RU2184353C2 - Устройство, реагирующее на уровень поверхности раздела материала - Google Patents
Устройство, реагирующее на уровень поверхности раздела материала Download PDFInfo
- Publication number
- RU2184353C2 RU2184353C2 RU99109118/28A RU99109118A RU2184353C2 RU 2184353 C2 RU2184353 C2 RU 2184353C2 RU 99109118/28 A RU99109118/28 A RU 99109118/28A RU 99109118 A RU99109118 A RU 99109118A RU 2184353 C2 RU2184353 C2 RU 2184353C2
- Authority
- RU
- Russia
- Prior art keywords
- sensor
- tank
- frequency
- signal
- along
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/284—Electromagnetic waves
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Cable Accessories (AREA)
- Geophysics And Detection Of Objects (AREA)
- Soil Working Implements (AREA)
- Measurement Of Radiation (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Control Of Amplification And Gain Control (AREA)
Abstract
Устройство для определения уровней несмешивающихся текучих сред в резервуаре содержит датчик линии передачи, проходящий вертикально внутри резервуара для контактирования с жидкостями внутри резервуара. К датчику подключен генератор для передачи вдоль датчика первого электрического сигнала, который непрерывно качает частоту в заданном диапазоне частот. К датчику подключен обнаружитель напряжения для создания второго электрического сигнала, который изменяется как функция амплитуды электрической энергии, отраженной в датчике от различных неоднородностей импеданса вдоль датчика, включающих, в частности, поверхности раздела между и внутри несмешивающихся текучих сред, окружающих датчик. Частотно-спектральные характеристики второго электрического сигнала анализируют для определения пространственного распределения импеданса вдоль датчика, из которого определяют уровни несмешивающихся текучих сред внутри резервуара. Технический результат: возможность определения уровня каждой поверхности раздела несмешивающейся текучей среды внутри резервуара-хранилища, упрощение реализации. 2 с. и 5 з.п. ф-лы, 3 ил.
Description
Настоящее изобретение относится к обнаружению уровня материала в резервуаре-хранилище и, в частности, к обнаружению уровня/ей/ поверхности/ей/ раздела между несмешивающимися материалами, такими как сырая нефть и вода.
Предпосылки создания и краткое описание изобретения
В патенте США 4807471 раскрыт способ измерения уровня материала в резервуаре-хранилище. Датчик линии передачи подвешивают вертикально внутри резервуара таким образом, что материал внутри резервуара окружает и входит в контакт с датчиком по мере поднятия и опускания уровня материала внутри резервуара. К датчику линии передачи подключен генератор качающейся частоты для передачи вдоль датчика синусоидального сигнала, который автоматически и непрерывно качает частоту в заданном диапазоне рабочих частот. Сигнал, отраженный от верхней поверхности материала в резервуаре, которая представляет импедансную неоднородность вдоль датчика линии передачи, комбинируется с переданным сигналом для формирования структуры стоячей волны вдоль датчика линии передачи выше материала на специфических частотах, связанных со свободной длиной датчика выше материала и, следовательно, уровнем материала. Свободную длину датчика выше материала и, следовательно, уровень материала определяют как функцию разнесения между частотами в пределах диапазона качающейся частоты, в котором имеет место структура стоячей волны.
В патенте США 4807471 раскрыт способ измерения уровня материала в резервуаре-хранилище. Датчик линии передачи подвешивают вертикально внутри резервуара таким образом, что материал внутри резервуара окружает и входит в контакт с датчиком по мере поднятия и опускания уровня материала внутри резервуара. К датчику линии передачи подключен генератор качающейся частоты для передачи вдоль датчика синусоидального сигнала, который автоматически и непрерывно качает частоту в заданном диапазоне рабочих частот. Сигнал, отраженный от верхней поверхности материала в резервуаре, которая представляет импедансную неоднородность вдоль датчика линии передачи, комбинируется с переданным сигналом для формирования структуры стоячей волны вдоль датчика линии передачи выше материала на специфических частотах, связанных со свободной длиной датчика выше материала и, следовательно, уровнем материала. Свободную длину датчика выше материала и, следовательно, уровень материала определяют как функцию разнесения между частотами в пределах диапазона качающейся частоты, в котором имеет место структура стоячей волны.
Хотя способ, раскрытый в вышеупомянутом патенте, и решает проблемы, существующие до сих пор, желательными являются дальнейшие усовершенствования. Например, описанное в вышеупомянутом патенте устройство непригодно для обнаружения уровней поверхностей раздела между несмешивающимися жидкостями, которое генерирует множественные отражения от различных уровней поверхностей раздела. Действительно, описанное в вышеупомянутом патенте устройство включает переменный импеданс на нижнем конце датчика для ограничения датчика в своем волновом сопротивлении и поэтому подавления отражений от нижнего конца датчика. При окружении датчика слоями несмешивающихся текучих сред должно быть отражение, связанное с неоднородностью импеданса на каждой поверхности раздела, все из которых должны анализироваться для правильного определения различных уровней текучей среды. Кроме того, скорость распространения сигнала внутри каждой текучей среды изменяется как функция диэлектрической проницаемости жидкости, что еще более осложняет процесс анализа.
Поэтому основной целью настоящего изобретения является разработка устройства и способа не только для обнаружения поверхностей раздела между несмешивающимися текучими средами в резервуаре, но также анализ свойств жидкости, так что может определяться уровень каждой поверхности раздела несмешивающейся текучей среды внутри резервуара-хранилища. Другой более частной целью настоящего изобретения является разработка устройства и способа вышеописанного типа, которые могут быть легко реализованы c использованием в остальном обычной технологии.
Устройство для определения уровней несмешивающихся текучих сред согласно настоящему изобретению содержит датчик линии передачи, проходящий вертикально для контактирования с жидкостями, находящимися внутри резервуара. К датчику подключен генератор для передачи вдоль датчика первого электрического сигнала, который непрерывно качает частоту в заданном диапазоне частот. К датчику подключен обнаружитель напряжения для создания второго электрического сигнала, который изменяется как функция амплитуды электрической энергии, отраженной в датчике от различных неоднородностей импеданса вдоль датчика, в частности, включающих поверхности раздела между и внутри несмешивающихся текучих сред, окружающих датчик. Частотно-спектральные характеристики второго электрического сигнала анализируют для определения пространственного распределения импеданса вдоль датчика, из которого определяют уровни несмешивающихся текучих сред внутри резервуара.
В предпочтительном варианте воплощения изобретения частотно-спектральные характеристики амплитудной огибающей комбинированных переданных и отраженных сигналов анализируют путем идентификации составляющих изменения частоты, связанных с изменением импеданса вдоль датчика. То есть идентифицируют спектральные линии, связанные с резкими изменениями импеданса на поверхностях раздела между несмешивающимися текучими средами, как распределенные непрерывные спектральные составы, связанные со слоями эмульсии, внутри которых изменяется импеданс. Предпочтительно этот анализ частотного спектра выполняют в процессоре цифрового сигнала, используя обычные способы анализа сигналов, такие как анализ с преобразованием Фурье. Амплитуду отраженного энергетического сигнала также анализируют для определения изменения в диэлектрической проницаемости, связанного с каждым отражением сигнала, и тем самым определения скорости распространения сигнала, связанной с каждым слоем текучей среды. Информацию о частотной составляющей и скоростную информацию комбинируют для определения уровня материала, связанного с каждым отражением сигнала.
Краткое описание чертежей
Изобретение вместе с дополнительными целями, особенностями и преимуществами будет лучше понято из нижеприведенного описания, прилагаемых формулы изобретения и чертежей, на которых:
фиг. 1 изображает функциональную блок-схему устройства для определения уровней несмешивающихся текучих сред в резервуаре согласно предпочтительному варианту воплощения изобретения;
фиг. 2А и 2Б изображают графики, иллюстрирующие основные принципы изобретения; и
фиг. 3А и 3Б изображают графики, иллюстрирующие работу устройства согласно изобретению.
Изобретение вместе с дополнительными целями, особенностями и преимуществами будет лучше понято из нижеприведенного описания, прилагаемых формулы изобретения и чертежей, на которых:
фиг. 1 изображает функциональную блок-схему устройства для определения уровней несмешивающихся текучих сред в резервуаре согласно предпочтительному варианту воплощения изобретения;
фиг. 2А и 2Б изображают графики, иллюстрирующие основные принципы изобретения; и
фиг. 3А и 3Б изображают графики, иллюстрирующие работу устройства согласно изобретению.
Подробное описание предпочтительных воплощений
Раскрытие вышеупомянутого патента США 4807471 дано здесь в качестве ссылки для объяснения предпосылок создания изобретения.
Раскрытие вышеупомянутого патента США 4807471 дано здесь в качестве ссылки для объяснения предпосылок создания изобретения.
На фиг.1 показано устройство 10 согласно предпочтительному варианту воплощения изобретения для измерения уровней несмешивающихся текучих сред 12, 14, 16 внутри резервуара-хранилища 18. Текучая среда 12 может содержать, например, сырую нефть, в то время как текучая среда 16 может содержать воду, удаленную из сырой нефти и собранную на дне резервуара-хранилища. В этом примере промежуточный слой 14 должен был бы содержать нефтеводную эмульсию, внутри которой нефть и вода еще не разделены, но существует непрерывное снижение концентрации нефти сверху вниз слоя. Внутри резервуара 18 подвешен или иначе установлен датчик 20 линии передачи, проходящий вертикально внутри резервуара, предпочтительно сверху вниз. Датчик 20 линии передачи установлен таким образом внутри резервуара, чтобы быть окруженным и входить в контакт с различными жидкостями при повышении или понижении их уровня внутри резервуара. Предпочтительно датчик 20 линии передачи выполнен в виде неэкранированного датчика с параллельными линиями, как описано в вышеупомянутом патенте. Альтернативно, датчик 20 может быть датчиком с коаксиальной линией передачи, способным обеспечивать доступ текучей среды в пространство между коаксиальными элементами датчика, ленточным датчиком, имеющим параллельные проводники, нанесенные на подходящую непроводящую основу, или датчиком с одной линией, окруженным на своем верхнем конце заземленной пусковой пластиной. В любом случае, как хорошо известно в данной области техники, импеданс каждой части датчика изменяется как функция диэлектрических свойств материала, который окружает эту часть датчика.
К датчику 20 линии передачи подключен генератор 22 качающейся частоты таким образом, чтобы запускать или распространять вдоль датчика сигнал переменной частоты. Предпочтительно генератор 22 способен запускать на датчик 20 циклический сигнал, который автоматически и непрерывно качает частоту в заданном диапазоне частот между предварительно выбранными частотными пределами. Переданный сигнал и сигналы, отраженные от неоднородностей импеданса, подают в комбинации от датчика 20 к обнаружителю 24 напряжения, который выдает выходной сигнал, поступающий к процессору 26 цифрового сигнала (ПЦС), который непрерывно изменяется как функция амплитуды энергии сигнала в датчике 20. Процессор 26 цифрового сигнала также принимает сигнал от генератора 22, указывающий мгновенную частоту переданного сигнала /или управляет частотой передачи в генераторе 22/ для корреляции амплитуды комбинированного сигнала с частотой передачи, как будет описано ниже. Выходной сигнал от процессора 26 цифрового сигнала поступает к подходящему дисплейному средству 28 для индикации уровней различных текучих сред внутри резервуара 18, а также и других характеристик материала, таких как, например, содержание воды в нефти.
Эмульсии несмешивающихся жидкостей при подходящих условиях разделяются на составляющие жидкости, формируя отдельные слои внутри резервуара-хранилища. В процессе деэмульгации разнородные жидкости /например, жидкость 12 и 16 на фиг. 1/ обычно разделяются слоем 14 эмульсии, в котором различная пропорция одной жидкости содержится в другой. Требуется обнаружение и определение местоположения поверхности раздела между различными жидкостями и эмульсиями и анализ содержимого слоев эмульсии для определения количеств составляющих жидкостей и измерения и управления производственными процессами, в которых имеют место эти явления. Предлагаемое устройство обеспечивает автоматическое обнаружение и непрерывную передачу данных о вертикальном положении поверхности жидкости /то есть, поверхности раздела жидкость-газ/ и положении одной или нескольких поверхностей раздела между разнородными жидкостями или жидкими эмульсиями и анализ содержимого любых слоев эмульсии. Обычным применением является обработка сырой нефти для отделения эмульгированной воды.
Жидкости могут различаться по диэлектрической проницаемости, например водные жидкости имеют большие величины диэлектрической проницаемости, в то время как масла имеют низкие величины диэлектрической проницаемости. Диэлектрические проницаемости всех жидкостей значительно больше диэлектрической проницаемости свободного пространства. Диэлектрическая проницаемость вакуума равна по определению единице. Для практических целей воздух, газы и пары могут также считаться как имеющие диэлектрическую проницаемость, равную единице. Высокочастотный импеданс неэкранированной электрической линии передачи зависит от диэлектрических свойств окружающей среды. На воздухе диэлектрическая проницаемость равна единице и импеданс линии является известной постоянной величиной, обычно называемый характеристическим импедансом Zо. Величина Zо определяется геометрией поперечного сечения линии передачи. При погружении линии передачи в жидкость с диэлектрической проницаемостью ε импеданс линии Z уменьшается и дается уравнением:
Когда такая линия передачи располагается вертикально в резервуаре, импеданс изменяется пространственно вдоль линии в зависимости от местоположения поверхности жидкости и слоев разнородных жидкостей и эмульсий. Внутри слоя жидкости импеданс является практически постоянным, его действительная величина определяется диэлектрическими свойствами данной жидкости. Внутри слоя эмульсии импеданс может пространственно изменяться по высоте слоя вследствие изменения жидкой составляющей. Также имеет место изменение со временем при деэмульгировании и разделении жидкостей. При определенных условиях эмульсионные слои исчезают, оставляя множество разделенных секций с неодинаковым постоянным импедансом. Распределение импеданса вдоль линии передачи представляет вертикальное местоположение разнородных жидкостей и слоев эмульсии 12, 14, 16 внутри резервуара и вертикальное распределение жидкой составляющей внутри слоя 14 эмульсии.
Когда такая линия передачи располагается вертикально в резервуаре, импеданс изменяется пространственно вдоль линии в зависимости от местоположения поверхности жидкости и слоев разнородных жидкостей и эмульсий. Внутри слоя жидкости импеданс является практически постоянным, его действительная величина определяется диэлектрическими свойствами данной жидкости. Внутри слоя эмульсии импеданс может пространственно изменяться по высоте слоя вследствие изменения жидкой составляющей. Также имеет место изменение со временем при деэмульгировании и разделении жидкостей. При определенных условиях эмульсионные слои исчезают, оставляя множество разделенных секций с неодинаковым постоянным импедансом. Распределение импеданса вдоль линии передачи представляет вертикальное местоположение разнородных жидкостей и слоев эмульсии 12, 14, 16 внутри резервуара и вертикальное распределение жидкой составляющей внутри слоя 14 эмульсии.
Исходя из фиг.1, высокочастотный сигнал, такой как синусоидальная волна, передается генератором 22 в оконечные устройства наверху датчика 20. Этот сигнал проходит вниз через воздушный слой 30 к поверхности 32 раздела воздух-жидкость. В зависимости от диэлектрических свойств жидкости 12 часть энергии сигнала отражается вверх и часть передается в жидкость. Это происходит из-за резкого изменения импеданса на поверхности раздела воздух-жидкость 32. Внутри жидкости 12 сигнал проходит вниз к следующей поверхности 34 раздела, где энергия опять частично отражается вследствие резкого изменения импеданса на поверхности раздела двух зон различного импеданса, и остальная энергия передается в следующий слой 14. Это повторяется на каждой последующей поверхности 36 раздела. Внутри слоя гомогенной жидкости не имеет место отражение из-за постоянства импеданса. Внутри слоя 14 эмульсии импеданс изменяется постепенно и соответственно распределяется отражение энергии. Энергия, дошедшая до нижнего конца 38 датчика, полностью отражается или посредством разомкнутой цепи, или посредством цепи короткого замыкания в этом месте.
Энергия, возвращаемая к верху датчика 20, дальше не отражается из-за того, что импеданс согласуется с Zо. Обнаруживатель огибающей напряжения 24 измеряет амплитуду результирующего напряжения, которая включает входной сигнал от генератора 22, сигналы, отраженные от каждой неоднородности 32, 34, 36, 38 импеданса, и распределенное отражение от внутреннего слоя 14 эмульсии. Отраженные сигналы изменяются по амплитуде и фазе по сравнению с входным сигналом в зависимости от изменений импеданса линии и двусторонних времен задержки соответственно. /К обнаружителю 24 также возвращаются многопутевые сигналы. Так как эти пути сигналов всегда включают три или более отражений, их амплитуда является незначительной и может игнорироваться. Также ради простоты в этом обсуждении игнорируются затухание на линии передачи и фазовые искажения/.
Переданный сигнал и первое отражение от поверхности раздела 32 воздух-жидкость иллюстрируются на фиг.2А и 2В. В векторном представлении амплитуда переданного сигнала обозначена Vnс, и амплитуда отраженного сигнала обозначена ρ32 Vnc, где ρ32 является коэффициентом отражения на поверхности раздела. Амплитуда обнаруживаемого напряжения Vон является векторной суммой Vnc и ρ32Vnc. Угол β между переданным и отраженным векторами дается уравнением:
где L - расстояние от обнаружителя напряжения до поверхности 32 раздела и λ- длина волны сигнала, переданного к датчику. Если обозначить частоту сигнала как f, тогда:
где Vо - скорость распространения в воздушном пространстве 30 над жидкостью 12 и является фиксированной известной постоянной. Подставляя уравнение (3) в уравнение (2), получаем:
В измерительном цикле частота f изменяется, вызывая пропорциональное изменение β. Из уравнения (4):
Так как для данной длины L dβ/df является постоянной величиной и в пределах любого диапазона частот Δf:
Из уравнения (4) видно, что при непрерывном изменении f в широком диапазоне β повторяется кратно 2π. Из уравнения (6) путем задания условия Δβ = 2π видно, что сдвиг частоты Δf2π, требуемый для каждого приращения фазы в 2π, является неодинаково связанным с L, так что:
Для определения Δf2π можно увидеть из фиг.2В, что при изменении f огибающая Voн является циклической и повторяется в Δf2π интервалах. При изменении f амплитуда Vон выбирается ПЦС 26 на множественных равных приращениях частоты, каждое из которых намного меньше Δf2π. ПЦС 26, используя обычный способ анализа, такой как гармонический анализ /с преобразованием Фурье/, затем определяет длину цикла огибающей, то есть Δf2π. Затем длину L определяют из уравнения (7), обеспечивая непрерывное измерение от верха датчика к поверхности раздела воздух-жидкость. Потом определяют высоту поверхности раздела путем вычитания этой длины L из общей высоты резервуара 18 и результат воспроизводят на дисплейном устройстве 28.
где L - расстояние от обнаружителя напряжения до поверхности 32 раздела и λ- длина волны сигнала, переданного к датчику. Если обозначить частоту сигнала как f, тогда:
где Vо - скорость распространения в воздушном пространстве 30 над жидкостью 12 и является фиксированной известной постоянной. Подставляя уравнение (3) в уравнение (2), получаем:
В измерительном цикле частота f изменяется, вызывая пропорциональное изменение β. Из уравнения (4):
Так как для данной длины L dβ/df является постоянной величиной и в пределах любого диапазона частот Δf:
Из уравнения (4) видно, что при непрерывном изменении f в широком диапазоне β повторяется кратно 2π. Из уравнения (6) путем задания условия Δβ = 2π видно, что сдвиг частоты Δf2π, требуемый для каждого приращения фазы в 2π, является неодинаково связанным с L, так что:
Для определения Δf2π можно увидеть из фиг.2В, что при изменении f огибающая Voн является циклической и повторяется в Δf2π интервалах. При изменении f амплитуда Vон выбирается ПЦС 26 на множественных равных приращениях частоты, каждое из которых намного меньше Δf2π. ПЦС 26, используя обычный способ анализа, такой как гармонический анализ /с преобразованием Фурье/, затем определяет длину цикла огибающей, то есть Δf2π. Затем длину L определяют из уравнения (7), обеспечивая непрерывное измерение от верха датчика к поверхности раздела воздух-жидкость. Потом определяют высоту поверхности раздела путем вычитания этой длины L из общей высоты резервуара 18 и результат воспроизводят на дисплейном устройстве 28.
В вышеприведенном описании со ссылкой на фиг.2А и 2Б поверхность 32 раздела воздух-жидкость рассматривается как единственная поверхность раздела, от которой имеют место отражения. В многослойном устройстве, как показано на фиг. 1, огибающая Vон представляет собой сложную составную форму волны, как иллюстрируется на фиг.3А, которая включает переданный сигнал и множественные отраженные сигналы, которые создают множественные структуры стоячих волн в течение каждого качания частоты передаваемого сигнала. ПЦС 26 анализирует частотно-спектральные характеристики этой составной формы волны для получения и идентификации оставляющих изменения частоты Δf для каждого источника отражения. Таким образом, ПЦС 26 определяет пространственное распределение импеданса вдоль датчика 20. Каждое резкое изменение импеданса на поверхности раздела дает линию в спектре, показанную на фиг.3Б, указывающую местоположение поверхности раздела между несмешивающимися текучими средами, такое как при Δf1 на фиг.3Б, связанное с поверхностью раздела воздух-жидкость 32, и Δf4 на фиг.3В, связанное с нижним концом 38 датчика 20. Распределенный непрерывный спектральный состав указывает местоположение и протяженность слоя эмульсии, такого как между Δf2 и Δf3 на фиг.3В, связанное с поверхностями 34, 36 раздела и непрерывно изменяющимся импедансом слоя 14 на фиг.1. Как обсуждено выше в связи с упрощенным графиком на фиг.2Б, тогда может определяться расстояние L, связанное с каждой поверхностью раздела, в соответствии с уравнением /7/.
Для решения уравнения /7/ для каждого уровня L поверхности раздела должна определяться связанная скорость распространения сигнала вдоль датчика 20. В воздушном пространстве 30 над жидкостью 12 эта скорость равна скорости в свободном пространстве Vо, которая является фиксированной заданной постоянной, независимой от окружающей среды в резервуаре. Это фиксирует коэффициент диапазона для измерения уровня поверхности жидкости и не требуется регулировка в процессе работы или автоматическая компенсация. Коэффициент отражения ρ32 на поверхности 32 раздела воздух-жидкость дается уравнением:
где ε12- диэлектрическая проницаемость слоя жидкости 12, ρ32 представляет собой отношение амплитуды переданного сигнала Vnc к амплитуде отраженного сигнала от поверхности жидкости и определяется из выходного сигнала обнаружителя 24 напряжения. Из уравнения (8) определяется ε12:
Затем может теперь быть определен коэффициент диапазона, так как скорость распространения V12 в жидкости дается уравнением:
Это обеспечивает автоматическое определение коэффициента диапазона в верхнем сдое жидкости. /Во многих применениях автоматическое определение диапазона не является необходимым, но может использоваться для точной настройки известной скорости, так как диэлектрическая проницаемость является одной и той же для специфического типа жидкости/.
где ε12- диэлектрическая проницаемость слоя жидкости 12, ρ32 представляет собой отношение амплитуды переданного сигнала Vnc к амплитуде отраженного сигнала от поверхности жидкости и определяется из выходного сигнала обнаружителя 24 напряжения. Из уравнения (8) определяется ε12:
Затем может теперь быть определен коэффициент диапазона, так как скорость распространения V12 в жидкости дается уравнением:
Это обеспечивает автоматическое определение коэффициента диапазона в верхнем сдое жидкости. /Во многих применениях автоматическое определение диапазона не является необходимым, но может использоваться для точной настройки известной скорости, так как диэлектрическая проницаемость является одной и той же для специфического типа жидкости/.
Амплитуда сигнала, передаваемого в первый /самый верхний/ слой жидкости 12, равна 1+ρ12. Так как ρ12 известен из спектра, выдаваемого ПЦС, амплитуда сигнала, попадающего на 2-й слой 14, также является известной. Теперь может определяться коэффициент отражения на поверхности 34 раздела первого и второго слоев жидкости и из него определяется коэффициент диапазона во втором слое таким же образом, как в первом слое. Так как слой 14 представляет собой эмульсию, отражение, распределенное поперек слоя, изменяется и, соответственно, изменяется скорость распространения. Путем суммирования результатов анализа непрерывного Δf спектра поперек слоя может определяться ширина слоя. Путем установки или разомкнутой цепи или цепи короткого замыкания на дне 38 датчика 20 в этом месте всегда случается отражение. Так как это происходит на известной физической длине датчика, его электрическое измерение может использоваться для проверки измерений уровня материала. Путем анализа Δf спектра, распределенного поперек слоя эмульсии 14, определяется распределение импеданса. Из уравнения (1) также известно распределение диэлектрических свойств, когда эмульсия содержит две жидкости А и В с диэлектрическими проницаемостями ρA и ρB соответственно, кажущаяся объемная диэлектрическая проницаемость ρК представляется эмпирически уравнением:
ρК = ρ ρ (11),
где а и b являются соответственно объемными долями жидкостей А и В. Например, для эмульсии сырой нефти /ρ = 2,2/ и воды /ρ = 80/ с содержанием 90 об.% нефти и 10 об.% воды:
ρК = 2,20,9800,1 = 3,15
При снижении содержания воды до 5 об.% кажущаяся диэлектрическая проницаемость становится равной:
ρК = 2,20,96800,06 = 2,63.
Путем определения кажущейся или объемной диэлектрической проницаемости слоя 14 эмульсии объемная доля жидкостей может быть снижена от известной действительной диэлектрической проницаемости каждой составляющей. Для обычной эмульсии нефть-вода большая разница в диэлектрических проницаемостях обеспечивает чувствительный индикатор содержания воды, предоставляя жизненно важное измерение в управлении и оптимизации деэмульгационной обработки.
ρК = ρ
где а и b являются соответственно объемными долями жидкостей А и В. Например, для эмульсии сырой нефти /ρ = 2,2/ и воды /ρ = 80/ с содержанием 90 об.% нефти и 10 об.% воды:
ρК = 2,20,9800,1 = 3,15
При снижении содержания воды до 5 об.% кажущаяся диэлектрическая проницаемость становится равной:
ρК = 2,20,96800,06 = 2,63.
Путем определения кажущейся или объемной диэлектрической проницаемости слоя 14 эмульсии объемная доля жидкостей может быть снижена от известной действительной диэлектрической проницаемости каждой составляющей. Для обычной эмульсии нефть-вода большая разница в диэлектрических проницаемостях обеспечивает чувствительный индикатор содержания воды, предоставляя жизненно важное измерение в управлении и оптимизации деэмульгационной обработки.
Вкратце, путем передачи сигнала качающейся частоты в неэкранированный датчик линии передачи и частотно-спектрального анализа результирующей огибающей напряжения стоячей волны, обнаруживаемой на входных зажимах датчика, определяют вертикальное распределение диэлектрических свойств в среде, окружающей датчик. Так как разнородные жидкости способны распознаваться по диэлектрическим свойствам, можно определить местоположение и высоту образующихся слоев. Кроме того, может анализироваться структура слоев эмульсии.
Claims (7)
1. Устройство для определения уровней несмешивающихся текучих сред в резервуаре, содержащее датчик линии передачи, проходящий вертикально внутри резервуара для контактирования с текучими средами внутри резервуара, генератор, подключенный к датчику для передачи вдоль датчика первого электрического сигнала, который непрерывно качает частоту в заданном диапазоне частот, обнаружитель напряжения, подключенный к датчику для создания второго электрического сигнала, который изменяется как функция амплитуды электрической энергии, передаваемой на датчик и отраженной в нем, отличающееся тем, что имеет средство для анализа частотно-спектральных характеристик второго электрического сигнала для определения пространственного распределения электрического импеданса вдоль датчика и средство для определения уровней несмешивающихся текучих сред внутри резервуара как функции пространственного распределения электрического импеданса вдоль датчика.
2. Устройство по п. 1, отличающееся тем, что средство для анализа частотно-спектральных характеристик второго электрического сигнала содержит средство для идентификации составляющих изменения частоты, связанных с изменением электрического импеданса вдоль датчика.
3. Устройство по п. 2 отличающееся тем, что средство для идентификации составляющих изменения частоты содержит средство для идентификации спектральных линий, связанных с резкими изменениями электрического импеданса на поверхностях раздела между несмешивающимися текучими средами внутри резервуара.
4. Устройство по п. 3, отличающееся тем, что средство для идентификации составляющих изменения частоты дополнительно содержит средство для идентификации распределенного непрерывного спектрального состава, связанного со слоем эмульсии в резервуаре, внутри которого изменяется импеданс.
5. Устройство по п. 2, отличающееся тем, что дополнительно содержит средство, реагирующее на амплитуду второго электрического сигнала для определения скорости распространения первого сигнала вдоль датчика линии передачи внутри каждой несмешивающейся текучей среды в резервуаре.
6. Способ определения уровней несмешивающихся текучих сред в резервуаре, при котором размещают датчик линии передачи внутри резервуара таким образом, что он окружается и контактирует с текучими средами по мере повышения и понижения их уровня внутри резервуара, передают вдоль датчика циклический сигнал, который изменяется непрерывно по частоте, отличающийся тем, что анализируют частотно-спектральные характеристики электрической энергии, отраженной в датчике от поверхностей раздела между несмешивающимися текучими средами внутри резервуара, для определения пространственного распределения электрического импеданса вдоль датчика и определяют уровни поверхностей раздела между несмешивающимися текучими средами внутри резервуара как функцию пространственного распределения электрического импеданса вдоль упомянутого датчика.
7. Способ по п. 6, отличающийся тем, что при анализе частотно-спектральной характеристики электрической энергии идентифицируют составляющие изменения частоты, связанные с изменением электрического импеданса на каждой поверхности раздела между несмешивающимися текучими средами в резервуаре.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/726,774 | 1996-10-07 | ||
US08/726,774 US5811677A (en) | 1996-10-07 | 1996-10-07 | Material interface level sensing |
Publications (2)
Publication Number | Publication Date |
---|---|
RU99109118A RU99109118A (ru) | 2001-04-27 |
RU2184353C2 true RU2184353C2 (ru) | 2002-06-27 |
Family
ID=24919961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99109118/28A RU2184353C2 (ru) | 1996-10-07 | 1997-09-17 | Устройство, реагирующее на уровень поверхности раздела материала |
Country Status (11)
Country | Link |
---|---|
US (1) | US5811677A (ru) |
EP (1) | EP0937231B1 (ru) |
JP (1) | JP2001502431A (ru) |
CN (1) | CN1134652C (ru) |
AT (1) | ATE211542T1 (ru) |
AU (1) | AU721901B2 (ru) |
CA (1) | CA2267900C (ru) |
DE (1) | DE69709896T2 (ru) |
DK (1) | DK0937231T3 (ru) |
RU (1) | RU2184353C2 (ru) |
WO (1) | WO1998017981A1 (ru) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6198424B1 (en) * | 1999-01-21 | 2001-03-06 | Rosemount Inc. | Multiple process product interface detection for a low power radar level transmitter |
US6477474B2 (en) * | 1999-01-21 | 2002-11-05 | Rosemount Inc. | Measurement of process product dielectric constant using a low power radar level transmitter |
US6782328B2 (en) | 1999-01-21 | 2004-08-24 | Rosemount Inc. | Measurement of concentration of material in a process fluid |
NO326208B1 (no) * | 1999-07-12 | 2008-10-20 | Epsis As | Fremgangsmate og anordning til maling av interfaseniva, samt anvendelse derav |
DE19958584C1 (de) * | 1999-11-08 | 2001-02-01 | Krohne Sa | Füllstandmessgerät |
US6644114B1 (en) | 1999-12-30 | 2003-11-11 | Mcewan Technologies, Llc | Direct PWM reflectometer |
DE10014725A1 (de) * | 2000-03-24 | 2001-09-27 | Endress Hauser Gmbh Co | Meßgerät zur Messung eines Füllstands eines Mediums in einem Behälter |
DE10027150A1 (de) * | 2000-05-31 | 2001-12-06 | Volkswagen Ag | Einrichtung und Verfahren zur Erfassung eines Füllstandes |
DE10196640T1 (de) * | 2000-09-22 | 2003-08-21 | Rosemount Inc | Verbesserte Schwellenwerteinstellung für einen Radar-Pegeltransmitter |
US20030222654A1 (en) * | 2001-11-30 | 2003-12-04 | Furse Cynthia M. | Cable testing, cable length, and liquid level determination system utilizing a standing wave reflectometer |
DE10203461A1 (de) * | 2002-01-28 | 2003-08-14 | Grieshaber Vega Kg | Schwingungsgrenzstandsensor |
NO319004B1 (no) * | 2003-03-21 | 2005-06-06 | Norsk Hydro As | Anordning for overvaking av posisjon for et olje-vann-grensesjikt i en petroleums-produksjonsbronn |
US6918296B1 (en) * | 2004-03-04 | 2005-07-19 | Delphi Technologies, Inc. | Method of measuring fluid phases in a reservoir |
JP4293194B2 (ja) * | 2005-09-02 | 2009-07-08 | 財団法人雑賀技術研究所 | 距離測定装置、及び距離測定方法 |
EP1804038A1 (en) * | 2005-12-29 | 2007-07-04 | Endress + Hauser GmbH + Co. KG | Method to determine the contents level of a first fluid in a container and to determine a presence of a second fluid below the first fluid and level measurement apparatus to execute said method |
US20090039105A1 (en) * | 2007-08-09 | 2009-02-12 | Golter Lee B | Controlled removal of liquids |
DE102007061573A1 (de) * | 2007-12-18 | 2009-06-25 | Endress + Hauser Gmbh + Co. Kg | Vorrichtung zur Ermittlung und/oder Überwachung zumindest eines Füllstands von zumindest einem Medium in einem Behälter gemäß einer Laufzeitmessmethode und/oder einer kapazitiven Messmethode |
DE102007061574A1 (de) * | 2007-12-18 | 2009-06-25 | Endress + Hauser Gmbh + Co. Kg | Verfahren zur Füllstandsmessung |
US8146421B2 (en) | 2008-02-08 | 2012-04-03 | Pulstone Technologies, LLC | Method and apparatus for sensing levels of insoluble fluids |
DE102009060742A1 (de) * | 2009-12-30 | 2011-07-07 | NEGELE Messtechnik GmbH, 87743 | Einrichtung zum Erkennen eines Pegelstandes |
NO331262B1 (no) * | 2010-04-12 | 2011-11-14 | Kongsberg Maritime As | Metode og apparat for å måle tettheten til en væske |
US8869612B2 (en) * | 2011-03-08 | 2014-10-28 | Baxter International Inc. | Non-invasive radio frequency liquid level and volume detection system using phase shift |
DE102012105281A1 (de) * | 2012-06-18 | 2013-12-19 | Endress + Hauser Gmbh + Co. Kg | Füllstandsmessgerät und Vorrichtung zur Bestimmung der Dielektrizitätszahl |
US9360361B2 (en) * | 2012-09-27 | 2016-06-07 | Magnetrol International, Inc. | System and method for emulsion measurement and profiling |
DE102013112025A1 (de) * | 2013-10-31 | 2015-04-30 | Endress + Hauser Gmbh + Co. Kg | Vorrichtung zur Bestimmung oder Überwachung des Füllstands eines Mediums in einem Behälter |
CN104034390B (zh) * | 2014-06-30 | 2017-01-25 | 中南大学 | 一种多层熔体高度的测量方法 |
CN104457906B (zh) * | 2014-12-08 | 2018-09-04 | 深圳市北高智电子有限公司 | 电容式水位无极检测装置及检测方法 |
CN104897240B (zh) * | 2015-02-13 | 2018-01-19 | 西安电子科技大学 | 一种油水界面的测量方法 |
GB2538233A (en) * | 2015-05-08 | 2016-11-16 | Rosemount Measurement Ltd | Improvements in or relating to level switches |
WO2017070640A1 (en) * | 2015-10-23 | 2017-04-27 | Eccrine Systems, Inc. | Devices capable of sample concentration for extended sensing of sweat analytes |
WO2018005173A1 (en) | 2016-06-29 | 2018-01-04 | Schlumberger Technology Corporation | Determining multi-phasic fluid properties and hydrocarbon production information as a function thereof |
CN107782412A (zh) * | 2016-08-30 | 2018-03-09 | 房玉安 | 全新的水位检测装置 |
CN108204845B (zh) * | 2016-12-19 | 2019-11-29 | 桓达科技股份有限公司 | 感测装置及物质感测方法 |
DE102017108702A1 (de) * | 2017-04-24 | 2018-10-25 | Krohne S. A. S. | Verfahren zur Bestimmung des Füllstandes und Füllstandmessgerät |
EP3527959B1 (de) * | 2018-02-14 | 2023-11-08 | VEGA Grieshaber KG | Füllstandradar mit anhaftungsdetektor |
US11794132B2 (en) | 2019-07-18 | 2023-10-24 | Cameron International Corporation | Digital treatment of multi-phase liquid mixtures |
CN110440876B (zh) * | 2019-08-23 | 2020-11-24 | 交通运输部天津水运工程科学研究所 | 非接触式波浪测量方法及系统 |
CN113108864A (zh) * | 2021-03-31 | 2021-07-13 | 宝力马(苏州)传感技术有限公司 | 一种基于信号在变阻抗介质中传输反射特性的液位计 |
WO2022216601A1 (en) * | 2021-04-05 | 2022-10-13 | Microchip Technology Incorporated | Differentiating between fuel and water using capacitive measurement thereof |
CN113532587A (zh) * | 2021-08-20 | 2021-10-22 | 成都英航威科技有限公司 | 一种测量船用燃油舱内液面位置的传感器及其工作方法 |
CN113959523A (zh) * | 2021-09-22 | 2022-01-21 | 青岛海尔生物医疗科技有限公司 | 用于培养设备的液位检测装置及方法、培养设备及介质 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3296862A (en) * | 1963-10-02 | 1967-01-10 | Atomic Power Dev Ass Inc | Fluid level measuring apparatus |
US3424002A (en) * | 1965-06-01 | 1969-01-28 | Marathon Oil Co | Apparatus for the determination of location of interfaces between different materials |
US3474337A (en) * | 1966-12-27 | 1969-10-21 | Jackson & Church Electronics C | System for sensing levels and electrical characteristics of fluent materials |
US3572119A (en) * | 1969-08-07 | 1971-03-23 | Bendix Corp | Fluid quantity indicating device |
US3695107A (en) * | 1970-06-01 | 1972-10-03 | Hertz Carl H | Method of measuring the level of a material in a tank, and an apparatus for practicing this method |
US3703829A (en) * | 1971-04-19 | 1972-11-28 | Honeywell Inc | Liquid quantity gaging system |
IT961071B (it) * | 1971-09-04 | 1973-12-10 | Cnen | Sonda ed installazione per la misura di livelli di interfacce di fluidi e delle costanti dielettri che degli stessi |
US3874237A (en) * | 1973-02-15 | 1975-04-01 | Canadian Patents Dev | Liquid level height measuring apparatus |
US4135397A (en) * | 1977-06-03 | 1979-01-23 | Krake Guss L | Level measuring system |
US4170135A (en) * | 1978-09-26 | 1979-10-09 | The United States Of America As Represented By The United States Department Of Energy | Coaxial cavity for measuring level of liquid in a container |
US4307267A (en) * | 1980-06-16 | 1981-12-22 | Bell Telephone Laboratories, Incorporated | Testing loaded transmission lines |
US4359902A (en) * | 1980-07-31 | 1982-11-23 | Lawless James C | Liquid level gauge |
JPS5811840A (ja) * | 1981-07-15 | 1983-01-22 | Hitachi Ltd | マイクロ波アルコ−ル燃料センサ |
US4446562A (en) * | 1981-10-13 | 1984-05-01 | Electric Power Rsearch Institute, Inc. | Method and apparatus for measuring crucible level of molten metal |
US4495807A (en) * | 1983-02-24 | 1985-01-29 | The United States Of America As Represented By The United States Department Of Energy | Precision liquid level sensor |
US4649713A (en) * | 1984-05-21 | 1987-03-17 | Bezek Donald J | Microwave ice detector |
US4621226A (en) * | 1984-05-23 | 1986-11-04 | Weinschel Engineering Co., Inc. | Apparatus and method for determining an input electrical characteristic of a device under test |
US4729245A (en) * | 1986-01-02 | 1988-03-08 | Massachusetts Institute Of Technology | Method and apparatus for monitoring liquid volume/mass in tanks |
US4847623A (en) * | 1986-02-19 | 1989-07-11 | Idea, Inc. | Radar tank gauge |
US4807471A (en) * | 1987-09-16 | 1989-02-28 | Cournane Thomas C | Level measurement for storage silos |
US5233352A (en) * | 1992-05-08 | 1993-08-03 | Cournane Thomas C | Level measurement using autocorrelation |
US5588324A (en) * | 1994-06-14 | 1996-12-31 | Speranza; Bernard E. | Method for determining the level of a submerged layer of liquified material |
US5602333A (en) * | 1994-06-17 | 1997-02-11 | Smiths Industries | Apparatus for measuring the level of a liquid in a tank |
-
1996
- 1996-10-07 US US08/726,774 patent/US5811677A/en not_active Expired - Lifetime
-
1997
- 1997-09-17 JP JP10519351A patent/JP2001502431A/ja not_active Ceased
- 1997-09-17 AU AU44846/97A patent/AU721901B2/en not_active Ceased
- 1997-09-17 RU RU99109118/28A patent/RU2184353C2/ru not_active IP Right Cessation
- 1997-09-17 EP EP97943355A patent/EP0937231B1/en not_active Expired - Lifetime
- 1997-09-17 DE DE69709896T patent/DE69709896T2/de not_active Expired - Fee Related
- 1997-09-17 DK DK97943355T patent/DK0937231T3/da active
- 1997-09-17 CA CA002267900A patent/CA2267900C/en not_active Expired - Fee Related
- 1997-09-17 WO PCT/US1997/016537 patent/WO1998017981A1/en active IP Right Grant
- 1997-09-17 CN CNB971985901A patent/CN1134652C/zh not_active Expired - Fee Related
- 1997-09-17 AT AT97943355T patent/ATE211542T1/de not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CA2267900C (en) | 2002-07-02 |
AU721901B2 (en) | 2000-07-20 |
CN1232542A (zh) | 1999-10-20 |
EP0937231B1 (en) | 2002-01-02 |
EP0937231A1 (en) | 1999-08-25 |
EP0937231A4 (en) | 2000-10-04 |
US5811677A (en) | 1998-09-22 |
DE69709896D1 (de) | 2002-02-28 |
JP2001502431A (ja) | 2001-02-20 |
AU4484697A (en) | 1998-05-15 |
CN1134652C (zh) | 2004-01-14 |
DE69709896T2 (de) | 2002-08-29 |
WO1998017981A1 (en) | 1998-04-30 |
ATE211542T1 (de) | 2002-01-15 |
DK0937231T3 (da) | 2002-07-01 |
CA2267900A1 (en) | 1998-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2184353C2 (ru) | Устройство, реагирующее на уровень поверхности раздела материала | |
JP3086689B2 (ja) | インピーダンス測定を用いた組成のモニタ装置及びモニタ方法 | |
US5260667A (en) | Method and apparatus for determining the percentage water condent of oil in water emulsion by specific admittance measurement | |
US5051921A (en) | Method and apparatus for detecting liquid composition and actual liquid level | |
US8220341B2 (en) | Method and device for analyzing a multiple-phase fluid by measuring admittance using coaxial probes | |
US8570050B2 (en) | Flow measurements | |
US20150033830A1 (en) | Automated phase separation and fuel quality sensor | |
EP0288135A2 (en) | Microwave probe | |
US4565088A (en) | Process and apparatus for the detection of changes of composition in a medium with the aid of ultrasound | |
RU99109118A (ru) | Устройство, реагирующее на уровень поверхности раздела материала | |
US6891383B2 (en) | Soot detector for engine oil | |
JPS60159615A (ja) | タンク又はコンテナ内の異なる流体間の界面の位置を検知する装置 | |
RU2626409C1 (ru) | Способ измерения физических свойств жидкости | |
RU2698575C1 (ru) | Способ измерения положения границы раздела двух веществ в резервуаре | |
RU2764193C1 (ru) | Способ определения фракционной доли воды в многофазной несмешиваемой среде | |
Weiß et al. | A novel method of determining the permittivity of liquids | |
RU2620780C1 (ru) | Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости | |
NO20140185A1 (no) | System og fremgangsmåte for flerfase strømningsmålinger | |
US20220214293A1 (en) | In-process parallel plate sensor system for electromagnetic impedance spectroscopy monitoring of fluids | |
RU2536184C1 (ru) | Концентратомер | |
RU2227320C2 (ru) | Способ измерений показателей качества нефтепродуктов | |
RU2279666C1 (ru) | Способ определения объемного влагосодержания обводненного нефтепродукта, заполняющего металлический сосуд | |
WO2019168423A1 (en) | Microwave soil moisture sensor based on phase shift method and independent of electrical conductivity of the soil | |
RU2645836C1 (ru) | Способ определения уровня жидкости в емкости | |
JPH11125616A (ja) | 混相流体の成分率測定方法およびそれを利用した成分率計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20080918 |