RU2163228C2 - Способ химической инфильтрации из паровой фазы с переменными параметрами инфильтрации - Google Patents

Способ химической инфильтрации из паровой фазы с переменными параметрами инфильтрации Download PDF

Info

Publication number
RU2163228C2
RU2163228C2 RU97118472/03A RU97118472A RU2163228C2 RU 2163228 C2 RU2163228 C2 RU 2163228C2 RU 97118472/03 A RU97118472/03 A RU 97118472/03A RU 97118472 A RU97118472 A RU 97118472A RU 2163228 C2 RU2163228 C2 RU 2163228C2
Authority
RU
Russia
Prior art keywords
infiltration
change
gas phase
value
substrate
Prior art date
Application number
RU97118472/03A
Other languages
English (en)
Other versions
RU97118472A (ru
Inventor
Лелюан Жан-Люк
Домблид Жан-Люк
Дельперье Бернар
Тебо Жак
Туссэн Жан-Мари
Original Assignee
Сосьете Насьональ Д'Этюд э де Констрюксьон де Мотер Д'Авиасьон "СНЕКМА"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9477870&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2163228(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Сосьете Насьональ Д'Этюд э де Констрюксьон де Мотер Д'Авиасьон "СНЕКМА" filed Critical Сосьете Насьональ Д'Этюд э де Констрюксьон де Мотер Д'Авиасьон "СНЕКМА"
Publication of RU97118472A publication Critical patent/RU97118472A/ru
Application granted granted Critical
Publication of RU2163228C2 publication Critical patent/RU2163228C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Изобретение относится к изготовлению изделий из композиционного материала, состоящего из пористой волокнистой подложки или заготовки, уплотненной матрицей, в частности деталей из углерод-углеродного композиционного материала или изделий из композиционного материала с керамической матрицей. Между началом и концом процесса химической инфильтрации из паровой фазы модифицируют условия инфильтрации, изменяя по меньшей мере один из параметров инфильтрации, в том числе время пребывания газовой фазы в оболочке, давление, температуру, содержание предшественника в газовой фазе и содержание возможной добавки в газовой фазе таким образом, чтобы приспособить условия инфильтрации к изменению порометрии подложки. Способ позволяет контролировать микроструктуру материала, осаждаемого внутрь подложки, и сохранить неизменную микроструктуру. 1 с. и 7 з.п. ф-лы, 9 табл.

Description

Настоящее изобретение касается способа химической инфильтрации материала из паровой фазы внутрь пористой подложки.
Областью применения изобретения является изготовление изделий из композиционного материала, состоящего из пористой волокнистой подложки или заготовки, уплотненной матрицей, в частности деталей из углерод-углеродного композиционного материала (заготовка из углеродных волокон и углеродная матрица) или изделий из композиционного материала с керамической матрицей (КМКМ).
Углерод-углеродные композиционные материалы и КМКМ используют в различных областях, в которых эксплуатируют их термоструктурные свойства, то есть очень хорошие механические свойства, позволяющие создавать сильно напряженные структурные элементы, и способность сохранять эти механические свойства вплоть до относительно высоких температур. Так обстоит дело, например, в космической области, в частности для панелей тепловой защиты или сопел двигателей, в области авиации, например для деталей реактивных двигателей самолетов, и в области трения, в частности для тормозных дисков самолетов.
Химическая инфильтрация материала в пористую подложку из паровой фазы заключается в помещении подложки внутрь оболочки и обеспечении диффузии внутрь доступных внутренних пор подложки газовой фазы, содержащей, по меньшей мере, один газообразный предшественник материала, при котором, в частности, температуры и давления внутри оболочки, чтобы во всем объеме подложки из предшественника образовался осадок. Предшественником углерода может быть алкан, алкил, алкен, дающий при разложении пироуглерод. Для химической инфильтрации из паровой фазы керамического материала осуществляют диффузию газовой фазы, содержащей одно или несколько газообразных веществ, дающих желаемый керамический материал при разложении или в результате химической реакции между собой. Так, например, химическая инфильтрация из паровой фазы карбида кремния (SiC) может быть получена с помощью газовой фазы, содержащей метилтрихлорсилан (МТС), в присутствии газообразного водорода (H2). Газообразные вещества, являющиеся предшественниками других керамических материалов, таких как карбиды, нитриды или оксиды, хорошо известны специалистам.
Существует несколько способов инфильтрации из газовой фазы, в частности изотермически-изобарные способы и изобарные способы с градиентом температуры.
В изотермически-изобарных способах уплотняемые подложки ежеминутно поддерживают при одинаковой температуре во всем их объеме и при одинаковом давлении. Неудобство этого способа заключается в невозможности на практике осуществления равномерного уплотнения. В самом деле, материал матрицы имеет тенденцию осаждаться преимущественно внутри пор, близких к наружной поверхности подложки. Постепенное закупоривание поверхностных пор делает доступ газовой фазы внутрь материала все более и более трудным, что в результате приводит к возникновению градиента уплотнения между поверхностью и серединой материала. Можно, конечно, один или несколько раз обработать поверхность или зачистить подложку в процессе уплотнения, чтобы вновь открыть поверхностную систему пор. Но это требует прерывания процессов на время, необходимое для извлечения подложки из установки для уплотнения, ее охлаждения, зачистки, повторного введения подложки в устройство и возвращения к нужной температуре.
Способ химической инфильтрации с градиентом температуры позволяет в значительной мере ограничить вышеупомянутое неудобство изотермического способа. Между внутренней частью подложки, более горячей, и поверхностью подложки, подвергающейся воздействию газовой фазы, устанавливается разность температур. В этом случае материал матрицы осаждается преимущественно во внутренней, более горячей части. Регулируя температуру поверхности подложки таким образом, чтобы она была ниже порога разложения или реакции газовой фазы, по меньшей мере в течение первой части процесса уплотнения, можно сделать так, чтобы фронт уплотнения по мере развития процесса постепенно перемещался от внутренней части к поверхности подложки. Известным способом градиент температуры может быть получен путем размещения одной или нескольких подложек вокруг воспринимающего элемента, связанного с катушкой индуктивности, таким образом, что внутренняя поверхность подложки или подложек контактирует с воспринимающим элементом. Градиент температуры может быть также получен за счет прямой индуктивной связи с подложкой в ходе уплотнения, когда природа подложки это позволяет. Эти способы описаны, например, во французской заявке на патент 2711647 и американской заявке на патент 5348774. В последней заявке нагрев подложек осуществляют одновременно за счет связи с воспринимающим элементом и за счет прямой связи с подложками по мере того, как перемещается вперед фронт уплотнения. Чтобы следить за развитием процесса уплотнения, предусмотрены приспособления для непрерывного измерения изменения массы подложек. В зависимости от измеренного изменения массы процесс может быть оптимизирован, в особенности что касается его длительности, путем воздействия на параметры уплотнения, особенно мощность, подаваемую на катушку индуктивности. Наблюдение за изменением массы подложек позволяет также определить окончание процесса уплотнения. Конечно, способ с градиентом температуры позволяет получить менее неоднородное уплотнение по сравнению с изотермическим способом, но он может быть использован только для подложек особой формы, особенно кольцевых подложек.
Каков бы ни был используемый способ уплотнения, микроструктура материала, осаждаемого внутрь подложки, зависит от условий, в которых осуществляют химическую инфильтрацию из паровой фазы. В случае, например, пироуглерода, изменяя эти условия инфильтрации, можно, в частности, получить пироуглерод разных типов: слоистый гладкий, слоистый темный, слоистый шероховатый или изотропный. Микроструктура пироуглерода является важной характеристикой, касающейся свойств уплотненной подложки. Таким образом, в случае изделий из углерод-углеродного композиционного материала часто стремятся получить микроструктуру типа слоистой шероховатой, в частности, по причине ее способности к графитизации при термообработке. Контроль микроструктуры материала, осажденного внутрь подложки, в равной степени важен для материала керамического типа.
В случае изотермических способов уплотнения было установлено, что несмотря на начальную фиксацию параметров инфильтрации, способных дать осадок желаемой микроструктуры, эта последняя могла изменяться в ходе процесса уплотнения. Трудность сохранения однородной микроструктуры наблюдалась, в особенности, при уплотнении толстых подложек, таких как волокнистые заготовки толщиной более 5 см.
Та же самая трудность существует также в способах уплотнения с градиентом температуры, который создается либо за счет индуктивной связи с воспринимающим элементом, контактирующим с подложками, либо за счет прямой индуктивной связи с подложками.
Настоящее изобретение имеет целью устранить это неудобство и предложить способ химической инфильтрации из паровой фазы, позволяющий уплотнять пористую подложку материалом с контролируемой микроструктурой.
Эта цель достигается благодаря тому, что в соответствии с изобретением между началом и концом процесса химической инфильтрации из паровой фазы модифицируют условия инфильтрации, изменяя, по меньшей мере, один из параметров инфильтрации, в том числе время пребывания газовой фазы в оболочке, давление, температуру, содержание предшественника в газовой фазе и содержание возможных добавок в газовой фазе, таким образом, чтобы приспособить условия инфильтрации к эволюции порометрии подложки, чтобы контролировать микроструктуру материала, осаждаемого внутрь подложки.
Предшественник обозначает здесь компонент или компоненты газовой фазы, который в выбранных операционных условиях приводит к осаждению желаемого материала внутрь подложки.
В случае осаждения пироуглерода, как уже указано, предшественниками являются, в частности, алканы, алкилы и алкены. Добавка обозначает здесь компонент или компоненты газовой фазы, который обеспечивает функцию активации осаждения углерода из предшественника в выбранных операционных условиях. Добавка может также представлять собой предшественник. Так, в газовой смеси, содержащей, например, метан и пропан (оба являются предшественниками), пропан играет роль добавки, когда температура равна приблизительно 1000oC, а давление равно приблизительно 1,3 кПа. Другие добавки, не обязательно предшественники, могут быть использованы вместо пропана или с пропаном в качестве активаторов для газов, менее реакционноспособных в вышеупомянутых условиях инфильтрации (например, для увеличения реакционной способности метана). При более высоких температурах и давлениях, например, при температуре приблизительно 1100oC и давлении приблизительно 6,5 кПа (50 Торр), метан играет роль предшественника без необходимости присутствия добавки.
Под порометрией здесь подразумевают то, что характеризует пористость подложки и, более конкретно, форму пористости. Например, она немедленно покажет специалисту, что сильно пористая подложка, но со слабо сообщающимися порами, может чувствительно поставить те же самые проблемы уплотнения, что и слабо пористая подложка, но с сильно сообщающимися порами, при этом порометрии будут рассматриваться как подобные.
В технологии обычной практикой является осуществление процессов химической инфильтрации из паровой фазы с предварительно заданными параметрами инфильрации от начала до конца процесса независимо от порометрии подложки. Это характерно, в частности, для изотермически-изобарных процессов. Параметры инфильтрации обычно выбирают такими, чтобы получить желаемую конечную плотность, что заставляет продолжать уплотнение настолько, насколько возможно в конце процесса по отношению к потребности, несмотря на то что порометрия наиболее неблагоприятна для диффузии газовой фазы в середину подложки. Это приводит к необходимости выбирать, например, температуру и содержание предшественника несколько повышенными, соответствующими порометрии в процессе завершающей фазы уплотнения.
В способах типа с градиентом температуры в ходе уплотнения безусловно существует разность температур между внутренней зоной подложки и наружными поверхностями подложки, при этом фронт уплотнения постепенно перемещается изнутри подложки к поверхности. Тем не менее, аналогично изотермическому способу, температуру в зоне уплотнения контролируют и точно поддерживают постоянной на оптимальной величине, определенной для оптимума уплотнения.
Заявителем неожиданно было установлено, что химическая инфильтрация из паровой фазы, осуществляемая с повышенным содержанием предшественника в течение всего процесса инфильтрации, то есть при гораздо более высоком содержании, чем обычно используется, приводит к образованию осадка с постоянной микроструктурой. Однако, и особенно в изотермических способах, тогда появляется, и это не является неожиданным, сильный градиент уплотнения, при этом уплотнение подложки в середине значительно менее заметно, чем вблизи поверхности. Этот градиент уплотнения тем более значителен, чем выше температура инфильтрации.
Или, если контролируемая микроструктура осадка необходима в соответствии с ожидаемыми свойствами уплотненной подложки, с этой целью также совершенно необходимо минимизировать неоднородность уплотнения между серединой и поверхностью подложки.
Постепенная регулировка параметров инфильтрации в течение всего процесса уплотнения в зависимости от изменения порометрии подложки отвечает этим требованиям. Кроме того, по сравнению с известными способами с фиксированными параметрами, она приводит к значительному выигрышу в общей продолжительности уплотнения.
Изменение условий инфильтрации, когда хотят сохранить постоянную микроструктуру, предпочтительно осуществляют путем изменения по меньшей мере содержания предшественника и/или добавки от первой величины в начале процесса инфильтрации до второй величины, меньшей первой, в конце процесса инфильтрации.
Для содержания основного предшественника и/или добавки в ходе процесса выбирают максимально возможную величину. Таким образом, например в случае изотермического уплотнения пироуглеродом, путем химической инфильтрации из паровой фазы, исходя из газовой фазы, содержащей смесь метана или природного газа и пропана, содержание пропана, который одновременно является основным предшественником и добавкой, может изменяться от величины, предпочтительно по меньшей мере равной 20%, которая является самой высокой величиной, используемой в начале процесса, до величины, предпочтительно заключенной между 6% и 20%, которая является наименьшей величиной, используемой в конце процесса. Содержание здесь измеряют в объемных процентах в газовой фазе. Выбор величины больше 35% для самого высокого объемного содержания пропана, используемого в начале процесса, не представляет интереса, так как при этом наблюдается только очень небольшое ускорение кинетики осаждения.
Для сохранения постоянной микроструктуры могут быть изменены другие параметры, при этом содержание предшественника может быть постоянным или непостоянным. Так обстоит дело с температурой и давлением. Таким образом, по-прежнему в случае изотермического уплотнения с газовой фазой, содержащей смесь метана или природного газа и пропана, чтобы получить микроструктуру типа слоистой шероховатой, температура уплотнения может быть уменьшена от первой величины, например, по меньшей мере равной приблизительно 1020oC, до второй величины, меньшей первой, и, например, заключенной приблизительно между 950oC и 1020oC, причем эту вторую величину выбирают такой, чтобы кинетика осаждения не была бы слишком медленной, при этом пороговая величина температуры осаждения в этом примере равна приблизительно 860oC. По-прежнему в том же самом примере давление может быть уменьшено от первой величины, например, по меньшей мере равной 2,5 кПа, до второй величины, меньшей первой, и, например, заключенной приблизительно между 0,5 кПа и 2 кПа, и затем вновь увеличено до третьей величины, например, больше 3 кПа.
Можно также изменять время пребывания газовой фазы. В случае, когда введение газовой фазы в оболочку, в которую помещена подложка, и извлечение остаточных газов из этой оболочки осуществляют непрерывно, время пребывания считают как среднее время истечения газа между доступом в оболочку и выходом из нее, то есть время пребывания в горячей части устройства; время пребывания зависит в таком случае от расхода газовой фазы и объема, который она может занимать в оболочке (функция температуры, давления, объема подложек и т.д.). В случае, когда инфильтрацию осуществляют импульсным методом, то есть последовательными циклами, каждый из которых состоит из впуска определенного количества газовой фазы в оболочку и извлечения остаточных газов путем создания в оболочке вакуума, время пребывания представляет собой время, которое проходит между началом впуска и началом извлечения. Преимущественно, если осуществляют изменение времени пребывания газовой фазы в ходе процесса инфильтрации, то это изменение происходит в направлении увеличения.
Изменение одного или нескольких параметров инфильтрации может быть осуществлено непрерывно в течение всего процесса инфильтрации или его части или прерывисто.
Процесс инфильтрации может быть разделен на несколько последовательных стадий, отделенных друг от друга, известным способом, операцией зачистки, которая, как уже указывалось, заключается в осуществлении обработки поверхности с целью удаления поверхностного осадка для того, чтобы вновь полностью открыть доступ газовой фазы во внутренние поры подложки. В этом случае изменение параметров инфильтрации может быть осуществлено прерывистым способом с установлением нового набора значений параметров для новой стадии уплотнения. Изменение параметров не происходит обязательно на каждой новой стадии.
Отмечают, кроме того, что настоящее изобретение может быть использовано со способами химической инфильтрации из паровой фазы различных типов, такими как изотермические-изобарные способы и способы с градиентом температуры.
Отмечают также, что контроль микроструктуры осадка может заключаться не только в поддержании однородной микроструктуры во всей осаждаемой матрице, это то, к чему будут чаще всего стремиться, но также в целенаправленном изменении микроструктуры в ходе процесса уплотнения.
Таким образом, если рассматривают, например, случай уплотнения, типа с градиентом температуры, пироуглеродом, полученным из газовой фазы, содержащей смесь метана или природного газа и пропана, различные микроструктуры пироуглерода могут быть последовательно осаждены, изменяя параметры инфильтрации. В этом примере приведенная ниже таблица 1 показывает диапазоны значений параметров инфильтрации, которые годятся для получения пироуглеродов слоистого шероховатого типа, слоистого темного типа и слоистого гладкого типа.
Условия осаждения, указанные в приведенной выше таблице для пироуглерода слоистого гладкого типа, годятся также для случая изотермического уплотнения. Сохранение гладкой слоистой микроструктуры, постоянной во всем осадке, может в таком случае потребовать изменения одного или нескольких параметров в указанных диапазонах в ходе процесса уплотнения.
Далее для сведения, но не в качестве ограничивающих объем изобретения, приводятся примеры осуществления способа согласно изобретению.
Пример 1
Пористую подложку, представляющую собой волокнистую заготовку из углеродных волокон, получают следующим образом. Слои ткани 250 мм х 250 мм из предварительно окисленных полиакрилонитрильных (ПАН) волокон разрезают и накладывают друг на друга, соединяя их между собой, путем сшивания. Сшивание осуществляют по мере того, как образуется заготовка, при этом каждый слой пришивают на нижележащую структуру, сохраняя чувствительно одинаковую плотность сшивания во всей заготовке, как это описано, в частности, во французской заявке на патент 2584106.
Полученную таким образом заготовку подвергают термообработке, чтобы превратить предварительно окисленный ПАН в углерод, а затем уплотнению путем химической инфильтрации, помещая заготовку в реакционную камеру печи, используемой для инфильтрации. Процесс инфильтрации изотермического типа осуществляют в четыре стадии. В конце каждой стадии и перед началом следующей стадии заготовку извлекают из печи, чтобы подвергнуть ее операции зачистки, заключающейся в удалении пироуглерода, отложившегося на поверхности заготовки, чтобы вновь открыть доступ к ее внутренним порам и способствовать продолжению уплотнения.
Газовая фаза, вводимая в реакционную камеру, представляет собой смесь природного газа (главным образом метана) и пропана, непрерывно циркулирующую между входом и выходом камеры. Время пребывания газовой фазы в камере приблизительно равно 1 с, давление в камере поддерживают на значении около 1,3 кПа (10 Торр). В течение каждой стадии процесса инфильтрации температуру поддерживают постоянной и равной приблизительно 980oC.
Изменение условий инфильтрации направлено только на параметр, который представляет собой содержание пропана (основной предшественник углерода и добавка) в газовой фазе.
Таблица 2, приведенная ниже, показывает для каждой из четырех стадий процесса инфильтрации продолжительность стадии и содержание пропана в объемных процентах в смеси природный газ-пропан.
Содержание пропана изменяют прерывисто, переходя от 20% во время I стадии, к 6% во время IV стадии.
В конце процесса инфильтрации относительный прирост массы заготовки, то есть отношение между увеличением ее массы и ей начальной массой, равен 220%. Исследование разреза, сделанного в уплотненной заготовке, показывает чувствительно однородную микроструктуру, типа слоистой шероховатой, вплоть до середины заготовки.
Пример 2
Используют заготовку, идентичную заготовке примера 1. Инфильтрацию пироуглерода осуществляют также в четыре стадии, разделенные зачистками, используя газовую фазу, представляющую собой смесь природного газа и пропана. Время пребывания газовой фазы приблизительно равно 1 сек, давление приблизительно равно 1,3 кПа.
Изменение условий инфильтрации направлено здесь на два параметра: температуру и содержание пропана и осуществляется непрерывным образом. Таблица 3, приведенная ниже, показывает, для каждой из стадий I-IV процесса инфильтрации, продолжительность, температуру в начале стадии, температуру в конце стадии, содержание пропана в начале стадии и содержание пропана в конце стадии. Отмечают, что температура непрерывно изменяется только во время стадий I и II, в то время как содержание пропана непрерывно изменяется только во время стадий III и IV. Изменение температуры между ее самой большой величиной (1050oC) и ее самой низкой величиной (980oC) осуществляют точно линейно. Так же линейно изменяют содержание пропана между его самой большой величиной (20 об. %) и его самой низкой величиной (10 об.%). Отмечают, что процесс изотермического типа, так как температура в каждое мгновение одинакова во всей заготовке.
К концу процесса инфильтрации относительный прирост массы равен приблизительно 220%. Уплотнение вплоть до середины заготовки имеет точно те же самые характеристики, что и констатированные в примере 1, но общая продолжительность процесса уплотнения определенно уменьшена.
Пример 3 (сравнительный пример)
Используют заготовку, идентичную заготовке примера 1. Уплотнение пироуглеродом осуществляют в четыре стадии продолжительностью соответственно 500 ч, 500 ч, 400 ч и 400 ч, разделенные зачистками. Условия инфильтрации поддерживают неизменными в течение всего процесса инфильтрации, а именно газовая фаза представляет собой смесь природного газа и пропана с объемным содержанием пропана 6%, время пребывания газовой фазы составляет приблизительно 1,8 с, давление равно 1,5 кПа и температура равна 980oC.
Эти параметры, как и продолжительности стадий инфильтрации, имеют оптимальные значения, такие, которые были определены заявителем при осуществлении классического процесса химической инфильтрации из паровой фазы, то есть с постоянными параметрами, обеспечивающими уплотнение, аналогичное уплотнению, полученному в примерах 1 и 2. Относительный прирост массы тот же самый (220%), но микроструктура пироуглерода отнюдь не является однородной.
Констатируют значительную выгоду, приносимую настоящим изобретением в промышленном плане, так как общая продолжительность уплотнения уменьшена в 1,36 раза (пример 1) и в 1,82 раза (пример 2) при том же результате в степени уплотнения, который дает способ, являющийся ближайшим аналогом, но с сохранением при этом одинаковой микроструктуры в течение всей инфильтрации.
Пример 4
Волокнистую заготовку в форме диска диаметром 250 мм и толщиной 30 мм получают путем накладывания друг на друга и сшивания слоев ткани, как описано в примере 1.
Заготовку уплотняют пироуглеродом химической инфильтрацией из паровой фазы, исходя из газовой фазы, представляющей собой смесь природного газа и пропана, при температуре 1015oC и давлении 1,5 кПа.
Процесс инфильтрации осуществляют в две стадии I и II, разделенные операцией зачистки. Таблица 4, приведенная ниже, для каждой из двух стадий дает продолжительность стадии, объемное содержание пропана и время пребывания газовой фазы.
В конце процесса инфильтрации относительный прирост массы равен приблизительно 250%, уплотнение чувствительно однородное и микроструктура пироуглерода, типа слоистой шероховатой, одинаковая.
Пример 5
Используют заготовку, идентичную заготовке примера 4. Инфильтрацию пироуглерода также осуществляют в две стадии, разделенные зачисткой, используя газовую фазу, представляющую собой смесь природного газа и пропана, при давлении 1,5 кПа. Таблица 5, приведенная ниже, для каждой из двух стадий дает продолжительность стадии, объемное содержание пропана (постоянное в течение каждой стадии), значения температуры в начале и в конце (изменение непрерывное) и значение времени пребывания в начале и в конце (изменение непрерывное).
Общий прирост массы равен 250%, пироуглеродная матрица имеет те же самые характеристики, что и в примере 4.
Пример 6 (сравнительный)
Используют заготовку, идентичную заготовке примера 4. Инфильтрацию осуществляют в две стадии, разделенные зачисткой, используя газовую фазу, представляющую собой смесь природного газа и пропана. Условия инфильтрации поддерживают неизменными в течение всего процесса инфильтрации, а именно: объемное содержание пропана в газовой фазе - 6%, температура - 1015oC, время пребывания - 1,8 с, давление - 1,5 кПа.
Продолжительность каждой стадии составляет 500 ч, чтобы достичь уплотнения с приростом массы 250%, как в примерах 4 и 5.
Примеры 4 и 5 доказывают, что изобретение, давая одинаковую микроструктуру осаждаемого пироуглерода, позволяет очень значительно уменьшить общую продолжительность уплотнения (уменьшение в 1,18 раза и в 2 раза по сравнению с примером 6).
Пример 7
Пористую заготовку, представляющую собой волокнистую заготовку из волокон главным образом карбида кремния (SiС), получают, укладывая друг на друга слои ткани с сетчатым переплетением, нити которой состоят из волокон, выпускаемых в продажу японской фирмой Ниппон Карбон под названием "Nicalon". Чтобы получить заготовку с объемным содержанием волокон 35% и толщиной 5 мм, слои ткани укладывают в стопку и сжимают в приспособлении.
Заготовку уплотняют карбидом кремния, полученным химической инфильтрацией из паровой фазы в реакционной камере печи для инфильтрации. Процесс инфильрации изотермического типа осуществляют в три стадии I-III. После окончания первой стадии заготовку извлекают из печи для разборки приспособления, так как осадок SiC достаточен для того, чтобы обеспечить консолидацию заготовки, то есть чтобы соединить волокна между собой до степени, достаточной для того, чтобы заготовка сохраняла свою форму. Это не способ с зачисткой между стадиями уплотнения.
Газовая фаза, подаваемая в камеру, представляет собой смесь газообразного метилтрихлорсилана (МТС), предшественника Sic, и газообразного водорода (H2). Время пребывания газовой фазы в камере приблизительно равно 10 с, давление в камере поддерживают на значении приблизительно 13 кПа (100 Торр).
Изменение условий инфильтрации направлено только на температуру. Таблица 6, приведенная ниже, для каждой из стадий I-III показывает продолжительность стадии, температуру, которую поддерживают постоянной в течение каждой стадии, и плотность заготовки в конце каждой стадии.
Пример 8 (сравнительный)
Используют заготовку, идентичную заготовке примера 7. Инфильтрацию SiC осуществляют в две стадии I и II: первую стадию консолидации, после которой заготовку извлекают из приспособления, и вторую стадию, в течение которой уплотнение продолжают до достижения степени уплотнения, точно идентичной той, которая была достигнута в примере 7.
Используемая газовая фаза и условия инфильтрации те же, что и в примере 7, за исключением температуры, которую поддерживают постоянной в течение всего процесса, как указано в таблице 7, приведенной ниже. В этой таблице также указаны продолжительности стадий I и II, общая продолжительность и полученные плотности. Констатируют, что для достижения одной и той же конечной степени уплотнения (плотность 2,5) общая продолжительность процесса точно значительно больше, чем общая продолжительность в примере 7, выигрыш по этой общей продолжительности, получаемый за счет изменения параметра температура, составляет здесь 25%.
Пример 9
Волокнистые заготовки, такие как заготовки примера 4, укладывают коаксиально, так что они остаются слегка разделенными друг от друга посредством прокладок. Заготовки помещают в реакционную камеру печи для инфильтрации вокруг воспринимающего элемента, представляющего собой графитовый цилиндрический блок, с которым они контактируют их внутренними поверхностями. Воспринимающий элемент нагревается за счет индуктивной связи с катушкой индуктивности, расположенной снаружи камеры, таким образом, что между внутренними поверхностями заготовок и их внешними поверхностями, подвергающимися воздействию газовой фазы, вводимой в печь, устанавливается термический градиент. Заготовки уплотняют пироуглеродом, используя смесь природного газа и пропана. Температуру поверхности заготовок измеряют и устанавливают желаемую величину путем регулирования тока в катушке индуктивности, как описано в международной заявке на патент 95/11868.
Условия инфильтрации пироуглерода изменяют во время процесса уплотнения следующим образом (см. табл. 8).
Получают уплотнение пироуглеродом, типа слоистого шероховатого, во всех точках изготовленных изделий.
Пример 10
Действуют, как в примере 9, но изменяя условия инфильтрации пироуглерода следующим образом (см. табл. 9).
Микроструктура пироуглерода матрицы изменяется по мере того, как фронт уплотнения перемещается от середины заготовок к их наружным поверхностям. В середине полученных изделий пироуглеродная матрица представляет собой чистый пироуглерод типа слоистый шероховатый, затем она постепенно эволюционирует в направлении наружной поверхности к чистому пироуглероду типа слоистый темный, при контакте с волокнами, проходя через смесь пироуглеродов слоистый шероховатый/слоистый темный.

Claims (8)

1. Способ химической инфильтрации в паровой фазе материала внутрь пористой подложки с помощью газовой фазы, содержащей по меньшей мере один предшественник вышеупомянутого материала в газообразном состоянии, включающий этапы расположения подложки внутри оболочки, введения газовой фазы в оболочку, удаления остаточных газов из оболочки и контроля за условиями инфильтрации, определяемыми группой параметров, включающей: время пребывания газовой фазы между введением в оболочку и удалением из оболочки, давление в оболочке, температура подложки, содержание предшественника в газовой фазе и содержание возможной добавки в газовой фазе, отличающийся тем, что условия инфильтрации изменяются в течение процесса инфильтрации, вызывая изменение по меньшей мере одного из указанных параметров между первой величиной в начале процесса инфильтрации и второй величиной, отличной от первой, причем указанное время пребывания, если оно изменилось, повышается от первой величины ко второй, а указанная температура, в случае изменения, уменьшается от первого значения до второго, концентрация, в случае изменения, уменьшается с первого значения до второго, и концентрация возможной добавки, в случае изменения, уменьшается с первого значения до второго, причем условия инфильтрации изменяются таким образом, чтобы приспособить условия инфильтрации к изменению порометрии подложки, чтобы контролировать микроструктуру материала, осажденного внутрь подложки.
2. Способ по п.1, отличающийся тем, что давление, в случае изменения, уменьшается от первого значения в начале процесса инфильтрации до второго, меньшего, чем первое, значения, в процессе инфильтрации, затем повышается до третьего значения, большего, чем второе, в конце процесса инфильтрации.
3. Способ по п.1 или 2, отличающийся тем, что химическая инфильтрация в паровой фазе осуществляется при сохранении неизменной температуры подложки.
4. Способ по п.1 или 2, отличающийся тем, что химическая инфильтрация в паровой фазе осуществляется с установлением градиента температур внутри подложки.
5. Способ по любому из пп.1 - 4, отличающийся тем, что изменение условий инфильтрации осуществляется непрерывным способом.
6. Способ по любому из пп.1 - 4, отличающийся тем, что изменение условий инфильтрации осуществляется прерывистым способом.
7. Способ по п.6, отличающийся тем, что химическая инфильтрация в паровой фазе осуществляется в несколько последовательных стадий, причем изменение или каждое изменение условий инфильтрации осуществляется в начале новой стадии.
8. Способ по любому из пп.1 - 7, отличающийся тем, что для химической инфильтрации в паровой фазе пиролитического углерода при помощи газовой фазы, содержащей смесь метана и пропана, изменяют объемное процентное содержание пропана в газовой фазе от величины по меньшей мере 20% до величины, от 6% до 20%.
RU97118472/03A 1995-04-07 1996-04-09 Способ химической инфильтрации из паровой фазы с переменными параметрами инфильтрации RU2163228C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9504157 1995-04-07
FR9504157A FR2732677B1 (fr) 1995-04-07 1995-04-07 Procede d'infiltration chimique en phase vapeur avec parametres d'infiltration variables

Publications (2)

Publication Number Publication Date
RU97118472A RU97118472A (ru) 1999-08-10
RU2163228C2 true RU2163228C2 (ru) 2001-02-20

Family

ID=9477870

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97118472/03A RU2163228C2 (ru) 1995-04-07 1996-04-09 Способ химической инфильтрации из паровой фазы с переменными параметрами инфильтрации

Country Status (9)

Country Link
US (1) US6001419A (ru)
EP (1) EP0819105B1 (ru)
JP (2) JP4627808B2 (ru)
CA (1) CA2217643C (ru)
DE (1) DE69630443T2 (ru)
FR (1) FR2732677B1 (ru)
RU (1) RU2163228C2 (ru)
UA (1) UA51648C2 (ru)
WO (1) WO1996031447A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2581400C2 (ru) * 2009-12-16 2016-04-20 Мессье-Бугатти-Доути Способ изготовления фрикционной детали на основе углерод-углеродного композиционного материала

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732677B1 (fr) * 1995-04-07 1997-06-27 Europ Propulsion Procede d'infiltration chimique en phase vapeur avec parametres d'infiltration variables
GB9901041D0 (en) * 1999-01-18 1999-03-10 Dunlop Aerospace Ltd Densification of porous bodies
FR2834052B1 (fr) 2001-12-20 2004-03-19 Snecma Moteurs Procede pour le suivi du deroulement d'un processus utilisant un gaz reactif contenant un ou plusieurs hydrocarbures gazeux
US6953605B2 (en) * 2001-12-26 2005-10-11 Messier-Bugatti Method for densifying porous substrates by chemical vapour infiltration with preheated gas
US20040122515A1 (en) * 2002-11-21 2004-06-24 Xi Chu Prosthetic valves and methods of manufacturing
FR2854168B1 (fr) * 2003-04-28 2007-02-09 Messier Bugatti Commande ou modelisation de procede d'infiltration chimique en phase vapeur pour la densification de substrats poreux par du carbone
GB0323806D0 (en) * 2003-10-10 2003-11-12 Univ Southampton Fabrication of semiconductor metamaterials
GB0323807D0 (en) * 2003-10-10 2003-11-12 Univ Southampton Fabrication of metamaterials
US20050186878A1 (en) * 2004-02-23 2005-08-25 General Electric Company Thermo-mechanical property enhancement plies for CVI/SiC ceramic matrix composite laminates
KR100624094B1 (ko) * 2004-05-28 2006-09-19 주식회사 데크 탄소섬유 강화 세라믹 복합체 제조방법
US20050271876A1 (en) * 2004-06-04 2005-12-08 Walker Terrence B Method for producing carbon-carbon brake material with improved initial friction coefficient or 'bite'
US7691443B2 (en) * 2005-05-31 2010-04-06 Goodrich Corporation Non-pressure gradient single cycle CVI/CVD apparatus and method
US8057855B1 (en) * 2005-05-31 2011-11-15 Goodrich Corporation Non-pressure gradient single cycle CVI/CVD apparatus and method
GB2428671B (en) 2005-07-29 2011-08-31 Surface Transforms Plc Method for the manufacture of carbon fibre-reinforced ceramic brake or clutch disks
US20070184179A1 (en) * 2006-02-09 2007-08-09 Akshay Waghray Methods and apparatus to monitor a process of depositing a constituent of a multi-constituent gas during production of a composite brake disc
US7959973B2 (en) * 2006-11-29 2011-06-14 Honeywell International Inc. Pressure swing CVI/CVD
FR2934014B1 (fr) * 2008-07-17 2011-05-13 Snecma Propulsion Solide Procede de realisation d'une tuyere ou d'un divergent de tuyere en materiau composite.
US8383197B2 (en) * 2009-05-28 2013-02-26 Honeywell International Inc. Titanium carbide or tungsten carbide with combustion synthesis to block porosity in C-C brake discs for antioxidation protection
US20110033623A1 (en) * 2009-08-05 2011-02-10 Honeywell International Inc. Method of preventing carbon friction material anti oxidation system migration by utilizing carbon vapor deposition
DE102012100176B4 (de) * 2012-01-10 2016-11-17 Cvt Gmbh & Co. Kg Verfahren zur chemischen Gasphaseninfiltration von wenigstens einem refraktären Stoff
JP6411448B2 (ja) 2013-03-15 2018-10-24 ロールス−ロイス コーポレイション セラミックスマトリックス複合材料及びセラミックスマトリックス複合材料を製造する製造方法
WO2014150393A2 (en) 2013-03-15 2014-09-25 Lazur Andrew J Method for producing high strength ceramic matrix composites
RU2658858C2 (ru) * 2016-08-31 2018-06-25 Акционерное общество "Уральский научно-исследовательский институт композиционных материалов" (АО "УНИИКМ") Углерод-углеродный композиционный материал и способ изготовления из него изделий
RU2678288C1 (ru) * 2018-01-10 2019-01-24 Акционерное общество "Уральский научно-исследовательский институт композиционных материалов" Волокнистый материал объемной структуры из дискретных фрагментированных углеродных волокон, способ его изготовления и устройство для осуществления способа
US11691924B2 (en) * 2020-02-21 2023-07-04 Raytheon Technologies Corporation CVI matrix densification process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722198B2 (ja) * 1988-03-31 1998-03-04 日本石油株式会社 耐酸化性を有する炭素/炭素複合材料の製造法
JP3007936B2 (ja) * 1989-07-27 2000-02-14 日石三菱株式会社 炭素材料の製造法
US5348774A (en) * 1993-08-11 1994-09-20 Alliedsignal Inc. Method of rapidly densifying a porous structure
FR2711646B1 (fr) * 1993-10-27 1996-02-09 Europ Propulsion Procédé d'infiltration chimique en phase vapeur d'une matrice pyrocarbone au sein d'un substrat poreux avec établissement d'un gradient de température dans le substrat.
US5846611A (en) * 1993-10-27 1998-12-08 Societe Europeene De Propulsion Chemical vapor infiltration process of a material within a fibrous substrate with creation of a temperature gradient in the latter
FR2714076B1 (fr) * 1993-12-16 1996-03-15 Europ Propulsion Procédé de densification de substrats poreux par infiltration chimique en phase vapeur de carbure de silicium.
EP0832863B1 (en) * 1994-11-16 2002-04-03 The B.F. Goodrich Company Pressure gradient CVI/CVD apparatus, process, and product
FR2732677B1 (fr) * 1995-04-07 1997-06-27 Europ Propulsion Procede d'infiltration chimique en phase vapeur avec parametres d'infiltration variables

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЕМЯШЕВ А.В. Газофазная металлургия тугоплавких соединений. - М.: Металлургия, 1987, с.26-27, 76-79, 131-136, 187. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2581400C2 (ru) * 2009-12-16 2016-04-20 Мессье-Бугатти-Доути Способ изготовления фрикционной детали на основе углерод-углеродного композиционного материала

Also Published As

Publication number Publication date
EP0819105B1 (fr) 2003-10-22
CA2217643A1 (en) 1996-10-10
JPH11503107A (ja) 1999-03-23
UA51648C2 (ru) 2002-12-16
FR2732677A1 (fr) 1996-10-11
US6001419A (en) 1999-12-14
EP0819105A1 (fr) 1998-01-21
DE69630443D1 (de) 2003-11-27
JP4627808B2 (ja) 2011-02-09
DE69630443T2 (de) 2004-08-05
CA2217643C (en) 2004-09-21
WO1996031447A1 (fr) 1996-10-10
JP2008019511A (ja) 2008-01-31
FR2732677B1 (fr) 1997-06-27

Similar Documents

Publication Publication Date Title
RU2163228C2 (ru) Способ химической инфильтрации из паровой фазы с переменными параметрами инфильтрации
US5350545A (en) Method of fabrication of composites
JP3490087B2 (ja) コントロールした表面温度における多孔質基材への物質の蒸気相化学浸透方法
US4824711A (en) Ceramic honeycomb structures and method thereof
EP2097153B1 (en) Manufacturing method of filter media for medium and high temperature exhaust gas using foam coating technology
RU2347009C2 (ru) Способ контроля или моделирования процесса химической инфильтрации газовой фазой для уплотнения пористых субстратов углеродом
CN110981517B (zh) 碳陶复合材料的制备方法和应用及制备用针刺机构
US6837952B1 (en) Method for making a bowl in thermostructural composite material
US5865922A (en) Producing fiber reinforced composites having dense ceramic matrices
CA2288989A1 (en) High performance filters
EP2264330A1 (en) Low cost, high density C-C composites densified by CVD/CVI for aircraft friction materials
GB2342928A (en) Densifying porous structures
CA2175041C (en) Chemical vapour infiltration process of a pyrocarbon matrix within a porous substrate with creation of a temperature gradient in the substrate
US5472650A (en) Method of making chemical vapor infiltrated composites
Vaidyaraman et al. Forced flow-thermal gradient chemical vapor infiltration (FCVI) for fabrication of carbon/carbon
EP2282075A1 (en) Nonwoven preforms made with increased areal weight fabric segments for aircraft friction materials
US5846611A (en) Chemical vapor infiltration process of a material within a fibrous substrate with creation of a temperature gradient in the latter
CN211420008U (zh) 碳陶复合材料制备用针刺机构
RU2738718C2 (ru) Способ химической инфильтрации или осаждения из паровой фазы
CA2174309C (en) Chemical vapour infiltration process of a material within a fibrous substrate with creation of a temperature gradient in the latter
KR102153918B1 (ko) 화학기상증착을 이용한 SiC 나노와이어 균일 성장에 의한 고밀도의 탄화규소 복합체 제조 방법 및 이의 의해 제조된 탄화규소 복합체
Dupel et al. Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections: Part I Study of the pulsed process of deposition
KR0165868B1 (ko) 탄화규소 반응소결체의 제조장치 및 그의 연속제조방법
US10443124B1 (en) Process and apparatus for making composite structures
JP2849606B2 (ja) 気相含浸法およびその装置

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20070926

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150410