RU2181777C2 - Способ изготовления и термической обработки деталей из магнитомягких сталей магнитных систем электрических реактивных двигателей малой тяги - Google Patents

Способ изготовления и термической обработки деталей из магнитомягких сталей магнитных систем электрических реактивных двигателей малой тяги Download PDF

Info

Publication number
RU2181777C2
RU2181777C2 RU99127630A RU99127630A RU2181777C2 RU 2181777 C2 RU2181777 C2 RU 2181777C2 RU 99127630 A RU99127630 A RU 99127630A RU 99127630 A RU99127630 A RU 99127630A RU 2181777 C2 RU2181777 C2 RU 2181777C2
Authority
RU
Russia
Prior art keywords
parts
magnetic
magnetic systems
vacuum
heat treatment
Prior art date
Application number
RU99127630A
Other languages
English (en)
Other versions
RU99127630A (ru
Inventor
А.Н. Тарасов
Ю.М. Горбачев
В.М. Мурашко
Original Assignee
Федеральное государственное унитарное предприятие Российского космического агентства "Опытное конструкторское бюро "Факел"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие Российского космического агентства "Опытное конструкторское бюро "Факел" filed Critical Федеральное государственное унитарное предприятие Российского космического агентства "Опытное конструкторское бюро "Факел"
Priority to RU99127630A priority Critical patent/RU2181777C2/ru
Publication of RU99127630A publication Critical patent/RU99127630A/ru
Application granted granted Critical
Publication of RU2181777C2 publication Critical patent/RU2181777C2/ru

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

Изобретение относится к металлургии, в частности к изготовлению и термической обработке тонкостенных деталей магнитных систем стационарных плазменных двигателей малой тяги, также оно может найти применение в электротехнике, приборостроении, электронике. Техническим результатом изобретения является улучшение магнитных характеристик деталей и, как следствие, достижение более высоких эксплуатационных характеристик двигателей, а также снижение трудоемкости обработки на всех этапах изготовления тонкостенных деталей магнитных систем. Для достижения технического результата детали магнитных систем, например полюса наружные из листа стали 10880, после механической обработки, абразивноструйной обработки и химникелирования 8...15 мкм отжигали в вакууме при температуре на первой ступени 940...950oС в течение 10 мин и после подстуживания со скоростью 0,5oС/с до 850...860oС выдерживали на второй ступени в течение 120 мин. Охлаждение до 180oС вели со скоростью 70.. . 80oС/ч, а выгрузку из вакуумной камеры проводили при 30oС. Обработка позволила исключить неплоскостность по базовой поверхности, эллипсность по диаметру, а также получить поверхности с высокими прочностными свойствами сцепления напыляемых материалов с основой в случаях зонного одно- или многослойного нанесения эрозионно стойких, коррозионно защитных покрытий и покрытий с заданными оптическими свойствами. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области металлургии, в частности к изготовлению с проведением вакуумной термической обработки деталей магнитных систем стационарных двигателей малой тяги, и может найти применение также в электротехнике, приборостроении, электронике, где используются магнитомягкие стали типа 10880 и электротехническое железо. Известен способ вакуумного отжига сборных, сварных и паяных деталей магнитных систем, включающий нагрев в процессе вакуумного отжига или вакуумной пайки и отжига механически обработанных деталей с соотношением диаметров и толщин 50:1, 70:1 с регламентированными скоростями нагрева и охлаждения от температур 860...1100oС в зависимости от марок сталей и схем армирования корпусов из сталей 10880, сталей 10 и 20, кольцами из сплава с повышенной температурой точки Кюри 18КХ или цельных без пайки и сварки (Tarasov A.N., Murashko V.M., Pridannikov S.Y. Vacuum heat treatment of welded and solderd magnetic circuts//Weldig Inter national 1999, 13(5), s. 409-412, England).
Известен способ изготовления деталей магнитных систем электрических реактивных двигателей малой тяги (ЭРД МТ) из магнитомягкой стали, включающий механическую обработку детали, вакуумный отжиг с нагревом выше точки Кюри, ступенчатое охлаждение с регламентированными скоростями до регламентированных температур в вакуумированном рабочем пространстве печи не ниже 10-1.. .10-2 Па. (RU 2087552C1, C21D8/12, 20.08.1997).
Однако способ недостаточно универсален применительно к магнитопроводам диаметром от 50 до 200 мм при толщинах стенок 1,5...2,5 мм, не исключает деформации и эллипсности по высоте стенок.
При создании изобретения решалась задача улучшения магнитных характеристик в малых и средних магнитных полях, в которых работают магнитопроводы ЭРД МТ, и, как следствие, достижения более высоких эксплуатационных характеристик, надежности и ресурса работы двигателей, при одновременном снижении трудоемкости изготовления и термической обработки на всех операциях изготовления деталей магнитных систем.
Поставленная задача решена за счет того, что в известном способе, включающем механическую обработку, вакуумный отжиг с нагревом выше точки Кюри, ступенчатое охлаждение с регламентированными условиями нагрева в вакуумированном рабочем пространстве печи при вакууме не ниже 10-1...10-2 Па, механическую обработку деталей проводят окончательно или с припуском на доводку по посадочным поверхностям, вакуумный отжиг ведут на первой ступени при температуре на 120-330oС выше точки Кюри, охлаждают со скоростью 0,3-1,5oС/с до температуры на 20-100oС выше точки Кюри, проводят выдержку в течение 60-120 мин и охлаждают детали со скоростью 40-110oС/ч до 180-200oС, затем проводят выгрузку деталей и развакуумирование печи при 30-50oС на воздухе. При изготовлении каркасов катушек и полюсов в процессе вакуумного отжига на их поверхностях формируют коррозионно- и эрозионно стойкие покрытия.
Практическое осуществление способ нашел на деталях ЭРД МТ - полюсах наружных и внутренних, магнитопроводах, катушках намагничивания, изготавливаемых из стали 10880 по ГОСТ 10160-75 из прутков, листов, поковок, штамповок различной конфигурации. Для вакуумной термической обработки использованы двухколпаковые электропечи СГВ-2,4/15-И2, элеваторные ОКБ-8085, малоэнергоемкие СНОЛ-ВНЦ, СШОЛ-ВНЦ. Нанесение химникелевых покрытий проводилось в ваннах, содержащих тиофосфат натрия по технологиям ОСТ 92-1010-77, плазменно-дуговое напыление барьерных покрытий интерметаллидов и керамик проводили на установках УПН-2М, УПУ-М-3Г. Измерение магнитных характеристик проводили на баллистических установках БУ-3 и методом веберметра на установках У-5051 в полях различной напряженности. Оптические терморадиационные свойства поверхностей магнитопроводов после вакуумного отжига измеряли на терморадиометрах и фотометрах ФМ-59 и ТРМ-1.
Изобретение иллюстрируется фотографией магнитной системы ЭРД МТ после ресурсных испытаний (см.чертеж).
Способ осуществляют следующим образом:
Пример 1. Магнитопроводы ЭРД МТ диаметром 70...100...140 мм изготавливали механически, обрабатывая поковки и горячекатанные прутки из стали 10880 в окончательный размер по диаметру и толщине стенки и отжигали в вакууме с автоматическим регулированием режимов по лекалам. Нагрев в вакууме 10-2Па проводили при температуре на 220oС выше температуры точки Кюри при 990oС на первой ступени, затем, после выдержки 60 мин, охлаждали со скоростью 110oС/ч до 180oС, предусматривая для магнитопровода диаметром 70...100 мм подстуживание до 800oС в вакуумной печи. Выгрузку деталей проводили развакуумированием печи при температуре 30...50oС, перенося детали на воздух.
Обработка позволила получить оптимальные магнитные свойства, исключить деформацию тонкостенных 1,2...2,0 мм магнитопроводов по диаметру. Магнитная индукция составляла B50= 0,08...0,10 Тл, B200=0,60...0,80 Тл, B400=1,35... 1,42 Тл, во всех интервалах на 10...15% выше, чем в известном способе. Коэрцитивная сила была в пределах Нс=56...60 А/м, не хуже стандартизованной по ГОСТ 10160-75. Была обеспечена стабильная напряженность магнитного поля всех типоразмеров магнитопроводов ЭРД МТ, улучшены тяговые характеристики.
Пример 2. Полюса наружные толщиной 2,0 мм из стали 10880 механически обрабатывают с классом чистоты Ра=0,65 мкм, наносят покрытие 3Р толщиной 8.. . 15 мкм и отжигают в вакууме на 120oС выше точки Кюри при 890oС в течение 120 мин, а затем охлаждают со скоростью 1,5oС/с до температуры на 20oС выше точки Кюри, 790oС и далее охлаждают садку со скоростью 40oС/ч до 180oС, а развакуумирование и выгрузку на воздух ведут при 30oС.
Практически исключена деформация по плоскости, улучшена прочность соединения с основой до 350...370 МПа, магнитная индукция составляла В100=0,41... 0,43 Тл, В200=1,05...1,15 Тл, при этом трудоемкость сократилась в сравнении с известным способом на 25%, а коэффициент теплового старения улучшился на 30%. Покрытие имело высокую коррозионную стойкость на уровне 1...2 балла стандартной шкалы при испытании в атмосфере 98% влажности.
Пример 3. Каркасы паяные из стали 10880, соединяемые припоем ВПР-4 с основанием из титана ВТ1-0, нагревали в вакууме при температуре 1090oС на 330oС выше точки Кюри и после растекания припоя охлаждали со скоростью 1,5oС/с до температуры 870oС на 100oС выше точки Кюри и после выдержки в течение 75 мин вели охлаждение со скоростью 110oС/ч до температуры 200oС, затем после снижения температуры в колпаке печи СГВ-2,4/15-И2 до 50oС выгружали детали на воздух.
Обработка позволила достичь при снижении энергозатрат в 1,5 раза высоких магнитных характеристик индукции B50 =0,120 Тл, В1000=1,61 Тл, коэрцитивной силы Нc= 70...72 А/м. Одновременно достигались оптимальные значения степени черноты Е=0,70...0,74 и коэффициента поглощения солнечной радиации As=0,64.. .0,65. В сравнении с известным способом были улучшены также прочностные характеристики спая, повысилась вибропрочность соединения магнитопровода, улучшились тяговые характеристики модуля в целом.
Пример 4. Полюса внутренние изготавливали из прутка диаметром 60 мм стали 10880 и после механической обработки наносили слой химникеля 3...5 мкм для улучшения формирования в последующем вакуумном нагреве соединения порошка карбида бора на Ni3P. Вакуумный нагрев проводили при температуре 1050oС на 280oС выше точки Кюри и после выдержки 5 мин охлаждали садку со скоростью 1oС/с до температуры 870oС на 100oС выше точки Кюри и после выдержки в течение 120 мин вели охлаждение со скоростью 70oС/ч до 200oС, далее произвольно до 30oC с выгрузкой на воздух. При этом припуск по опорной поверхности полюса в 20 мкм снимали чистовым шлифованием перед сборкой узла.
Обработка позволила получить детали с высокими магнитными свойствами индукцией B50=0,06 Тл, В100=0,33 Тл, B200=0,82 Тл, В300=1,05 Тл, В400=1,18 Тл при коэрцитивной силе Нc=0,65 А/м и одновременно сформировать твердый эрозионностойкий слой боридов и никельборидов с микротвердостью Н0,5H=1890... 2140, что недостижимо в известном способе изготовления и обработки магнитомягких деталей. В результате повысился ресурс работы детали в 1,5 раза. На чертеже показан внешний вид и характер износа полюсов внутренних и наружных из стали 10880, прошедших вакуумную термообработку по предложенному способу, прошедших все операции изготовления, нанесения покрытий и отжиг. Ресурс работы ЭРД МТ достиг более 7000 ч, улучшилась стабильность работы двигателя.

Claims (2)

1. Способ изготовления деталей магнитных систем электрических реактивных двигателей малой тяги из магнитомягкой стали, включающий механическую обработку детали, вакуумный отжиг с нагревом выше точки Кюри, ступенчатое охлаждение с регламентированными условиями нагрева в вакуумированном рабочем пространстве печи не ниже 10-1-10-2 Па, отличающийся тем, что механическую обработку проводят окончательно или с припуском на доводку по посадочным поверхностям, вакуумный отжиг осуществляют на первой ступени при температуре на 120-330oС выше точки Кюри, охлаждают со скоростью 0,3-1,5oС/с до температуры на 20-100oС выше точки Кюри, проводят выдержку в течение 60-120 мин и охлаждают детали со скоростью 40-110oС/ч до 180-200oС, затем проводят выгрузку деталей и развакуумирование печи при 30-50oС на воздухе.
2. Способ по п. 1, отличающийся тем, что при изготовлении каркасов катушек и полюсов в процессе вакуумного отжига на их поверхностях формируют коррозионно-стойкие и эрозионно-стойкие покрытия.
RU99127630A 1999-12-23 1999-12-23 Способ изготовления и термической обработки деталей из магнитомягких сталей магнитных систем электрических реактивных двигателей малой тяги RU2181777C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99127630A RU2181777C2 (ru) 1999-12-23 1999-12-23 Способ изготовления и термической обработки деталей из магнитомягких сталей магнитных систем электрических реактивных двигателей малой тяги

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99127630A RU2181777C2 (ru) 1999-12-23 1999-12-23 Способ изготовления и термической обработки деталей из магнитомягких сталей магнитных систем электрических реактивных двигателей малой тяги

Publications (2)

Publication Number Publication Date
RU99127630A RU99127630A (ru) 2001-09-20
RU2181777C2 true RU2181777C2 (ru) 2002-04-27

Family

ID=20228761

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99127630A RU2181777C2 (ru) 1999-12-23 1999-12-23 Способ изготовления и термической обработки деталей из магнитомягких сталей магнитных систем электрических реактивных двигателей малой тяги

Country Status (1)

Country Link
RU (1) RU2181777C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014792A1 (en) * 2007-06-12 2009-01-14 Honeywell International Inc. Corrosion and wear resistant coating for magnetic steel
CN101890483A (zh) * 2010-07-23 2010-11-24 哈尔滨工业大学 一种特种合金薄壁构件的制备方法
RU2485661C2 (ru) * 2008-02-08 2013-06-20 Альстом Транспорт Са Способ сборки магнитного полюса и соответствующего ротора
RU2730822C1 (ru) * 2017-07-13 2020-08-26 Ниппон Стил Корпорейшн Электротехнический стальной лист с ориентированной зеренной структурой и способ производства электротехнического стального листа с ориентированной зеренной структурой

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014792A1 (en) * 2007-06-12 2009-01-14 Honeywell International Inc. Corrosion and wear resistant coating for magnetic steel
RU2485661C2 (ru) * 2008-02-08 2013-06-20 Альстом Транспорт Са Способ сборки магнитного полюса и соответствующего ротора
CN101890483A (zh) * 2010-07-23 2010-11-24 哈尔滨工业大学 一种特种合金薄壁构件的制备方法
RU2730822C1 (ru) * 2017-07-13 2020-08-26 Ниппон Стил Корпорейшн Электротехнический стальной лист с ориентированной зеренной структурой и способ производства электротехнического стального листа с ориентированной зеренной структурой

Similar Documents

Publication Publication Date Title
CN101817119B (zh) 铼合金薄板激光焊接方法
US4024617A (en) Method of applying a refractory coating to metal substrate
EP3604565A1 (en) Laser-etched grain-oriented silicon steel resistant to stress relief/annealing and manufacturing method therefor
GB2027508A (en) Joining of structural bomponents
CN105154878B (zh) 一种α-Al2O3阻氢渗透耐腐蚀绝缘层的制备方法
JPS6168888A (ja) 高周波電磁誘導による融解用るつぼとしての冷却ケ−ジ
RU2181777C2 (ru) Способ изготовления и термической обработки деталей из магнитомягких сталей магнитных систем электрических реактивных двигателей малой тяги
EP1466021B1 (en) Cooling plate for a metallurgical furnace and method for manufacturing such a cooling plate
KR940007853B1 (ko) 플레인 베어링용 바이메탈의 제조방법
KR20190097933A (ko) 내면에 다층 피복층을 가지는 파이프 및 이의 제조방법
RU2347106C2 (ru) Электрический реактивный двигатель малой тяги и способ изготовления и термической обработки биметаллических магнитопроводов
TWI295327B (ru)
EP3112496B1 (en) Galling and corrosion resistant internal surface of a aluminum caster steel roll shell
RU99127630A (ru) Способ изготовления и термической обработки деталей из магнитомягких сталей магнитных систем электрических реактивных двигателей малой тяги
RU2314353C1 (ru) Способ изготовления и вакуумной термической обработки паяных деталей из магнитомягких железокобальтовых сплавов
Saoutieff et al. APS deposition of MnCo2O4 on commercial alloys K41X used as solid oxide fuel cell interconnect: the importance of post heat-treatment for densification of the protective layer
RU2020162C1 (ru) Способ изготовления и термической обработки полых магнитопроводов из магнитомягкой стали и титановых сплавов
CN109175693B (zh) 一种钼板的单激光焊接方法
KR102020423B1 (ko) 절연 특성이 우수한 코팅 전기강판 및 이의 제조방법
CN114774822B (zh) 在316l不锈钢表面制备抗高温氧化镀层的方法
CN218494483U (zh) 一种低阻耐腐蚀热力管道结构
RU2087552C1 (ru) Способ обработки деталей магнитных систем
RU2052537C1 (ru) Способ изготовления и термической обработки катодных элементов стационарных плазменных двигателей с рабочим каналом
Tarasov et al. Vacuum heat treatment of steel 10880 with erosion-resistant coatings
EP0066895A1 (en) Method of joining Ni-base heat-resisting alloys