RU2171708C1 - Композиционная неорганическая пористая мембрана - Google Patents

Композиционная неорганическая пористая мембрана

Info

Publication number
RU2171708C1
RU2171708C1 RU2000126424A RU2000126424A RU2171708C1 RU 2171708 C1 RU2171708 C1 RU 2171708C1 RU 2000126424 A RU2000126424 A RU 2000126424A RU 2000126424 A RU2000126424 A RU 2000126424A RU 2171708 C1 RU2171708 C1 RU 2171708C1
Authority
RU
Russia
Prior art keywords
ceramics
substrate
microporous
membrane
pore size
Prior art date
Application number
RU2000126424A
Other languages
English (en)
Inventor
Ф.А. Махмутов
В.Л. Тихмянов
А.А. Ивлев
Е.И. Царева
А.А. Екимцев
Original Assignee
Махмутов Фаниль Ахатович
Тихмянов Владимир Леонидович
Filing date
Publication date
Application filed by Махмутов Фаниль Ахатович, Тихмянов Владимир Леонидович filed Critical Махмутов Фаниль Ахатович
Application granted granted Critical
Publication of RU2171708C1 publication Critical patent/RU2171708C1/ru

Links

Images

Abstract

Изобретение относится к полупроницаемым мембранам, предназначенным для процессов разделения, в частности для очистки загрязненных жидкостей. Композиционная неорганическая пористая мембрана содержит изотропную крупнопористую керамику или металлокерамику, выполняющую роль подложки, толщиной 0,5-10 мм с размерами пор, выбираемыми из диапазона 2,0-50,0 мкм. При этом поры крупнопористой керамики в одном из ее поверхностных слоев на глубину, равную 3,0-30,0 мкм, заполнены микропористой керамикой из диоксида титана, поры которой сформированы с размерами, выбранными из диапазона 0,01-2,0 мкм, с обеспечением отношения среднего размера пор микропористой керамики к среднему размеру пор подложки, выбираемого из диапазона 1:10 - 1:1000. Изобретение позволяет получить механически прочную мембрану при высокой пористости как подложки, так и селективных элементов, обеспечивающих ей высокую производительность и возможность ее многократной химической и/или механической очистки от загрязнений. 3 з.п.ф-лы, 1 табл.

Description

Изобретение относится к полупроницаемым мембранам, предназначенным для процессов разделения, в частности для очистки загрязненных жидкостей. Изобретение может найти широкое применение при изготовлении фильтров различных конструкций, используемых в медицине, биологии, химической, фармацевтической и пищевой промышленности, а также в других отраслях, где требуется микро- и ультрафильтрация жидкостей.
Известен фильтрующий элемент для микро- и ультрафильтрации, содержащий грубопористую подложку и нанесенную на нее тонкопористую мембрану, выполненную в виде спеченного каркаса из неорганических волокон и неорганической неволокнистой матрицы, расположенной внутри упомянутого каркаса. При этом в качестве неорганических волокон используют волокна тугоплавких соединений типа оксидов, или карбидов, или нитридов, а неорганическая неволокнистая матрица выполнена из керамики. (Патент РФ N 2079349, МПК6 B 01 D 69/00, С 04 В 38/00, приоритет от 17.06.94 г., опубл. 20.05.97 г.).
Известна ультра- и нанофильтрационная мембрана с селективным слоем на основе оксидов переходных металлов (Патент РФ N 2088319, МПК6 B 01 D 69/10, 67/00, приоритет 08.06.95, опубл. 27.08.97 г.). Данная мембрана характеризуется тем, что селективный слой нанесен на подложку, состоящую по крайней мере из одного слоя неорганического материала со средним размером пор 0,05 - 0,3 мкм и максимальным размером пор 0,5 - 2,0 мкм.
Недостатком данного фильтрующего элемента является то, что для повышения вязкости золя используют полимерный загуститель, который сужает область использования мембраны. Кроме того, в процессе высушивания и обжига селективного слоя вследствие его усадки и наличия различных сил взаимодействия его с подложкой возможно появление трещин, что повышает процент брака. Сплошной селективный слой существенно к тому же повышает себестоимость мембраны.
Известна композиционная неорганическая пористая мембрана, получаемая на основе ультрадисперсного порошка по способу, описанному в патенте РФ N 2079349, МПК6 В 01 D 69/00, C 04 В 38/00, приоритет от 17.06.94 г., опубл. 20.05.97 г. , которая взята в качестве прототипа. Данная пористая мембрана состоит из крупнопористого проницаемого носителя (подложки) выполненного из керамики или металла, и мелко-дисперсного керамического или металлического слоя, например из оксида титана, нанесенного на одну из поверхностей подложки с частичным заполнением поровых каналов подложки. При этом толщина мелкодисперсного слоя на поверхности подложки составляет около 1 мкм. Мембрану изготавливают путем нанесения слоя мелкодисперсного порошка на подложку, подпрессовки под давлением 0,4 т/см2 его до микронной толщины и последующего отжига.
Недостатком данной мембраны является то, что формирование селективного слоя путем подпрессовки существенно снижает его пористость, а, следовательно, и производительность всей мембраны. Подпрессовка селективного слоя приводит и к повреждению как подложки, так и селективного слоя. Проблематична и возможность формирования подпрессовкой селективного слоя толщиной 1 мкм. К тому же малая толщина селективного слоя не позволяет осуществлять последующую механическую, а равно и химическую очистку мембраны при ее загрязнении, что снижает эффективный срок ее работы.
Задачей настоящего изобретения является повышение механической прочности мембраны при сохранении высокой пористости как подложки, так и селективных элементов, обеспечивающих ей высокую производительность. Обеспечение возможности ее многократной химической и/или механической очистки от загрязнений, что повышает срок ее эффективной работы (ресурс). К тому же заявленная конструкция мембраны позволяет снизить себестоимость ее изготовления за счет уменьшения содержания микропористой керамики при сохранении селективных свойств мембраны в целом.
Поставленная задача достигается тем, что в композиционной неорганической пористой мембране, содержащей изотропную крупнопористую керамику или металлокерамику, выполняющую роль подложки, и микропористую керамику, выполненную из диоксида титана (TiO2), имеющего аморфную структуру, или структуру анатаза, или одновременно обе эти структуры при различном их соотношении, подложка из крупнопористой керамики выполнена толщиной 0,5 - 10,0 мм с размерами пор d, равными 2,0 - 50,0 мкм. При этом поры крупнопористой керамики с одной из ее сторон в поверхностном слое на глубину h, равную 3,0 - 30,0 мкм, заполнены микропористой керамикой, поры которой сформированы с размерами, выбранными из диапазона 0,01 - 2,0 мкм. Отношение среднего размера пор микропористой керамики к среднему размеру пор подложки, выбирается из диапазона 1: 10 - 1:1000. А отношение глубины поверхностного композиционного селективного слоя подложки h к среднему размеру пор крупнопористой подложки d равно 0,5 - 5,0.
Для повышения производительности мембраны и сохранения ее прочностных свойств целесообразно крупнопористую подложку выполнять пористостью 30 - 60%, а микропористую керамику - с пористостью 40 - 70%.
Микропористая керамика может дополнительно содержать 0,002 - 6,0 мас.% металлического серебра.
Заявленная конструкция мембраны позволяет обеспечить ей различную морфологию, а именно в зависимости от назначения сконструировать ее с различной толщиной подложки, пористостью, средними размерами пор как подложки, так и ее композиционного селективного поверхностного слоя.
Например, могут быть сконструированы следующие виды мембран.
Мембраны со средними размерами пор подложки и микропористой керамики, расположенной в порах поверхностного слоя подложки, равными соответственно 20,0 - 50,0 мкм и 1,0 - 2,0 мкм, предназначенные для микрофильтрации и используемые для очистки опресненных жидкостей от вредных частиц.
Мембраны со средними размерами пор подложки и микропористой керамики, расположенной в порах поверхностного слоя подложки, равными соответственно 7,0 - 20,0 мкм и 0,2 - 1,0 мкм, предназначенные для осветляющей фильтрации напитков и биологических жидкостей.
Мембраны со средними размерами пор подложки и микропористой керамики, расположенной в порах поверхностного слоя подложки, равными соответственно 2,0 - 7,0 мкм и 0,01 - 0,2 мкм, предназначенные для стерилизующей фильтрации (бактерий, вирусов).
Перечисленные типы мембран не исчерпывают весь спектр возможных вариантов исполнения мембран фильтрующих элементов.
Заявленная конструкция мембраны прежде всего характеризуется повышенными средними размерами пор подложки для гарантированного обеспечения заполнения их микропористой керамикой. Выполнение подложки с порами менее 2,0 мкм не обеспечивает на технологической стадии ее изготовления гарантированное заполнение их золем микропористой керамики с регулируемой вязкостью на глубину до 3,0 - 30,0 мкм.
Размещение микропористой керамики внутри подложки в порах ее поверхностного слоя прежде всего повышает прочностные свойства так называемого "композиционного селективного слоя", который совместно образуют микропористая и крупнопористая керамики. Кроме того, данное размещение микропористой керамики позволяет осуществлять очистку мембраны от загрязнений без разрушения "композиционного селективного слоя". Минимальная глубина размещения микропористой керамики, равная 3,0 мкм, обусловлена обеспечением нормального функционирования мембраны. Ограничения по максимальной глубине до 30,0 мкм обусловлены повышением сопротивления фильтрации, что существенно снижает производительность мембраны.
Выполнение микропористой керамики с аморфной структурой и/или структурой анатаза позволяет, прежде всего, задать микропористой керамике, размещенной в поверхностных порах подложки, некоторые упругие свойства и обеспечить сцепление ее с частицами материала подложки, что надежно фиксирует ее положение. Кроме того, данные структуры микропористой керамики позволяют формировать поры малого размера с узким распределением. Переход же диоксида титана из структуры анатаза в структуру рутила приводит как к росту размера пор, так и к растрескиванию микропористой керамики, обусловленному повышением ее хрупкости.
Заявленную конструкцию мембраны получают по "золь-гель" технологии.
В качестве крупнопористой подложки могут быть использованы трубки из спеченных оксида алюминия или оксида титана, или трубки или плоские пластины из металлических порошков титана или пористой нержавеющей стали толщиной 0,5 - 10,0 мм и с формируемыми размерами пор из диапазона 2,0 - 50,0 мкм, определяемыми назначением мембраны. Вначале получают стабилизированную коллоидную суспензию. Для приготовления формовочного раствора микропористой керамики к 0,3 моль тетрабутоксититана добавляли 280 мл бутилового спирта. Перемешивание раствора вели при температуре 20 ± 2oC, затем к 280 мл бутилового спирта добавляли при перемешивании 14 мл дистиллированной воды. Водно-спиртовую смесь каплями при непрерывном перемешивании добавляли к раствору тетерабутоксититана. Для пептизации полученного осадка использовали азотную кислоту в количестве 2,7 мл, после этого раствор продолжали перемешивать еще 30 мин. Полученный раствор методом окунания наносили на крупнопористую подложку и выдерживали при комнатной температуре 10 мин. За счет действия капиллярного механизма полученный раствор полностью всасывался порами поверхностного слоя крупнопористой подложки, заполняя их на глубину h = 3,0 - 30,0 мкм, образуя композиционный селективный слой. Далее проводили стадию кальцинирования для достижения необходимого размера пор микропористой керамики, определяемого из диапазона 0,01 - 2,0 мкм.
Отжиг проводили в среде аргона путем нагрева до температуры 400oC со скоростью 0,5oC в минуту. При этом в зависимости от режимов (температурного и состава среды) формирования диоксида титана (TiO2) микропористой керамики ему обеспечивали аморфную (рентгеноаморфную) структуру, или структуру анатаза, или одновременно обе эти структуры при различном их соотношении. При выборе максимальной температуры обжига учитывалось то, что при температуре выше 550 - 620oC диоксид титана переходит в структуру рутила. А процесс фазового перехода приводит к существенному росту диаметра пор. Микропористая керамика приобретает повышенную хрупкость, растрескивается и теряет надежную фиксация с зернами подложки. Кроме того, увеличение температуры обжига приводит и к увеличению распределения пор.
Для придания мембране стерилизационного эффекта в микропористую керамику дополнительно вводят 0,002 - 6,0 мас.% металлического серебра.
Полученные мембраны имели блестящее покрытие без трещин, царапин и отверстий. Они химически устойчивы в течение трех месяцев при pH 2 - 12 и выдерживают многократную термическую стерилизацию, термическую обработку при температуре 500oC, а также кислотно-щелочную мойку традиционными химическими моющими средствами. В случае необходимости при очистке загрязнений может производиться обратная продувка газом. Мембраны долговечны и имеют повышенный ресурс эффективной работы.
Образование в подложке, выполненной из крупнопористой керамики, композиционного селективного поверхностного слоя, поры которого упакованы (заполнены) микропористой керамикой, требует меньшего ее количества по сравнению с мембранами, где селективный слой микропористой керамики размещен на поверхности подложки, образуя самостоятельный сплошной селективный слой. Это существенно удешевляет стоимость мембраны при сохранении ее селективных свойств.
Заявленные мембраны успешно работают при давлении до 60 МПа и температуре до 300oC при производительности до 1000 л/м2•ч•атм.

Claims (4)

1. Композиционная неорганическая пористая мембрана, содержащая изотропную крупнопористую керамику или металлокерамику, выполняющую роль подложки, и микропористую керамику, выполненную из диоксида титана, отличающаяся тем, что диоксид титана микропористой керамики имеет аморфную структуру или структуру анатаза или одновременно обе эти структуры при различном их соотношении, а подложка из крупнопористой керамики выполнена толщиной 0,5-10,0 мм с размерами пор d, выбираемыми из диапазона 2,0 - 50,0 мкм, при этом поры крупнопористой керамики в одном из ее поверхностных слоев на глубину h, равную 3,0 - 30,0 мкм, заполнены микропористой керамикой, поры которой сформированы с размерами, выбранными из диапазона 0,01 - 2,0 мкм, образуя в поверхностном слое подложки композиционный селективный слой.
2. Мембрана по п.1, отличающаяся тем, что отношение среднего размера пор микропористой керамики к среднему размеру пор подложки равно 1 : 10 - 1 : 1000, а отношение глубины поверхностного композиционного селективного слоя h к среднему размеру пор крупнопористой подложки d равно 0,5 - 5,0.
3. Мембрана по п.1, отличающаяся тем, что крупнопористая подложка имеет пористость 30 - 60%, а микропористая керамика имеет пористость 40 - 70%.
4. Мембрана по п.1, отличающаяся тем, что микропористая керамика дополнительно содержит 0,002 - 6,0 мас.% металлического серебра.
RU2000126424A 2000-10-23 Композиционная неорганическая пористая мембрана RU2171708C1 (ru)

Publications (1)

Publication Number Publication Date
RU2171708C1 true RU2171708C1 (ru) 2001-08-10

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616474C1 (ru) * 2015-12-14 2017-04-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" Фильтрующий материал и способ его изготовления
CN117085524A (zh) * 2023-10-07 2023-11-21 安庆市长三角未来产业研究院 一种以无纺布为支撑层的高通量纳滤膜及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616474C1 (ru) * 2015-12-14 2017-04-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" Фильтрующий материал и способ его изготовления
CN117085524A (zh) * 2023-10-07 2023-11-21 安庆市长三角未来产业研究院 一种以无纺布为支撑层的高通量纳滤膜及其制备方法与应用

Similar Documents

Publication Publication Date Title
Amin et al. An overview of production and development of ceramic membranes
KR101501792B1 (ko) 특정 기공 형성제를 이용하여 다공성 지지체 상에 다공성 무기 코팅을 제조하는 방법
EP0381812B1 (en) Sintered coating for porous metallic filter surfaces
JP5937569B2 (ja) ハニカム形状セラミック製分離膜構造体
CN103874536B (zh) 陶瓷过滤器
US5242595A (en) Bacteria removal by ceramic microfiltration
JP2010528835A5 (ru)
JP6046697B2 (ja) ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体
CA2932295A1 (en) Ceramic filter
US10413870B2 (en) Ceramic multilayer filter membrane
Singh et al. Microfiltration membranes
JP6043279B2 (ja) ハニカム形状セラミック製分離膜構造体
Zou et al. Design and efficient construction of bilayer Al2O3/ZrO2 mesoporous membranes for effective treatment of suspension systems
JP2003230823A (ja) セラミックフィルター及び浄水方法
JP2005503261A (ja) 新規の無機ナノろ過膜
Foorginezhad et al. Preparation of low-cost ceramic membranes using Persian natural clay and their application for dye clarification
JPH03284329A (ja) セラミック膜フイルタおよびその製造方法
AU779345B2 (en) Method for the removal of particulate matter from aqueous suspension
JP2007254222A (ja) セラミックス多孔質膜、セラミックスフィルターとその製造方法
RU2171708C1 (ru) Композиционная неорганическая пористая мембрана
JPH03267129A (ja) セラミック膜フイルタ
RU17283U1 (ru) Композиционная неорганическая пористая мембрана
JP2009220039A (ja) 多孔質膜複合構造体および多孔質体における微細孔の製造方法
KR102076733B1 (ko) SiO2 및 TiO2로 표면 개질된 세라믹 분리막의 제조 방법
Hatori et al. Effect of sintering temperature on water-purification performance of Al2O3/3Y-ZrO2 membrane filters