RU2170220C1 - Способ получения углерод-углеродного композиционного материала - Google Patents

Способ получения углерод-углеродного композиционного материала Download PDF

Info

Publication number
RU2170220C1
RU2170220C1 RU99123491/03A RU99123491A RU2170220C1 RU 2170220 C1 RU2170220 C1 RU 2170220C1 RU 99123491/03 A RU99123491/03 A RU 99123491/03A RU 99123491 A RU99123491 A RU 99123491A RU 2170220 C1 RU2170220 C1 RU 2170220C1
Authority
RU
Russia
Prior art keywords
carbon
composite material
temperature
weight
heat
Prior art date
Application number
RU99123491/03A
Other languages
English (en)
Inventor
Н.П. Радимов
ков Ю.К. Чист
Ю.К. Чистяков
Original Assignee
Закрытое акционерное общество "ЭКО-Карбон"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "ЭКО-Карбон" filed Critical Закрытое акционерное общество "ЭКО-Карбон"
Priority to RU99123491/03A priority Critical patent/RU2170220C1/ru
Application granted granted Critical
Publication of RU2170220C1 publication Critical patent/RU2170220C1/ru

Links

Images

Landscapes

  • Braking Arrangements (AREA)

Abstract

Способ относится к области получения углерод-углеродных композиционных материалов. По технологии получения углеродный композиционный материал армирован углеродными волокнами с керамической углеродной матрицей, состоящей из кокса полимерных смол и пироуглерода для придания композиционному материалу фрикционных, эрозионно-стойких и термостойких характеристик на углеродное волокно в виде жгутов, ткани, трикотажа, наносят из газовой фазы защитное (барьерное) покрытие из карбида кремния и/или титана 2,0 - 12,0% от конечного веса УВ по массе. Полученный указанным способом композиционный материал сохраняет прочность до температуры 2500°С, имеет высокие фрикционные характеристики, вес его меньше веса стали и сплавов в пять раз. Материал экологически чист при эксплуатации до температуры 1200°С, что недостижимо для традиционных материалов на основе графита, асбо- и стеклонаполненных композитов, а стоимость его значительно ниже известных аналогов. 1 з.п. ф-лы, 2 табл.

Description

Изобретение относится к области получения конструкционных материалов, которые могут быть использованы в авиационном, автомобильном и железнодорожном машиностроении в качестве фрикционных материалов для изготовления тормозных систем скоростного транспорта.
Тормозные устройства самолетов являются механизмами, в которых кинетическая энергия превращается в тепловую, причем они должны обеспечивать "абсорбционное" торможение, характеризующееся воспроизводимостью условий торможения и полным охлаждением тормозов перед следующим циклом торможения.
Продолжительность торможения самолетов обычно составляет около 20 секунд. При этом на каждый тормоз в большегрузных самолетах приходится тормозное усилие до 7000 л.с., расположение тормоза в колесе самолета не позволяет добиться существенного охлаждения тормозов за счет принудительной вентиляции, поэтому не менее 90% мощности должно быть абсорбировано.
Вследствие этого используемые для тормозов материалы должны обладать жаростойкостью, повышенной механической стойкостью при высоких температурах, особыми фрикционными свойствами (стабильностью, износостойкостью, высокой размеростабильностью, стойкостью к ударным тепловым нагрузкам).
Лучшие теплоабсорбционные свойства имеют бериллий и его сплавы, однако использование этих материалов в качестве фрикционных нежелательно из-за образования токсичного оксида бериллия.
Для использования в качестве фрикционных и теплозащитных материалов наиболее пригодны углерод-углеродные композиционные материалы (У-УКМ), которые обладают небольшой удельной массой, высокой прочностью и стабильностью при высоких и сверхвысоких температурах, а также высокой коррозионной стойкостью.
Известен У-УКМ, содержащий волокнистый наполнитель в виде филаментов углеродных волокон на основе вискозы или ПАН, и коксовую матрицу, представленную в виде пористой пленкообразной структуры коксового остатка. При этом поверхности филаментов и пор коксового остатка пироуглеродом (Пат. РФ 2093494, C 04 B 35/52, 1998 г.).
Недостатком известного материала является его низкая теплостойкость.
Известен У-УКМ, стойкий к окислению, содержащий волокнистый углеродный каркас, наполненный углеродной матрицей, осажденной из газовой фазы в результате пиролиза природного газа при температуре 900-950oC (Пат. РФ 2090497, C 01 B 31/02, 1997 г.).
Недостатком известного материала является его низкая плотность и ограниченная по температуре область применения как теплоизоляционного материала.
Среди У-УКМ, применяемых в изделиях, эксплуатируемых при высоких температурах, особое место занимают карбидокремниевые композиционные материалы, стойкие в окислительной среде.
Известен материал "Сепкарб-2", получаемый с использованием углеродных волокон, на которые перед формованием углепластиковой заготовки наносят пироуглеродное покрытие, а карбид кремния вводят в термореактивное связующее. В итоге получают материал, в коксовой матрице которого присутствуют включения карбида кремния (Пат. Франции 5635773, C 04 B 41/88, 1990 г.).
Недостатком У-УКМ, получаемого по указанной технологии, является то, что карбид кремния, образующийся в матрице, неравномерно распределен по композиционному материалу, в результате чего снижаются его фрикционные и теплозащитные характеристики.
Известен У-УКМ, содержащий углеродное волокно и углеродную матрицу, окруженный неокисляющимся покрытием из пленки карбида кремния, нанесенной путем осаждения из газовой фазы (Пат. Англии 2226306, C 01 B 31/00, 1990 г.). Покрытие наносят на поверхность изделий, подвергающихся действию окислительной среды.
Недостатком материала, полученного таким способом, является то, что карбид кремния наносится в виде защитного (пленочного) покрытия на готовые изделия, а не в массу материала и его работоспособность по теплозащите определяется толщиной покрытия и его адгезией к материалу, что недостаточно для многоразового использования изделия.
Наиболее близким по технической сущности и достигаемому результату является способ получения углерод-углеродного композиционного материала, включающей подготовку пре-прега путем пропитки углеродной ткани на основе вискозного волокна фенолформальдегидным связующим с последующей сушкой, набора пакета пре-прега из 4-х слоев с последующим прессованием и получением углепластиковой заготовки. Полученную заготовку карбонизируют, подвергают пироуплотнению и процессу формирования поровых каналов. Далее заготовку силицируют парами кремния в вакууме при температуре 2000oC. Полученный материал содержит 26-65% Si в порах углеродной матрицы. (Пат. РФ 2084425, C 04 B 35/52, 1997 г.).
Недостатком известного способа является его длительность, многостадийность, сложность аппаратурного оформления вследствие необходимости использования температуры 2000oC. Материал, получаемый известным способом, имеет высокое содержание карбида кремния, что обуславливает низкую ударную прочность изделий из У-УКМ.
Полученный по указанному способу У-УКМ обладает крайне низким значением по модулю упругости (4,0 ГПа) и высокой абразивностью из-за большого содержания в материале карбида кремния и высокого коэффициента трения по стали (0,6-1,0), что значительно снижает его фрикционные характеристики.
Положительным результатом, достигаемым при осуществлении предложенного авторами способа, является упрощение технологии, получение материала с улучшенными физико-механическими и теплозащитными свойствами.
Этот результат достигается тем, что в способе получения У-УКМ, включающем пропитку углеродной ткани связующим с получением пре-прега, изготовление из него углепластиковой заготовки с последующей карбонизацией и пироуплотнением, согласно изобретению углеродную ткань предварительно обрабатывают в газовой среде, содержащей углеводороды, водород, хлорид кремния и/или титана при соотношении компонентов 1:1:0.5-0.6; обработку проводят при температуре 1200-1500oC до увеличения массы углеродной ткани на 2 - 10%, причем проводят не менее двух последовательных обработок.
Сущность предложенного способа заключается в следующем. Физико-механические и теплозащитные характеристики У-УКМ определяются в значительной степени (на 90%) свойствами армирующего наполнителя - углеродных волокон.
Поэтому, нанося слои карбида кремния или титана или их смеси на филаменты волокон, получают далее материал с более высокими упруго-прочностными характеристиками и повышенной термостойкостью.
Углеродные волокна (УВ) наряду с комплексом уникальных свойств (высокие прочностные и упругие характеристики, а также хемостойкость, малая плотность) обладают существенным недостатком - активно окисляются на воздухе начиная с температуры 300oC со снижением физико-механических свойств, что существенно ограничивает области их использования как в чистом виде, так и в качестве армирующих волокон с металлической и керамической матрицей.
С целью повышения термоокислительной устойчивости углеродных волокон и лучшей реализации их свойств на их поверхность (каждого филамента) наносят защитное (барьерное) покрытие. Наиболее перспективными выбраны нами карбиды тугоплавких металлов и пироуглерод (ПУ).
По технологии нанесения и коэффициенту линейного термического расширения (КЛТР) экспериментально выбраны карбиды кремния и титана, они наиболее термостойки и имеют хорошую адгезию к поверхности углеродного волокна. Выбранные химические реагенты - хлориды кремния и титана представляют собой бесцветные жидкости с невысокой температурой кипения (57 Си 136oC соответственно), что позволяет значительно снизить температуру процесса газофазного осаждения при нанесении покрытия, основанного на реакции восстановления водородом галогенидов (хлоридов) тугоплавких металлов в среде природного газа.
Температура процесса газофазного нанесения покрытий карбида кремния и титана составляет 1200-1400oC.
Исследования барьерных покрытий на УВ методом растровой электронной микроскопии показало, что наиболее эффективным является многокомпонентное покрытие из двух и более тонких слоев. В таких покрытиях сочетаются наилучшие качества каждого из слоев и исключается развитие сквозных трещин и других дефектов, что усиливает эффективность защиты углеродного волокна от окисления.
В качестве подложки для нанесения барьерных защитных покрытий были использованы УВ различных текстильных структур (жгуты, ленты, ткань, трикотаж), полученных на основе ПАН-волокон и ГЦ- волокон (вискозы).
Режим обработки углеродного волокна способствует образованию защитного покрытия из карбидов на каждом филаменте исходного углеродного волокна, не нарушая его текстильную структуру. Образование защитного покрытия имеет хорошую адгезию к полимерным смолам и защищает поверхность углеродного волокна от воздействия деструктирующих химических процессов при образовании кокса матрицы, а также повышает термостойкость волокна и композита, особенно эффективной является бикомпонентное покрытие карбида кремния и титана.
Пример
Углеродную ткань в виде полотна, полученную из вискозного волокна, пропускают через термическую зону электропечи в течение 15 минут при температуре 1200-1500oC. В реакционную зону подают газовую смесь, содержащую углеводород, водород и хлорид кремния, взятых в соотношении 1:1:0.5-0.6. Получают ткань с приращением массы на 2-10% за счет осаждения на филаментах волокна слоя карбида кремния.
Второй слой формируют из карбида титана путем вторичной обработки полученной ткани в газовой фазе, содержащей углеводород, водород и хлорид титана, взятых в соотношении 1:1:0.5.
Получают ткань с общим приращением массы 12%, которую далее используют для получения пре-прега. Ее пропитывают раствором поликонденсата фенольной смолы и отверждают. Набирают пакет из слоев пре-прега, подвергают его горячему контактному прессованию при температуре 200±50oC с получением углепластиковой заготовки, которую карбонизируют в инертной или восстановительной среде при температуре 1000±100oC.
Карбонизированную заготовку уплотняют пироуглеродом при термическом разложении природного газа при температуре 1200oC. При этом за 48 часов наносится до 20% пироуглерода.
Полученный таким образом У-УКМ содержит 55% углеродного волокна, 12% покрытия из карбидов кремния и титана, 20% кокса матрицы и 13% пироуглерода. Свойства У-УКМ, полученного по предложенной технологии, приведены в таблице в сравнении со свойствами материала по прототипу, а также материала "Сепкарб-2".
Таким образом, предложенным способом получают материал, работоспособный до температуры 1600oC в окислительной среде в течение 100 часов и до температуры 1850oC в течение 10 часов. Эти качества позволяют использовать материал в качестве фрикционного в тормозных колодках, узлах трения с рабочей температурой до 1000oC, жаропрочного материала в тепловых экранах, нагревателях, деталях теплообменников до температуры 1200oC, конструкционного электропроводящего материала в прессформах для горячего прессования до температуры 2600oC, жаропрочных эрозионно-стойких материалов в тепловой защите аэрокосмических аппаратов до температуры 3500oC.
Полученный по предлагаемому способу У-УКМ обладает целым комплексом уникальных свойств: высокая термостойкость, низкая плотность (1,4-1,6 г/см.куб. ), высокими упруго-прочностными и фрикционными характеристиками, что делает их перспективными для применения в качестве фрикционных материалов для изготовления тормозных систем самолетов, автомобилей, скоростных электропоездов и мотоциклов.
Материал экологически чист при эксплуатации до температуры 1200oC, что недостижимо для традиционных материалов на основе графита, асбо- и стеклонаполненных композитов, а фрикционные изделия из термостойкой керамики в два-три раза дороже.

Claims (2)

1. Способ получения углерод-углеродного композиционного материала, включающий пропитку углеродного волокнистого материала полимерным связующим с получением препрега, изготовления из него углепластиковой заготовки с последующей карбонизацией в восстановительной или инертной среде, газофазное уплотнение пироуглеродом, отличающийся тем, что углеродный волокнистый материал предварительно обрабатывают в газовой среде, содержащей углеводороды, водород, хлорид кремния и/или титана в соотношении компонентов 1 : 1 : 0,5 - 0,6, обработку проводят при температуре 1200 - 1400°С до увеличения массы углеродной ткани на 2-12%.
2. Способ по п.1, отличающийся тем, что в качестве углеродного волокнистого материала используют жгуты, ленты, ткань, трикотаж, углеродные волокна.
RU99123491/03A 1999-11-09 1999-11-09 Способ получения углерод-углеродного композиционного материала RU2170220C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99123491/03A RU2170220C1 (ru) 1999-11-09 1999-11-09 Способ получения углерод-углеродного композиционного материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99123491/03A RU2170220C1 (ru) 1999-11-09 1999-11-09 Способ получения углерод-углеродного композиционного материала

Publications (1)

Publication Number Publication Date
RU2170220C1 true RU2170220C1 (ru) 2001-07-10

Family

ID=20226704

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99123491/03A RU2170220C1 (ru) 1999-11-09 1999-11-09 Способ получения углерод-углеродного композиционного материала

Country Status (1)

Country Link
RU (1) RU2170220C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486163C2 (ru) * 2011-08-05 2013-06-27 Вячеслав Максимович Бушуев Способ изготовления изделий из керамоматричного композиционного материала
RU2559245C1 (ru) * 2014-07-21 2015-08-10 Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" Способ изготовления изделий из керамоматричного композиционного материала
RU2568733C2 (ru) * 2014-04-18 2015-11-20 Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" Углерод-углеродный композиционный материал и способ изготовления из него изделий
RU2753654C1 (ru) * 2020-09-02 2021-08-19 Акционерное Общество "Наука И Инновации" Способ получения высокопористого открытоячеистого углеродного материала
RU2768291C2 (ru) * 2017-06-13 2022-03-23 Сафран Серамикс Способ получения детали из композитного материала

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486163C2 (ru) * 2011-08-05 2013-06-27 Вячеслав Максимович Бушуев Способ изготовления изделий из керамоматричного композиционного материала
RU2568733C2 (ru) * 2014-04-18 2015-11-20 Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" Углерод-углеродный композиционный материал и способ изготовления из него изделий
RU2559245C1 (ru) * 2014-07-21 2015-08-10 Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" Способ изготовления изделий из керамоматричного композиционного материала
RU2768291C2 (ru) * 2017-06-13 2022-03-23 Сафран Серамикс Способ получения детали из композитного материала
RU2753654C1 (ru) * 2020-09-02 2021-08-19 Акционерное Общество "Наука И Инновации" Способ получения высокопористого открытоячеистого углеродного материала
WO2022050867A1 (ru) * 2020-09-02 2022-03-10 Акционерное Общество "Наука И Инновации" Способ получения высокопористого открытоячеистого углеродного материала

Similar Documents

Publication Publication Date Title
US7374709B2 (en) Method of making carbon/ceramic matrix composites
US4029829A (en) Friction member
JP4226100B2 (ja) 炭素繊維強化複合材料及びその製造方法
US20080090064A1 (en) Carbon-carbon friction material with improved wear life
US7384663B2 (en) Method of making a three-dimensional fiber structure of refractory fibers
JP2002519277A (ja) フタロニトリル樹脂から誘導される炭素基質複合材
GB2053873A (en) High temperature thermal insulation material and method for making same
JPH08157273A (ja) 一方向性炭素繊維強化炭素複合材料及びその製造方法
US5773122A (en) Reinforced carbon composites
US5096519A (en) Process for preparation of carbon fiber composite reinforced carbonaceous material
CN106699210A (zh) 一种碳陶制动件及其制备方法
RU2170220C1 (ru) Способ получения углерод-углеродного композиционного материала
EP2111382B1 (en) Improvements in or relating to brake and clutch discs
JP3520530B2 (ja) 炭素繊維強化炭素複合材および摺動材
Kebede Carbon-carbon composite application areas and limitations
KR102492434B1 (ko) 다층 코팅이 적용된 내산화성 탄소 복합재 제조방법 및 이에 의해 제조된 내산화성 탄소 복합재
JPH0292886A (ja) 耐酸化性を有する炭素繊維強化複合材料の製造法
JPH0532457A (ja) 炭素繊維強化炭素複合材料及びその製造方法
KR100242963B1 (ko) 마찰재용 탄소-탄소 복합재료 및 그 제조방법
JPH0426547A (ja) 炭素―炭素複合材の製造方法
JPH01212277A (ja) 炭素/炭素複合材料の製造法
JPH04165130A (ja) ブレーキ用摩擦材料
JPH11335182A (ja) 炭素繊維強化炭素複合材料からなるブレーキ用材料
JPH10219002A (ja) 炭素系湿式摩擦材の製造方法
JPH02271963A (ja) 耐熱酸化性炭素繊維強化炭素複合材料の製造法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20031110