RU2626409C1 - Способ измерения физических свойств жидкости - Google Patents

Способ измерения физических свойств жидкости Download PDF

Info

Publication number
RU2626409C1
RU2626409C1 RU2016137800A RU2016137800A RU2626409C1 RU 2626409 C1 RU2626409 C1 RU 2626409C1 RU 2016137800 A RU2016137800 A RU 2016137800A RU 2016137800 A RU2016137800 A RU 2016137800A RU 2626409 C1 RU2626409 C1 RU 2626409C1
Authority
RU
Russia
Prior art keywords
waveguide
liquid
physical properties
electromagnetic waves
electromagnetic
Prior art date
Application number
RU2016137800A
Other languages
English (en)
Inventor
Александр Сергеевич Совлуков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2016137800A priority Critical patent/RU2626409C1/ru
Application granted granted Critical
Publication of RU2626409C1 publication Critical patent/RU2626409C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ включает возбуждение электромагнитных волн в волноводе, размещение контролируемой жидкости в электромагнитном поле одного из торцевых участков волновода и идентичной жидкости с эталонным значением измеряемых физических свойств жидкости в электромагнитном поле другого торцевого участка волновода, при этом в волноводе возбуждают электромагнитные волны фиксированной частоты на одном из его торцов, частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, по которой судят о физических свойствах жидкости. Техническим результатом изобретения является расширение функциональных возможностей способа, повышение его надежности и стабильности измерений. 6 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств (плотности, концентрации смесей, влагосодержания и др.) различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.).
Известны различные способы и устройства для измерения физических свойств жидкостей, основанные на измерении электрофизических параметров (диэлектрической проницаемости или (и) тангенса угла диэлектрических потерь) жидкостей с применением радиоволновых ВЧ и СВЧ резонаторов, содержащих контролируемую жидкость (монографии: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963, 403 с., с. 37-144; Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989, 208 с., с. 168-177). Недостатком таких способов и реализующих эти способы измерительных устройств является их ограниченная область применения, обусловленная невозможностью контроля малых изменений физических свойств жидкостей ввиду невысокой точности измерения соответствующих малых изменений информативных параметров (резонансной частоты, добротности резонатора и др.). Для обеспечения возможности проведения таких измерений применяют двухканальные измерительные схемы с независимыми измерительным и эталонным каналами. В эталонном канале чувствительный элемент содержит жидкость с известными физическими свойствами (монография: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963, 403 с., с. 258-268).
Известно также техническое решение (RU 2285913 C1, 20.10.2006), которое содержит описание способа, согласно которому производят измерения физических свойств жидкостей с применением двух независимых измерительных каналов, рабочего и эталонного, с чувствительными элементами (измерительными ячейками) в виде отрезков коаксиальной линии. Они являются резонаторами с колебаниями основного типа TEM и заполняются, соответственно, контролируемой жидкостью и эталонной жидкостью. Для реализации данного способа применяют линии связи этих чувствительных элементов с соответствующими электронными блоками, выходы которых подсоединены к входу функционального преобразователя. Информативным параметром каждого измерительного канала является основная резонансная частота электромагнитных колебаний соответствующего резонатора. Недостатком данного способа является сложность его реализации, обусловленная необходимостью применения двух независимых измерительных каналов. В каждом из них необходимо наличие чувствительного элемента, генератора электромагнитных колебаний и приемного устройства для определения величины информативного параметра. Кроме того, необходимо наличие блока для функциональной обработки выходных сигналов этих (измерительного и опорного) каналов. Необходимость в данных элементах двухканальных измерительных устройств для реализации этого способа существенно усложняет его реализацию. Кроме того, этот способ характеризуется и невысокой точностью измерения вследствие возможных изменений схемных параметров, нестабильности указанных элементов измерительных схем (двух генераторов, приемных устройств). Это приводит к снижению точности измерения.
Известно также техническое решение (RU 2473889 C1, 27.01.2013), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Согласно этому способу-прототипу измерение физической величины, в частности физических свойств жидкости, производят при возбуждении волн в волноводном резонаторе, размещении контролируемого объекта в волновом поле одного из торцевых участков волноводного резонатора и определении одной из характеристик стоячей волны в нем, размещении в волновом поле другого торцевого участка идентичного объекта с эталонным значением измеряемой физической величины. Недостатком данного способа измерения является ограниченность его функциональных возможностей, обусловленная организацией волноводного резонатора на основе волновода при создании условий для отражения волн от торцов волновода и определении одной из характеристик стоячей волны в таком волноводном резонаторе. Способ становится неработоспособным при отсутствии возможности образования стоячей волны в волноводе.
Техническим результатом настоящего изобретения является расширение функциональных возможностей способа измерения.
Технический результат в предлагаемом способе измерения физических свойств жидкости, заключающемся в возбуждении электромагнитных волн в волноводе, размещении контролируемой жидкости в электромагнитном поле волновода с одного из его торцевых участков и идентичной жидкости с эталонным значением измеряемых физических свойств жидкости в электромагнитном поле волновода с его другого торцевого участка, достигается тем, что в волноводе возбуждают электромагнитные волны фиксированной частоты на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, по которой судят о физических свойствах жидкости.
Предлагаемый способ поясняется чертежами.
На фиг. 1 приведена схема устройства, поясняющая принцип измерения с применением способа.
На фиг. 2 приведен график зависимости относительного значения амплитуды напряженности электрического поля от диэлектрической проницаемости жидкости.
На фиг. 3, 4, 5 и 6 приведены примеры устройств для реализации способа измерения.
На чертежах показаны волновод 1, генератор 2, элементы связи 3 и 4, детектор 5, регистратор 6, первая половина волновода 7, эталонная жидкость 8, вторая половина волновода 9, контролируемая жидкость 10, диэлектрическая пластина 11, торцевые части 12 и 13.
Способ реализуется следующим образом.
Предлагаемый способ заключается в возбуждении электромагнитных волн в волноводе на частоте, которая ниже критической частоты для волны низшего типа, при этом вдоль волновода существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента у одного из торцов емкости.
Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства:
Figure 00000001
которому должны удовлетворять рабочая частота
Figure 00000002
и критическая частота
Figure 00000003
для волны низшего типа, например, для волны H11 в круглом волноводе. При
Figure 00000004
имеет место режим, при котором распространения волн по волноводу не происходит, а существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента. При этом электрическое поле (как и магнитное поле) изменяется вдоль координаты z (оси волновода) по закону:
Figure 00000005
а постоянная ослабления α есть
Figure 00000006
В этих формулах Em - амплитуда напряженности электрического поля при z=0;
Figure 00000007
ε - диэлектрическая проницаемость диэлектрического вещества в волноводе, c - скорость света.
Выбирая соотношение между
Figure 00000008
и
Figure 00000009
можно управлять величиной ослабления α.
Поскольку существует зависимость ослабления электрического поля в волноводе от диэлектрической проницаемости жидкости в нем (формула (2)), то датчик физических свойств жидкости может быть построен на отрезке рассматриваемого волновода. На фиг. 1 изображен волновод 1. Возбуждение электромагнитных волн в волноводе осуществляется с помощью генератора 2 через элемент связи 3. Другой элемент связи (приема) 4 электромагнитных волн расположен на расстоянии
Figure 00000010
вдоль волновода 1. Принимаемые волны поступают на детектор 5, подсоединенный к регистратору 6.
Если частота
Figure 00000011
генератора меньше критической частоты
Figure 00000012
данного волновода, то амплитуда напряженности E электрического поля, являющаяся информативным параметром, в точке приема есть
Figure 00000013
где
Figure 00000014
,
Figure 00000015
E0 - амплитуда напряженности поля в области возбуждения электромагнитных волн в рассматриваемом волноводе (т.е. в области расположения связи 3). Для волн типа H11 имеем
Figure 00000016
, где d - внутренний диаметр волновода.
Например, при d=50 мм,
Figure 00000017
Figure 00000018
для волн типа H11 будем иметь
Figure 00000019
k=0,3012 1/см. Следовательно, информативный параметр E(ε) имеет величину
Figure 00000020
. На фиг. 2 приведен график зависимости E(ε)/E0 от ε в диапазоне изменения ε в пределах 1,8÷2,0 (нефть и нефтепродукты). При этом относительное изменение E(ε)/E0 составляет 14,5%, что является достаточно большой величиной.
Длина
Figure 00000021
измерительного участка, частота
Figure 00000022
генератора выбираются с учетом диаметра волновода, электрофизических параметров контролируемой жидкости и диапазона их изменения.
Данный способ измерения физических свойств жидкости заключается в возбуждении электромагнитных волн в указанном волноводе, размещении контролируемой жидкости в электромагнитном поле одного из торцевых участков этого волновода и идентичной жидкости с эталонным значением измеряемых физических свойств жидкости в электромагнитном поле его другого торцевого участка. В рассматриваемом волноводе возбуждают электромагнитные волны фиксированной частоты
Figure 00000023
на одном из торцов волновода. При этом частоту
Figure 00000024
возбуждаемых электромагнитных волн выбирают ниже критической частоты
Figure 00000025
волновода. Электромагнитные волны принимают после их распространения вдоль данного волновода на другом его торце и измеряют амплитуду напряженности электрического поля, по которой судят о физических свойств жидкости.
Для волноводов конкретных размеров выбором частоты
Figure 00000026
генератора можно оптимизировать чувствительность такого датчика физических свойств жидкости в рабочем диапазоне их изменения. При этом имеет место монотонность зависимости информативного параметра - амплитуды E(ε) напряженности электрического поля - от значения ε, функционально связанного с измеряемым физическим свойством жидкости.
Согласно данному способу измерения, контролируемую и эталонную жидкости располагают в волноводе с разных его торцов идентично. При этом возможна различная степень заполнения каждой из частей волновода: 1) заполнение каждой жидкостью (контролируемой и эталонной жидкостями) половины длины волновода; при этом волновод полностью заполнен этими двумя жидкостями, образующими границу раздела (фиг. 3); 2) идентичное заполнение каждой жидкостью только части длины соответствующей половины волновода, например, торцевой части каждой половины длины волновода (фиг. 4) или части, прилегающей к середине длины волновода (фиг. 5); 3) возможно также идентичное расположение каждой жидкости в некоторой части соответствующей половины длины волновода, не примыкающей к ее концам (фиг. 6).
На фиг. 3 показано применение данного способа для измерения физических свойств диэлектрической жидкости с диэлектрической проницаемостью е, где в первой половине 7 волновода 1 размещена эталонная жидкость 8 с диэлектрической проницаемостью ε0 - жидкость с эталонным значением x0 измеряемой величины x (и ε=ε0), а идентичная вторая половина 9 волновода 1 заполнена контролируемой жидкостью 10 - той же жидкостью с текущим значением измеряемого физического свойства x (и, соответственно, значением ε). В волноводе 1 эталонная жидкость 8 и контролируемая жидкость 10 на границе их раздела отделены друг от друга тонкой диэлектрической пластиной 11, не препятствующей распространению электромагнитной волны.
Согласно предлагаемому способу, в волноводе 1 с эталонной жидкостью 8 и контролируемой жидкостью 10 возбуждают через элемент связи 3 с помощью генератора 2 электромагнитные волны на частоте
Figure 00000027
меньшей критической частоты
Figure 00000028
для этого волновода (фиг. 3). Напряженность электрического поля E при удалении от элемента связи 3, служащего для возбуждения и приема электромагнитных колебаний, спадает в соответствии с соотношением (1). При этом значение E зависит от физических свойств как эталонной, так и контролируемой жидкостей в волноводе 1. У другого торца волновода 1 принимаемый сигнал поступает через элемент связи 4 на детектор 5. Затем продетектированный сигнал поступает на регистратор 6 для определения амплитуды E сигнала, служащей информативным параметром.
На фиг. 4 показано применение данного способа для измерения физических свойств диэлектрической жидкости с диэлектрической проницаемостью ε, где в торцевой части 12 волновода 1 в виде ячейки, ограниченной с одной стороны первым торцом волновода, а с другой стороны - диэлектрической пластиной 11, размещена эталонная жидкость 8 с диэлектрической проницаемостью ε0 - жидкость с эталонным значением x0 измеряемой величины x (и ε=ε0), а другая идентичная торцевая часть 13 волновода 1 - в виде ячейки, ограниченной с одной стороны вторым торцом волновода, а с другой стороны - диэлектрической пластиной 11, заполнена контролируемой жидкостью 10 - той же жидкостью с текущим значением измеряемого физического свойства x (и, соответственно, значением ε).
При отличии измеряемого физического свойства x жидкости от его эталонного значения x0 в волноводе происходит изменение амплитуды ослабевающего реактивного электромагнитного поля, убывающего при удалении от возбуждающего элемента, причем уменьшение амплитуды этого реактивного электромагнитного поля соответствует функциональной зависимости (3). При этом амплитуда напряженности E электрического поля, являющаяся информативным параметром, в точке приема зависит от условий распространения убывающего реактивного электромагнитного поля как в части, заполненной эталонной жидкостью, так и в части, заполненной контролируемой жидкостью.
Изменение x относительно его эталонного значения x0 приводит к изменению амплитуды убывающего реактивного электромагнитного поля. Она изменяется относительно исходного экстремального (максимального или минимального) значения, имеющего место при x=x0 в зависимости от величины x.
Для схемы на фиг. 3 имеем значение E1 амплитуды реактивного электромагнитного поля после распространения в эталонной жидкости:
Figure 00000029
где в данном случае
Figure 00000030
- длина половины волновода, E1 - значение амплитуды E после прохождения электромагнитной волной половины длины волновода, заполненной эталонной жидкостью.
После дальнейшего прохождения электромагнитной волной другой половины длины волновода, заполненной теперь уже контролируемой жидкостью, в точке приема (т.е. после прохождения электромагнитной волной всей длины
Figure 00000031
волновода) будем иметь:
Figure 00000032
где
Figure 00000033
Figure 00000034
При ε=ε0 из формулы (5) следует, что
Figure 00000035
При ε>ε0 будем иметь E(ε)<E(ε0), и зависимость E(ε) имеет при этом монотонно убывающий характер. Соответственно, при ε<ε0 будем иметь E(ε)>E(ε0); зависимость E(ε) имеет при этом монотонно возрастающий характер.
Для схемы на фиг. 4 имеем значение E2 амплитуды реактивного электромагнитного поля после распространения в половине длины волновода с эталонной жидкостью в его торцевой части:
Figure 00000036
где
Figure 00000037
- значение постоянной ослабления α в части длины волновода, не заполненной как эталонной, так и контролируемой жидкостью (т.е. в полой части волновода, где ε=1);
Figure 00000038
- длина части волновода, заполненная эталонной жидкостью (в другой половине волновода идентичная часть ее длины с контролируемой жидкостью также равна
Figure 00000039
).
После последующего прохождения электромагнитной волной другой половины длины волновода, заполненной теперь уже частично в торцевой области контролируемой жидкостью, сначала вдоль полого волновода, а затем вдоль части длины
Figure 00000040
волновода с контролируемой жидкостью, в точке приема (т.е. после прохождения электромагнитной волной всей длины
Figure 00000041
волновода) будем иметь
Figure 00000042
При ε=ε0 из формулы (7) следует, что
Figure 00000043
Как и для схемы на фиг. 1, в данном случае также при ε>ε0 будем иметь E(ε)<E(ε0), и зависимость E(ε) имеет при этом монотонно убывающий характер, а при ε<ε0 будем иметь E(ε)>E(ε0), и зависимость E(ε) имеет при этом монотонно возрастающий характер.
Аналогичный характер имеет зависимость E(ε) для схем на фиг. 5 и 6. На фиг. 5 одна часть длины волновода 1, прилегающая к середине длины волновода 1, содержит ячейку, ограниченную с каждой стороны соответствующей диэлектрической пластиной 11 и заполненную эталонной жидкостью 8. Другая идентичная часть длины волновода 1, прилегающая к середине волновода 1 с другой ее стороны, содержит ячейку с контролируемой жидкостью 10. При этом данная ячейка со стороны, прилегающей к середине длины волновода 1, ограничена той же диэлектрической пластиной 11, что и у ячейки с эталонной жидкостью 8, а с другой стороны - еще одной диэлектрической пластиной 11. На фиг. 6 показано идентичное расположение каждой жидкости в пределах соответствующей ячейки, ограниченной с каждой стороны диэлектрической пластиной 11, в некоторой части соответствующей половины длины волновода 1, не примыкающей к ее концам.
Реализацию данного способа можно осуществлять и при другом расположении эталонной и контролируемой жидкостей в волноводе: сначала электромагнитная волна распространяется вдоль половины волновода с контролируемой жидкостью, а затем вдоль половины волновода с эталонной жидкостью (при их полном или идентичном частичном заполнении соответствующей части волновода).
Таким образом, данный способ позволяет достаточно просто и с высокой точностью измерять различные физические свойства диэлектрических жидкостей. Для проведения измерений не требуется организации волноводного резонатора с образованием стоячей волны в волноводе, а достаточно только возбуждения в волноводе электромагнитных волн на фиксированной частоте.

Claims (1)

  1. Способ измерения физических свойств жидкости, заключающийся в возбуждении электромагнитных волн в волноводе, размещении контролируемой жидкости в электромагнитном поле волновода с одного из его торцевых участков и идентичной жидкости с эталонным значением измеряемых физических свойств жидкости в электромагнитном поле волновода с его другого торцевого участка, отличающийся тем, что в волноводе возбуждают электромагнитные волны фиксированной частоты на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, по которой судят о физических свойствах жидкости.
RU2016137800A 2016-09-22 2016-09-22 Способ измерения физических свойств жидкости RU2626409C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016137800A RU2626409C1 (ru) 2016-09-22 2016-09-22 Способ измерения физических свойств жидкости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016137800A RU2626409C1 (ru) 2016-09-22 2016-09-22 Способ измерения физических свойств жидкости

Publications (1)

Publication Number Publication Date
RU2626409C1 true RU2626409C1 (ru) 2017-07-27

Family

ID=59495896

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016137800A RU2626409C1 (ru) 2016-09-22 2016-09-22 Способ измерения физических свойств жидкости

Country Status (1)

Country Link
RU (1) RU2626409C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659569C1 (ru) * 2017-09-27 2018-07-03 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения влагосодержания диэлектрической жидкости
RU2661349C1 (ru) * 2017-09-27 2018-07-16 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ определения влагосодержания диэлектрической жидкости
RU2760641C1 (ru) * 2021-04-12 2021-11-29 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения физических свойств жидкости
RU2761954C1 (ru) * 2021-02-17 2021-12-14 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения физических свойств диэлектрической жидкости
RU2762058C1 (ru) * 2021-02-17 2021-12-15 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения физических свойств диэлектрической жидкости
RU2786526C2 (ru) * 2021-05-27 2022-12-21 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения физической величины

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2202804C2 (ru) * 2001-12-13 2003-04-20 ЗАО "Тантал - Наука" Способ измерения относительной диэлектрической проницаемости жидких сред на свч
US7066008B2 (en) * 2004-05-19 2006-06-27 Zaklad Aparatury Pomiarowet Kwant Sp Z.O.O. Method for measuring concentration of solid or liquid particulate matter in a gaseous carrier medium
RU2285913C1 (ru) * 2005-02-28 2006-10-20 Федеральное государственное образовательное учреждение высшего профессионального образования Мурманский государственный технический университет Устройство для измерения физических свойств жидкости
RU2331871C2 (ru) * 2006-02-28 2008-08-20 Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) Волноводный свч-способ измерения диэлектрической проницаемости жидких сред по критической длине волны
CN202383089U (zh) * 2011-12-31 2012-08-15 四川高达科技有限公司 一种管道微带式浓度传感装置
RU2473889C1 (ru) * 2011-09-05 2013-01-27 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Способ измерения физической величины
RU2534747C1 (ru) * 2013-12-13 2014-12-10 Федеральное государственное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН Устройство для измерения физических свойств жидкости в емкости

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2202804C2 (ru) * 2001-12-13 2003-04-20 ЗАО "Тантал - Наука" Способ измерения относительной диэлектрической проницаемости жидких сред на свч
US7066008B2 (en) * 2004-05-19 2006-06-27 Zaklad Aparatury Pomiarowet Kwant Sp Z.O.O. Method for measuring concentration of solid or liquid particulate matter in a gaseous carrier medium
RU2285913C1 (ru) * 2005-02-28 2006-10-20 Федеральное государственное образовательное учреждение высшего профессионального образования Мурманский государственный технический университет Устройство для измерения физических свойств жидкости
RU2331871C2 (ru) * 2006-02-28 2008-08-20 Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) Волноводный свч-способ измерения диэлектрической проницаемости жидких сред по критической длине волны
RU2473889C1 (ru) * 2011-09-05 2013-01-27 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Способ измерения физической величины
CN202383089U (zh) * 2011-12-31 2012-08-15 四川高达科技有限公司 一种管道微带式浓度传感装置
RU2534747C1 (ru) * 2013-12-13 2014-12-10 Федеральное государственное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН Устройство для измерения физических свойств жидкости в емкости

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659569C1 (ru) * 2017-09-27 2018-07-03 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения влагосодержания диэлектрической жидкости
RU2661349C1 (ru) * 2017-09-27 2018-07-16 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ определения влагосодержания диэлектрической жидкости
RU2761954C1 (ru) * 2021-02-17 2021-12-14 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения физических свойств диэлектрической жидкости
RU2762058C1 (ru) * 2021-02-17 2021-12-15 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения физических свойств диэлектрической жидкости
RU2760641C1 (ru) * 2021-04-12 2021-11-29 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения физических свойств жидкости
RU2786526C2 (ru) * 2021-05-27 2022-12-21 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения физической величины
RU2786527C1 (ru) * 2021-08-27 2022-12-21 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения физических свойств жидкости

Similar Documents

Publication Publication Date Title
RU2626409C1 (ru) Способ измерения физических свойств жидкости
US20200378903A1 (en) Detection system and detection method for water content and conductivity
RU2473889C1 (ru) Способ измерения физической величины
RU2365903C1 (ru) Способ измерения влагосодержания и солесодержания нефти
RU2536164C1 (ru) Устройство для определения концентрации смеси веществ
RU2473052C1 (ru) Устройство для измерения уровня диэлектрической жидкости в емкости
RU2650605C1 (ru) Способ измерения внутреннего диаметра металлической трубы
RU2698575C1 (ru) Способ измерения положения границы раздела двух веществ в резервуаре
RU2534747C1 (ru) Устройство для измерения физических свойств жидкости в емкости
RU2426099C1 (ru) Устройство для определения концентрации смеси веществ
RU2762058C1 (ru) Устройство для измерения физических свойств диэлектрической жидкости
RU2536184C1 (ru) Концентратомер
RU2661349C1 (ru) Способ определения влагосодержания диэлектрической жидкости
RU2752555C1 (ru) Способ определения положения границы раздела двух жидкостей в резервуаре
RU2761954C1 (ru) Способ измерения физических свойств диэлектрической жидкости
RU2786527C1 (ru) Способ измерения физических свойств жидкости
RU2424508C1 (ru) Устройство для измерения физических свойств жидкости
RU2620780C1 (ru) Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2691288C1 (ru) Способ измерения внутреннего диаметра металлической трубы
WO2014123450A1 (ru) Влагомер
RU2767585C1 (ru) Способ измерения физических свойств диэлектрической жидкости
RU2659569C1 (ru) Способ измерения влагосодержания диэлектрической жидкости
RU2412432C1 (ru) Устройство для измерения физических свойств жидкости
RU2786526C2 (ru) Способ измерения физической величины
RU2626458C1 (ru) Способ измерения физических свойств жидкости