (азот, аргон, гелий), или в токе воздуха с инертным газом, или в вакууме, или без доступа воздуха.
9. Способ получения хромсодержащего катализатора для окисления органических соединений, водорода и оксида углерода в газовых выбросах, включающий пропитку оксида алюминия раствором соединений хрома, промотора, сушку и прокаливание, отличающийся тем, что оксид алюминия по крайней мере с одним соединением элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан в количестве 0,01-45 маc.%, пропитывают раствором, содержащим соединения хрома, промотор - по крайней мере одно соединение металла, выбранного из группы: кобальт, никель, железо, марганец, медь, ванадий в количестве 5-20 маc.%, соединения-восстановители, затем катализатор прокаливают при температуре до 500oС и получают катализатор следующего состава (в пересчете на оксиды), мас.%:
Оксид хрома - 5-20
В том числе Сr6+ - не более 1
Промотор - по крайней мере одно соединение металла из группы: кобальт, никель, железо, марганец, медь, ванадий - 5-20
По крайней мере одно соединение элемента из группы: кремний, магний, барий, натрий, калий, железо, кальций, церий, цирконий, титан - 0,01-45
Оксид алюминия - Остальное
10. Способ по п.9, отличающийся тем, что в качестве соединений-восстановителей используют соединения органического или неорганического происхождения в количестве 2-40 маc.%.
11. Способ по п.9, отличающийся тем, что катализатор прокаливают в токе инертного газа (азот, аргон, гелий), или в токе воздуха с инертным газом, или в вакууме, или без доступа воздуха.
12. Способ по п.9, отличающийся тем, что в качестве предшественника оксида алюминия используют продукт быстрой дегидратации тригидроксида алюминия, имеющий состав Аl2O3•n Н2О, где n=0,03-2,0 и содержащий по крайней мере одно соединение элемента из группы: натрий, калий, железо, кремний в количестве 0,01-2,0 маc.%.
RU2001113649A 2001-05-23 2001-05-23 Хромсодержащий катализатор и способ его получения (варианты) RU2191625C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001113649A RU2191625C1 (ru) 2001-05-23 2001-05-23 Хромсодержащий катализатор и способ его получения (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001113649A RU2191625C1 (ru) 2001-05-23 2001-05-23 Хромсодержащий катализатор и способ его получения (варианты)

Publications (1)

Publication Number Publication Date
RU2191625C1 true RU2191625C1 (ru) 2002-10-27

Family

ID=20249798

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001113649A RU2191625C1 (ru) 2001-05-23 2001-05-23 Хромсодержащий катализатор и способ его получения (варианты)

Country Status (1)

Country Link
RU (1) RU2191625C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111468101A (zh) * 2019-01-24 2020-07-31 中国石油天然气股份有限公司 一种铬系催化剂及其制备方法和应用
CN114762827A (zh) * 2021-01-15 2022-07-19 万华化学集团股份有限公司 一种催化剂、制备方法和在处理含过氧化物的po/chp废水中的应用
US11839870B2 (en) 2018-09-17 2023-12-12 Chevron Phillips Chemical Company Lp Modified supported chromium catalysts and ethylene-based polymers produced therefrom

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839870B2 (en) 2018-09-17 2023-12-12 Chevron Phillips Chemical Company Lp Modified supported chromium catalysts and ethylene-based polymers produced therefrom
US11865528B2 (en) 2018-09-17 2024-01-09 Chevron Phillips Chemical Company Lp Modified supported chromium catalysts and ethylene-based polymers produced therefrom
US11969718B2 (en) 2018-09-17 2024-04-30 Chevron Phillips Chemical Company Lp Modified supported chromium catalysts and ethylene-based polymers produced therefrom
CN111468101A (zh) * 2019-01-24 2020-07-31 中国石油天然气股份有限公司 一种铬系催化剂及其制备方法和应用
CN111468101B (zh) * 2019-01-24 2024-03-01 中国石油天然气股份有限公司 一种铬系催化剂及其制备方法和应用
CN114762827A (zh) * 2021-01-15 2022-07-19 万华化学集团股份有限公司 一种催化剂、制备方法和在处理含过氧化物的po/chp废水中的应用
CN114762827B (zh) * 2021-01-15 2023-12-22 万华化学集团股份有限公司 一种催化剂、制备方法和在处理含过氧化物的po/chp废水中的应用

Similar Documents

Publication Publication Date Title
US8992870B2 (en) Catalyst for decomposing nitrous oxide and method for performing processes comprising formation of nitrous oxide
US8361925B2 (en) Exhaust gas-purifying catalyst
AU2008286480B2 (en) Catalyst, production method therefor and use thereof for decomposing N2O
CZ168898A3 (cs) Postup redukce NOx z odpadních plynů
JP2009254981A (ja) アンモニア分解触媒及びアンモニア分解方法
JP4984678B2 (ja) Co酸化方法
US4018710A (en) Reduction catalysts and processes for reduction of nitrogen oxides
KR870001732B1 (ko) 산성가스(Sour Gas)중에서 일산화탄소를 전화하기 위한 촉매 및 전화방법
CN113083324B (zh) 一种用于室温甲醛氧化催化剂及其制备方法
RU2191625C1 (ru) Хромсодержащий катализатор и способ его получения (варианты)
Shi et al. Promotion effects of ZrO2 on the Pd/HZSM-5 catalyst for low-temperature catalytic combustion of methane
JP4512691B2 (ja) 一酸化炭素による窒素酸化物の選択的還元触媒およびその調製法
US6638492B1 (en) Method for the catalytic oxidation of volatile organic compounds
RU2199387C1 (ru) Катализатор для глубокого окисления органических соединений и оксида углерода в газовых выбросах и способ его получения (варианты)
JPH08323205A (ja) 排気ガス浄化用触媒およびその製造方法
JP3760076B2 (ja) 窒素酸化物等の吸着剤、その製造方法および窒素酸化物等の除去方法
JPH0741313A (ja) 一酸化炭素の選択的酸化方法および該方法に用いられる触媒
JPS6050489B2 (ja) 硫黄化合物含有排ガス浄化用触媒
JPS63147546A (ja) 排ガス中の窒素酸化物の除去方法
JPH0975733A (ja) 窒素酸化物除去用酸化物触媒材料並びに窒素酸化物除去方法
RU2161533C1 (ru) Катализатор для очистки нитрозных газов от кислорода и диоксида азота и способ его получения
SU1583161A1 (ru) Катализатор дл глубокого окислени органических соединений и оксида углерода
JP2903073B2 (ja) エチレンの製造方法
US6362129B1 (en) Catalyst for purifying an exhaust gas
JP4082039B2 (ja) 排ガス浄化装置